#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # SHA256/512_Transform for Itanium. # # sha512_block runs in 1003 cycles on Itanium 2, which is almost 50% # faster than gcc and >60%(!) faster than code generated by HP-UX # compiler (yes, HP-UX is generating slower code, because unlike gcc, # it failed to deploy "shift right pair," 'shrp' instruction, which # substitutes for 64-bit rotate). # # 924 cycles long sha256_block outperforms gcc by over factor of 2(!) # and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost # this one big time). Note that "formally" 924 is about 100 cycles # too much. I mean it's 64 32-bit rounds vs. 80 virtually identical # 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round, # are spent on extra work to provide for 32-bit rotations. 32-bit # rotations are still handled by 'shrp' instruction and for this # reason lower 32 bits are deposited to upper half of 64-bit register # prior 'shrp' issue. And in order to minimize the amount of such # operations, X[16] values are *maintained* with copies of lower # halves in upper halves, which is why you'll spot such instructions # as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel # 32-bit unsigned right shift," 'pshr4.u' instructions here. # # Rules of engagement. # # There is only one integer shifter meaning that if I have two rotate, # deposit or extract instructions in adjacent bundles, they shall # split [at run-time if they have to]. But note that variable and # parallel shifts are performed by multi-media ALU and *are* pairable # with rotates [and alike]. On the backside MMALU is rather slow: it # takes 2 extra cycles before the result of integer operation is # available *to* MMALU and 2(*) extra cycles before the result of MM # operation is available "back" *to* integer ALU, not to mention that # MMALU itself has 2 cycles latency. However! I explicitly scheduled # these MM instructions to avoid MM stalls, so that all these extra # latencies get "hidden" in instruction-level parallelism. # # (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule # for 2 in order to provide for best *overall* performance, # because on Itanium 1 stall on MM result is accompanied by # pipeline flush, which takes 6 cycles:-( # # Resulting performance numbers for 900MHz Itanium 2 system: # # The 'numbers' are in 1000s of bytes per second processed. # type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes # sha1(*) 6210.14k 20376.30k 52447.83k 85870.05k 105478.12k # sha256 7476.45k 20572.05k 41538.34k 56062.29k 62093.18k # sha512 4996.56k 20026.28k 47597.20k 85278.79k 111501.31k # # (*) SHA1 numbers are for HP-UX compiler and are presented purely # for reference purposes. I bet it can improved too... # # To generate code, pass the file name with either 256 or 512 in its # name and compiler flags. $output=shift; if ($output =~ /512.*\.[s|asm]/) { $SZ=8; $BITS=8*$SZ; $LDW="ld8"; $STW="st8"; $ADD="add"; $SHRU="shr.u"; $TABLE="K512"; $func="sha512_block_data_order"; @Sigma0=(28,34,39); @Sigma1=(14,18,41); @sigma0=(1, 8, 7); @sigma1=(19,61, 6); $rounds=80; } elsif ($output =~ /256.*\.