#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # SHA1 block procedure for MIPS. # Performance improvement is 30% on unaligned input. The "secret" is # to deploy lwl/lwr pair to load unaligned input. One could have # vectorized Xupdate on MIPSIII/IV, but the goal was to code MIPS32- # compatible subroutine. There is room for minor optimization on # little-endian platforms... ###################################################################### # There is a number of MIPS ABI in use, O32 and N32/64 are most # widely used. Then there is a new contender: NUBI. It appears that if # one picks the latter, it's possible to arrange code in ABI neutral # manner. Therefore let's stick to NUBI register layout: # ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); # # The return value is placed in $a0. Following coding rules facilitate # interoperability: # # - never ever touch $tp, "thread pointer", former $gp; # - copy return value to $t0, former $v0 [or to $a0 if you're adapting # old code]; # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; # # For reference here is register layout for N32/64 MIPS ABIs: # # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); # $flavour = shift; # supported flavours are o32,n32,64,nubi32,nubi64 if ($flavour =~ /64|n32/i) { $PTR_ADD="dadd"; # incidentally works even on n32 $PTR_SUB="dsub"; # incidentally works even on n32 $REG_S="sd"; $REG_L="ld"; $PTR_SLL="dsll"; # incidentally works even on n32 $SZREG=8; } else { $PTR_ADD="add"; $PTR_SUB="sub"; $REG_S="sw"; $REG_L="lw"; $PTR_SLL="sll"; $SZREG=4; } # # # ###################################################################### for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/); $big_endian=0 if (/\-DL_ENDIAN/); $output=$_ if (/^\w[\w\-]*\.\w+$/); } open STDOUT,">$output"; if (!defined($big_endian)) { $big_endian=(unpack('L',pack('N',1))==1); } # offsets of the Most and Least Significant Bytes $MSB=$big_endian?0:3; $LSB=3&~$MSB; @X=map("\$$_",(8..23)); # a4-a7,s0-s11 $ctx=$a0; $inp=$a1; $num=$a2; $A="\$1"; $B="\$2"; $C="\$3"; $D="\$7"; $E="\$24"; @V=($A,$B,$C,$D,$E); $t0="\$25"; $t1=$num; # $num is offloaded to stack $t2="\$30"; # fp $K="\$31"; # ra sub BODY_00_14 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if (!$big_endian); srl $t0,@X[$i],24 # byte swap($i) srl $t1,@X[$i],8 andi $t2,@X[$i],0xFF00 sll @X[$i],@X[$i],24 andi $t1,0xFF00 sll $t2,$t2,8 or @X[$i],$t0 or $t1,$t2 or @X[$i],$t1 ___ $code.=<<___; lwl @X[$j],$j*4+$MSB($inp) sll $t0,$a,5 # $i addu $e,$K lwr @X[$j],$j*4+$LSB($inp) srl $t1,$a,27 addu $e,$t0 xor $t0,$c,$d addu $e,$t1 sll $t2,$b,30 and $t0,$b srl $b,$b,2 xor $t0,$d addu $e,@X[$i] or $b,$t2 addu $e,$t0 ___ } sub BODY_15_19 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if (!$big_endian && $i==15); srl $t0,@X[$i],24 # byte swap($i) srl $t1,@X[$i],8 andi $t2,@X[$i],0xFF00 sll @X[$i],@X[$i],24 andi $t1,0xFF00 sll $t2,$t2,8 or @X[$i],$t0 or @X[$i],$t1 or @X[$i],$t2 ___ $code.=<<___; xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 and $t0,$b srl $t1,@X[$j%16],31 addu @X[$j%16],@X[$j%16] srl $b,$b,2 xor $t0,$d or @X[$j%16],$t1 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] xor $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 xor $t0,$b srl $t1,@X[$j%16],31 addu @X[$j%16],@X[$j%16] srl $b,$b,2 addu $e,@X[$i%16] or @X[$j%16],$t1 or $b,$t2 addu $e,$t0 ___ $code.