/* ==================================================================== * Copyright (c) 2010 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include "modes.h" #include #ifndef MODES_DEBUG # ifndef NDEBUG # define NDEBUG # endif #endif #include #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) typedef __int64 i64; typedef unsigned __int64 u64; #define U64(C) C##UI64 #elif defined(__arch64__) typedef long i64; typedef unsigned long u64; #define U64(C) C##UL #else typedef long long i64; typedef unsigned long long u64; #define U64(C) C##ULL #endif typedef unsigned int u32; typedef unsigned char u8; typedef struct { u64 hi,lo; } u128; #define STRICT_ALIGNMENT #if defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ defined(__s390__) || defined(__s390x__) # undef STRICT_ALIGNMENT #endif #if defined(__GNUC__) && __GNUC__>=2 # if defined(__x86_64) || defined(__x86_64__) # define BSWAP8(x) ({ u64 ret=(x); \ asm volatile ("bswapq %0" \ : "+r"(ret)); ret; }) # define BSWAP4(x) ({ u32 ret=(x); \ asm volatile ("bswapl %0" \ : "+r"(ret)); ret; }) # elif defined(__i386) || defined(__i386__) # define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \ asm volatile ("bswapl %0; bswapl %1" \ : "+r"(hi),"+r"(lo)); \ (u64)hi<<32|lo; }) # define BSWAP4(x) ({ u32 ret=(x); \ asm volatile ("bswapl %0" \ : "+r"(ret)); ret; }) # endif #elif defined(_MSC_VER) # if _MSC_VER>=1300 # pragma intrinsic(_byteswap_uint64,_byteswap_ulong) # define BSWAP8(x) _byteswap_uint64((u64)(x)) # define BSWAP4(x) _byteswap_ulong((u32)(x)) # elif defined(_M_IX86) # endif #endif #ifdef BSWAP4 #define GETU32(p) BSWAP4(*(const u32 *)(p)) #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #else #define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3]) #define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v)) #endif #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) #ifdef TABLE_BITS #undef TABLE_BITS #endif /* * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * Under ideal conditions "8-bit" version should be twice as fast as * "4-bit" one. But world is far from ideal. For gcc-generated x86 code, * "8-bit" was observed to run only ~50% faster. On x86_64 observed * improvement was ~75%, much closer to optimal, but the fact of * deviation means that references to pre-computed tables end up on * critical path and as tables are pretty big, 4KB per key+1KB shared, * execution time is sensitive to cache timing. It's not actually * proven, but 4-bit procedure is believed to provide adequate * all-round performance... */ #define TABLE_BITS 4 #if TABLE_BITS==8 static void gcm_init_8bit(u128 Htable[256], u64 H[2]) { int i, j; u128 V; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; for (Htable[128]=V, i=64; i>0; i>>=1) { if (sizeof(size_t)==8) { u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^T; } else { u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^((u64)T<<32); } Htable[i] = V; } for (i=2; i<256; i<<=1) { u128 *Hi = Htable+i, H0 = *Hi; for (j=1; j>8); Z.hi = (Z.hi>>8); if (sizeof(size_t)==8) Z.hi ^= rem_8bit[rem]; else Z.hi ^= (u64)rem_8bit[rem]<<32; } if (is_endian.little) { #ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); #else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi>>32); PUTU32(p,v); v = (u32)(Z.hi); PUTU32(p+4,v); v = (u32)(Z.lo>>32); PUTU32(p+8,v); v = (u32)(Z.lo); PUTU32(p+12,v); #endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) #elif TABLE_BITS==4 static void gcm_init_4bit(u128 Htable[16], u64 H[2]) { int i; u128 V; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; for (Htable[8]=V, i=4; i>0; i>>=1) { if (sizeof(size_t)==8) { u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^T; } else { u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^((u64)T<<32); } Htable[i] = V; } #if defined(OPENSSL_SMALL_FOOTPRINT) for (i=2; i<16; i<<=1) { u128 *Hi = Htable+i; int j; for (V=*Hi, j=1; j>4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo&0xf; Z.lo = (Z.hi<<60)|(Z.lo>>4); Z.hi = (Z.hi>>4); if (sizeof(size_t)==8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem]<<32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt<0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo>>4; nlo &= 0xf; rem = (size_t)Z.lo&0xf; Z.lo = (Z.hi<<60)|(Z.lo>>4); Z.hi = (Z.hi>>4); if (sizeof(size_t)==8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem]<<32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (is_endian.little) { #ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); #else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi>>32); PUTU32(p,v); v = (u32)(Z.hi); PUTU32(p+4,v); v = (u32)(Z.lo>>32); PUTU32(p+8,v); v = (u32)(Z.lo); PUTU32(p+12,v); #endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } #if !defined(OPENSSL_SMALL_FOOTPRINT) /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16], const u8 *inp,size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; const union { long one; char little; } is_endian = {1}; do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo>>4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo&0xf; Z.lo = (Z.hi<<60)|(Z.lo>>4); Z.hi = (Z.hi>>4); if (sizeof(size_t)==8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem]<<32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt<0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo>>4; nlo &= 0xf; rem = (size_t)Z.lo&0xf; Z.lo = (Z.hi<<60)|(Z.lo>>4); Z.hi = (Z.hi>>4); if (sizeof(size_t)==8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem]<<32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (is_endian.little) { #ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); #else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi>>32); PUTU32(p,v); v = (u32)(Z.hi); PUTU32(p+4,v); v = (u32)(Z.lo>>32); PUTU32(p+8,v); v = (u32)(Z.lo); PUTU32(p+12,v); #endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } while (inp+=16, len-=16); } #endif #else void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); #endif #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) #define GHASH(in,len,ctx) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache * trashing effect. In other words idea is to hash data while it's * still in L1 cache after encryption pass... */ #define GHASH_CHUNK 1024 #endif #else /* TABLE_BITS */ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2]) { u128 V,Z = { 0,0 }; long X; int i,j; const long *xi = (const long *)Xi; const union { long one; char little; } is_endian = {1}; V.hi = H[0]; /* H is in host byte order, no byte swapping */ V.lo = H[1]; for (j=0; j<16/sizeof(long); ++j) { if (is_endian.little) { if (sizeof(long)==8) { #ifdef BSWAP8 X = (long)(BSWAP8(xi[j])); #else const u8 *p = (const u8 *)(xi+j); X = (long)((u64)GETU32(p)<<32|GETU32(p+4)); #endif } else { const u8 *p = (const u8 *)(xi+j); X = (long)GETU32(p); } } else X = xi[j]; for (i=0; i<8*sizeof(long); ++i, X<<=1) { u64 M = (u64)(X>>(8*sizeof(long)-1)); Z.hi ^= V.hi&M; Z.lo ^= V.lo&M; if (sizeof(size_t)==8) { u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^T; } else { u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); V.lo = (V.hi<<63)|(V.lo>>1); V.hi = (V.hi>>1 )^((u64)T<<32); } } } if (is_endian.little) { #ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); #else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi>>32); PUTU32(p,v); v = (u32)(Z.hi); PUTU32(p+4,v); v = (u32)(Z.lo>>32); PUTU32(p+8,v); v = (u32)(Z.lo); PUTU32(p+12,v); #endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) #endif typedef struct { /* Following 6 names follow names in GCM specification */ union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0, Xi,H, len; /* Pre-computed table used by gcm_gmult_* */ #if TABLE_BITS==8 u128 Htable[256]; #else u128 Htable[16]; #endif unsigned int res, ctr; block128_f block; void *key; } GCM128_CONTEXT; void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block) { const union { long one; char little; } is_endian = {1}; memset(ctx,0,sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block)(ctx->H.c,ctx->H.c,key); if (is_endian.little) { /* H is stored in host byte order */ #ifdef BSWAP8 ctx->H.u[0] = BSWAP8(ctx->H.u[0]); ctx->H.u[1] = BSWAP8(ctx->H.u[1]); #else u8 *p = ctx->H.c; u64 hi,lo; hi = (u64)GETU32(p) <<32|GETU32(p+4); lo = (u64)GETU32(p+8)<<32|GETU32(p+12); ctx->H.u[0] = hi; ctx->H.u[1] = lo; #endif } #if TABLE_BITS==8 gcm_init_8bit(ctx->Htable,ctx->H.u); #elif TABLE_BITS==4 gcm_init_4bit(ctx->Htable,ctx->H.u); #endif } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len) { const union { long one; char little; } is_endian = {1}; ctx->Yi.u[0] = 0; ctx->Yi.u[1] = 0; ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; ctx->len.u[0] = 0; ctx->len.u[1] = 0; ctx->res = 0; if (len==12) { memcpy(ctx->Yi.c,iv,12); ctx->Yi.c[15]=1; ctx->ctr=1; } else { size_t i; u64 len0 = len; while (len>=16) { for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i]; GCM_MUL(ctx,Yi); iv += 16; len -= 16; } if (len) { for (i=0; iYi.c[i] ^= iv[i]; GCM_MUL(ctx,Yi); } len0 <<= 3; if (is_endian.little) { #ifdef BSWAP8 ctx->Yi.u[1] ^= BSWAP8(len0); #else