[s|asm]/) { $SZ=4; $BITS=8*$SZ; $LDW="ld4"; $STW="st4"; $ADD="padd4"; $SHRU="pshr4.u"; $TABLE="K256"; $func="sha256_block_data_order"; @Sigma0=( 2,13,22); @Sigma1=( 6,11,25); @sigma0=( 7,18, 3); @sigma1=(17,19,10); $rounds=64; } else { die "nonsense $output"; } open STDOUT,">$output" || die "can't open $output: $!"; if ($^O eq "hpux") { $ADDP="addp4"; for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } } else { $ADDP="add"; } for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/); $big_endian=0 if (/\-DL_ENDIAN/); } if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } $code=<<___; .ident \"$output, version 1.0\" .ident \"IA-64 ISA artwork by Andy Polyakov \" .explicit .text pfssave=r2; lcsave=r3; prsave=r14; K=r15; A=r16; B=r17; C=r18; D=r19; E=r20; F=r21; G=r22; H=r23; T1=r24; T2=r25; s0=r26; s1=r27; t0=r28; t1=r29; Ktbl=r30; ctx=r31; // 1st arg input=r48; // 2nd arg num=r49; // 3rd arg sgm0=r50; sgm1=r51; // small constants // void $func (SHA_CTX *ctx, const void *in,size_t num[,int host]) .global $func# .proc $func# .align 32 $func: .prologue .save ar.pfs,pfssave { .mmi; alloc pfssave=ar.pfs,3,17,0,16 $ADDP ctx=0,r32 // 1st arg .save ar.lc,lcsave mov lcsave=ar.lc } { .mmi; $ADDP input=0,r33 // 2nd arg mov num=r34 // 3rd arg .save pr,prsave mov prsave=pr };; .body { .mib; add r8=0*$SZ,ctx add r9=1*$SZ,ctx brp.loop.imp .L_first16,.L_first16_ctop } { .mib; add r10=2*$SZ,ctx add r11=3*$SZ,ctx brp.loop.imp .L_rest,.L_rest_ctop };; // load A-H .Lpic_point: { .mmi; $LDW A=[r8],4*$SZ $LDW B=[r9],4*$SZ mov Ktbl=ip } { .mmi; $LDW C=[r10],4*$SZ $LDW D=[r11],4*$SZ mov sgm0=$sigma0[2] };; { .mmi; $LDW E=[r8] $LDW F=[r9] add Ktbl=($TABLE#-.Lpic_point),Ktbl } { .mmi; $LDW G=[r10] $LDW H=[r11] cmp.ne p15,p14=0,r0 };; // used in sha256_block .L_outer: { .mii; mov sgm1=$sigma1[2] mov ar.lc=15 mov ar.ec=1 };; .align 32 .L_first16: .rotr X[16] ___ $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32); { .mib; (p14) add r9=1,input (p14) add r10=2,input } { .mib; (p14) add r11=3,input (p15) br.dptk.few .L_host };; { .mmi; (p14) ld1 r8=[input],$SZ (p14) ld1 r9=[r9] } { .mmi; (p14) ld1 r10=[r10] (p14) ld1 r11=[r11] };; { .mii; (p14) dep r9=r8,r9,8,8 (p14) dep r11=r10,r11,8,8 };; { .mib; (p14) dep X[15]=r9,r11,16,16 };; .L_host: { .mib; (p15) $LDW X[15]=[input],$SZ // X[i]=*input++ dep.z $t1=E,32,32 } { .mib; $LDW K=[Ktbl],$SZ zxt4 E=E };; { .mmi; or $t1=$t1,E and T1=F,E and T2=A,B } { .mmi; andcm r8=G,E and r9=A,C mux2 $t0=A,0x44 };; // copy lower half to upper { .mib; xor T1=T1,r8 // T1=((e & f) ^ (~e & g)) _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14) { .mib; and r10=B,C xor T2=T2,r9 };; ___ $t0="A", $t1="E", $code.=<<___ if ($BITS==64); { .mmi; $LDW X[15]=[input],$SZ // X[i]=*input++ and T1=F,E and T2=A,B } { .mmi; $LDW K=[Ktbl],$SZ andcm r8=G,E and r9=A,C };; { .mmi; xor T1=T1,r8 //T1=((e & f) ^ (~e & g)) and r10=B,C _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14) { .mmi; xor T2=T2,r9 mux1 X[15]=X[15],\@rev };; // eliminated in big-endian ___ $code.=<<___; { .mib; add T1=T1,H // T1=Ch(e,f,g)+h _rotr r8=$t1,$Sigma1[1] } // ROTR(e,18) { .mib; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c)) mov H=G };; { .mib; xor r11=r8,r11 _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41) { .mib; mov G=F mov F=E };; { .mib; xor r9=r9,r11 // r9=Sigma1(e) _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28) { .