=<<___ if ($i==79); lw @X[0],0($ctx) sll $t0,$a,5 # $i addu $e,$K lw @X[1],4($ctx) srl $t1,$a,27 addu $e,$t0 lw @X[2],8($ctx) xor $t0,$c,$d addu $e,$t1 lw @X[3],12($ctx) sll $t2,$b,30 xor $t0,$b lw @X[4],16($ctx) srl $b,$b,2 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e)=@_; my $j=$i+1; $code.=<<___ if ($i<79); xor @X[$j%16],@X[($j+2)%16] sll $t0,$a,5 # $i addu $e,$K srl $t1,$a,27 addu $e,$t0 xor @X[$j%16],@X[($j+8)%16] and $t0,$c,$d addu $e,$t1 xor @X[$j%16],@X[($j+13)%16] sll $t2,$b,30 addu $e,$t0 srl $t1,@X[$j%16],31 xor $t0,$c,$d addu @X[$j%16],@X[$j%16] and $t0,$b srl $b,$b,2 or @X[$j%16],$t1 addu $e,@X[$i%16] or $b,$t2 addu $e,$t0 ___ } $FRAMESIZE=16; # large enough to accomodate NUBI saved registers $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? 0xc0fff008 : 0xc0ff0000; $code=<<___; .text .set noat .set noreorder .align 5 .globl sha1_block_data_order .ent sha1_block_data_order sha1_block_data_order: .frame $sp,$FRAMESIZE*$SZREG,$ra .mask $SAVED_REGS_MASK,-$SZREG .set noreorder $PTR_SUB $sp,$FRAMESIZE*$SZREG $REG_S $ra,($FRAMESIZE-1)*$SZREG($sp) $REG_S $fp,($FRAMESIZE-2)*$SZREG($sp) $REG_S $s11,($FRAMESIZE-3)*$SZREG($sp) $REG_S $s10,($FRAMESIZE-4)*$SZREG($sp) $REG_S $s9,($FRAMESIZE-5)*$SZREG($sp) $REG_S $s8,($FRAMESIZE-6)*$SZREG($sp) $REG_S $s7,($FRAMESIZE-7)*$SZREG($sp) $REG_S $s6,($FRAMESIZE-8)*$SZREG($sp) $REG_S $s5,($FRAMESIZE-9)*$SZREG($sp) $REG_S $s4,($FRAMESIZE-10)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); # optimize non-nubi prologue $REG_S $s3,($FRAMESIZE-11)*$SZREG($sp) $REG_S $s2,($FRAMESIZE-12)*$SZREG($sp) $REG_S $s1,($FRAMESIZE-13)*$SZREG($sp) $REG_S $s0,($FRAMESIZE-14)*$SZREG($sp) $REG_S $gp,($FRAMESIZE-15)*$SZREG($sp) ___ $code.=<<___; $PTR_SLL $num,6 $PTR_ADD $num,$inp $REG_S $num,0($sp) lw $A,0($ctx) lw $B,4($ctx) lw $C,8($ctx) lw $D,12($ctx) b .Loop lw $E,16($ctx) .align 4 .Loop: .set reorder lwl @X[0],$MSB($inp) lui $K,0x5a82 lwr @X[0],$LSB($inp) ori $K,0x7999 # K_00_19 ___ for ($i=0;$i<15;$i++) { &BODY_00_14($i,@V); unshift(@V,pop(@V)); } for (;$i<20;$i++) { &BODY_15_19($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0x6ed9 ori $K,0xeba1 # K_20_39 ___ for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0x8f1b ori $K,0xbcdc # K_40_59 ___ for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } $code.=<<___; lui $K,0xca62 ori $K,0xc1d6 # K_60_79 ___ for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; $PTR_ADD $inp,64 $REG_L $num,0($sp) addu $A,$X[0] addu $B,$X[1] sw $A,0($ctx) addu $C,$X[2] addu $D,$X[3] sw $B,4($ctx) addu $E,$X[4] sw $C,8($ctx) sw $D,12($ctx) sw $E,16($ctx) .set noreorder bne $inp,$num,.Loop nop .set noreorder $REG_L $ra,($FRAMESIZE-1)*$SZREG($sp) $REG_L $fp,($FRAMESIZE-2)*$SZREG($sp) $REG_L $s11,($FRAMESIZE-3)*$SZREG($sp) $REG_L $s10,($FRAMESIZE-4)*$SZREG($sp) $REG_L $s9,($FRAMESIZE-5)*$SZREG($sp) $REG_L $s8,($FRAMESIZE-6)*$SZREG($sp) $REG_L $s7,($FRAMESIZE-7)*$SZREG($sp) $REG_L $s6,($FRAMESIZE-8)*$SZREG($sp) $REG_L $s5,($FRAMESIZE-9)*$SZREG($sp) $REG_L $s4,($FRAMESIZE-10)*$SZREG($sp) ___ $code.=<<___ if ($flavour =~ /nubi/i); $REG_L $s3,($FRAMESIZE-11)*$SZREG($sp) $REG_L $s2,($FRAMESIZE-12)*$SZREG($sp) $REG_L $s1,($FRAMESIZE-13)*$SZREG($sp) $REG_L $s0,($FRAMESIZE-14)*$SZREG($sp) $REG_L $gp,($FRAMESIZE-15)*$SZREG($sp) ___ $code.=<<___; jr $ra $PTR_ADD $sp,$FRAMESIZE*$SZREG .end sha1_block_data_order .rdata .asciiz "SHA1 for MIPS, CRYPTOGAMS by " ___ print $code; close STDOUT;