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i] mov E=D };; { .mib; add T1=T1,r9 // T1+=Sigma1(e) _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34) { .mib; mov D=C mov C=B };; { .mib; add T1=T1,X[15] // T1+=X[i] _rotr r8=$t0,$Sigma0[2] } // ROTR(a,39) { .mib; xor r10=r10,r11 mux2 X[15]=X[15],0x44 };; // eliminated in 64-bit { .mmi; xor r10=r8,r10 // r10=Sigma0(a) mov B=A add A=T1,T2 };; .L_first16_ctop: { .mib; add E=E,T1 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a) br.ctop.sptk .L_first16 };; { .mib; mov ar.lc=$rounds-17 } { .mib; mov ar.ec=1 };; .align 32 .L_rest: .rotr X[16] { .mib; $LDW K=[Ktbl],$SZ _rotr r8=X[15-1],$sigma0[0] } // ROTR(s0,1) { .mib; $ADD X[15]=X[15],X[15-9] // X[i&0xF]+=X[(i+9)&0xF] $SHRU s0=X[15-1],sgm0 };; // s0=X[(i+1)&0xF]>>7 { .mib; and T1=F,E _rotr r9=X[15-1],$sigma0[1] } // ROTR(s0,8) { .mib; andcm r10=G,E $SHRU s1=X[15-14],sgm1 };; // s1=X[(i+14)&0xF]>>6 { .mmi; xor T1=T1,r10 // T1=((e & f) ^ (~e & g)) xor r9=r8,r9 _rotr r10=X[15-14],$sigma1[0] };;// ROTR(s1,19) { .mib; and T2=A,B _rotr r11=X[15-14],$sigma1[1] }// ROTR(s1,61) { .mib; and r8=A,C };; ___ $t0="t0", $t1="t1", $code.=<<___ if ($BITS==32); // I adhere to mmi; in order to hold Itanium 1 back and avoid 6 cycle // pipeline flush in last bundle. Note that even on Itanium2 the // latter stalls for one clock cycle... { .mmi; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF]) dep.z $t1=E,32,32 } { .mmi; xor r10=r11,r10 zxt4 E=E };; { .mmi; or $t1=$t1,E xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF]) mux2 $t0=A,0x44 };; // copy lower half to upper { .mmi; xor T2=T2,r8 _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14) { .mmi; and r10=B,C add T1=T1,H // T1=Ch(e,f,g)+h $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF]) ___ $t0="A", $t1="E", $code.=<<___ if ($BITS==64); { .mib; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF]) _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14) { .mib; xor r10=r11,r10 xor T2=T2,r8 };; { .mib; xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF]) add T1=T1,H } { .mib; and r10=B,C $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF]) ___ $code.=<<___; { .mmi; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c)) mov H=G _rotr r8=$t1,$Sigma1[1] };; // ROTR(e,18) { .mmi; xor r11=r8,r9 $ADD X[15]=X[15],s1 // X[i&0xF]+=sigma1(X[(i+14)&0xF]) _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41) { .mmi; mov G=F mov F=E };; { .mib; xor r9=r9,r11 // r9=Sigma1(e) _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28) { .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i] mov E=D };; { .mib; add T1=T1,r9 // T1+=Sigma1(e) _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34) { .mib; mov D=C mov C=B };; { .mmi; add T1=T1,X[15] // T1+=X[i] xor r10=r10,r11 _rotr r8=$t0,$Sigma0[2] };; // ROTR(a,39) { .mmi; xor r10=r8,r10 // r10=Sigma0(a) mov B=A add A=T1,T2 };; .L_rest_ctop: { .mib; add E=E,T1 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a) br.ctop.sptk .L_rest };; { .mib; add r8=0*$SZ,ctx add r9=1*$SZ,ctx } { .mib; add r10=2*$SZ,ctx add r11=3*$SZ,ctx };; { .mmi; $LDW r32=[r8],4*$SZ $LDW r33=[r9],4*$SZ } { .mmi; $LDW r34=[r10],4*$SZ $LDW r35=[r11],4*$SZ cmp.ltu p6,p7=1,num };; { .mmi; $LDW r36=[r8],-4*$SZ $LDW r37=[r9],-4*$SZ (p6) add Ktbl=-$SZ*$rounds,Ktbl } { .mmi; $LDW r38=[r10],-4*$SZ $LDW r39=[r11],-4*$SZ (p7) mov ar.lc=lcsave };; { .mmi; add A=A,r32 add B=B,r33 add C=C,r34 } { .mmi; add D=D,r35 add E=E,r36 add F=F,r37 };; { .mmi; $STW [r8]=A,4*$SZ $STW [r9]=B,4*$SZ add G=G,r38 } { .mmi; $STW [r10]=C,4*$SZ $STW [r11]=D,4*$SZ add H=H,r39 };; { .mmi; $STW [r8]=E $STW [r9]=F (p6) add num=-1,num } { .mmb; $STW [r10]=G $STW [r11]=H (p6) br.dptk.many .L_outer };; { .mib; mov pr=prsave,0x1ffff br.ret.sptk.many b0 };; .endp $func# ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; $code =~ s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm; if ($BITS==64) { $code =~ s/mux2(\s+)\S+/nop.i$1 0x0/gm; $code =~ s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian); } print $code; print<<___ if ($BITS==32); .align 64 .type K256#,\@object K256: data4 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 data4 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 data4 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 data4 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 data4 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc data4 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da data4 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 data4 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 data4 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 data4 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 data4 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 data4 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 data4 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 data4 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 data4 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 data4 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .size K256#,$SZ*$rounds ___ print<<___ if ($BITS==64); .align 64 .type K512#,\@object K512: data8 0x428a2f98d728ae22,0x7137449123ef65cd data8 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc data8 0x3956c25bf348b538,0x59f111f1b605d019 data8 0x923f82a4af194f9b,0xab1c5ed5da6d8118 data8 0xd807aa98a3030242,0x12835b0145706fbe data8 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 data8 0x72be5d74f27b896f,0x80deb1fe3b1696b1 data8 0x9bdc06a725c71235,0xc19bf174cf692694 data8 0xe49b69c19ef14ad2,0xefbe4786384f25e3 data8 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 data8 0x2de92c6f592b0275,0x4a7484aa6ea6e483 data8 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 data8 0x983e5152ee66dfab,0xa831c66d2db43210 data8 0xb00327c898fb213f,0xbf597fc7beef0ee4 data8 0xc6e00bf33da88fc2,0xd5a79147930aa725 data8 0x06ca6351e003826f,0x142929670a0e6e70 data8 0x27b70a8546d22ffc,0x2e1b21385c26c926 data8 0x4d2c6dfc5ac42aed,0x53380d139d95b3df data8 0x650a73548baf63de,0x766a0abb3c77b2a8 data8 0x81c2c92e47edaee6,0x92722c851482353b data8 0xa2bfe8a14cf10364,0xa81a664bbc423001 data8 0xc24b8b70d0f89791,0xc76c51a30654be30 data8 0xd192e819d6ef5218,0xd69906245565a910 data8 0xf40e35855771202a,0x106aa07032bbd1b8 data8 0x19a4c116b8d2d0c8,0x1e376c085141ab53 data8 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 data8 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb data8 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 data8 0x748f82ee5defb2fc,0x78a5636f43172f60 data8 0x84c87814a1f0ab72,0x8cc702081a6439ec data8 0x90befffa23631e28,0xa4506cebde82bde9 data8 0xbef9a3f7b2c67915,0xc67178f2e372532b data8 0xca273eceea26619c,0xd186b8c721c0c207 data8 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 data8 0x06f067aa72176fba,0x0a637dc5a2c898a6 data8 0x113f9804bef90dae,0x1b710b35131c471b data8 0x28db77f523047d84,0x32caab7b40c72493 data8 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c data8 0x4cc5d4becb3e42b6,0x597f299cfc657e2a data8 0x5fcb6fab3ad6faec,0x6c44198c4a475817 .size K512#,$SZ*$rounds ___