ctx->Yi.c[8] ^= (u8)(len0>>56); ctx->Yi.c[9] ^= (u8)(len0>>48); ctx->Yi.c[10] ^= (u8)(len0>>40); ctx->Yi.c[11] ^= (u8)(len0>>32); ctx->Yi.c[12] ^= (u8)(len0>>24); ctx->Yi.c[13] ^= (u8)(len0>>16); ctx->Yi.c[14] ^= (u8)(len0>>8); ctx->Yi.c[15] ^= (u8)(len0); #endif } else ctx->Yi.u[1] ^= len0; GCM_MUL(ctx,Yi); if (is_endian.little) ctx->ctr = GETU32(ctx->Yi.c+12); else ctx->ctr = ctx->Yi.d[3]; } (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key); ++ctx->ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctx->ctr); else ctx->Yi.d[3] = ctx->ctr; } void CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len) { size_t i; ctx->len.u[0] += len; #ifdef GHASH if ((i = (len&(size_t)-16))) { GHASH(aad,i,ctx); aad += i; len -= i; } #else while (len>=16) { for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i]; GCM_MUL(ctx,Xi); aad += 16; len -= 16; } #endif if (len) { for (i=0; iXi.c[i] ^= aad[i]; GCM_MUL(ctx,Xi); } } void CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = {1}; unsigned int n, ctr; size_t i; ctx->len.u[1] += len; n = ctx->res; ctr = ctx->ctr; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16%sizeof(size_t) == 0) do { /* always true actually */ if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; --len; n = (n+1)%16; } if (n==0) GCM_MUL(ctx,Xi); else { ctx->res = n; return; } } #if defined(STRICT_ALIGNMENT) if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) break; #endif #if defined(GHASH) && defined(GHASH_CHUNK) while (len>=GHASH_CHUNK) { size_t j=GHASH_CHUNK; while (j) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) *(size_t *)(out+i) = *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); out += 16; in += 16; j -= 16; } GHASH(out-GHASH_CHUNK,GHASH_CHUNK,ctx); len -= GHASH_CHUNK; } if ((i = (len&(size_t)-16))) { size_t j=i; while (len>=16) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) *(size_t *)(out+i) = *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); out += 16; in += 16; len -= 16; } GHASH(out-j,j,ctx); } #else while (len>=16) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) *(size_t *)(ctx->Xi.c+i) ^= *(size_t *)(out+i) = *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); GCM_MUL(ctx,Xi); out += 16; in += 16; len -= 16; } #endif if (len) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; while (len--) { ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; ++n; } } ctx->res = n; ctx->ctr = ctr; return; } while(0); #endif for (i=0;iblock)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; } ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n]; n = (n+1)%16; if (n==0) GCM_MUL(ctx,Xi); } ctx->res = n; ctx->ctr = ctr; } void CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { const union { long one; char little; } is_endian = {1}; unsigned int n, ctr; size_t i; ctx->len.u[1] += len; n = ctx->res; ctr = ctx->ctr; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16%sizeof(size_t) == 0) do { /* always true actually */ if (n) { while (n && len) { u8 c = *(in++); *(out++) = c^ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n+1)%16; } if (n==0) GCM_MUL (ctx,Xi); else { ctx->res = n; return; } } #if defined(STRICT_ALIGNMENT) if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) break; #endif #if defined(GHASH) && defined(GHASH_CHUNK) while (len>=GHASH_CHUNK) { size_t j=GHASH_CHUNK; GHASH(in,GHASH_CHUNK,ctx); while (j) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) *(size_t *)(out+i) = *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } if ((i = (len&(size_t)-16))) { GHASH(in,i,ctx); while (len>=16) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) *(size_t *)(out+i) = *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); out += 16; in += 16; len -= 16; } } #else while (len>=16) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; for (i=0; i<16; i+=sizeof(size_t)) { size_t c = *(size_t *)(in+i); *(size_t *)(out+i) = c^*(size_t *)(ctx->EKi.c+i); *(size_t *)(ctx->Xi.c+i) ^= c; } GCM_MUL(ctx,Xi); out += 16; in += 16; len -= 16; } #endif if (len) { (*ctx->block)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c^ctx->EKi.c[n]; ++n; } } ctx->res = n; ctx->ctr = ctr; return; } while(0); #endif for (i=0;iblock)(ctx->Yi.c,ctx->EKi.c,ctx->key); ++ctr; if (is_endian.little) PUTU32(ctx->Yi.c+12,ctr); else ctx->Yi.d[3] = ctr; } c = in[i]; out[i] ^= ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; n = (n+1)%16; if (n==0) GCM_MUL(ctx,Xi); } ctx->res = n; ctx->ctr = ctr; } void CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx) { const union { long one; char little; } is_endian = {1}; u64 alen = ctx->len.u[0]<<3; u64 clen = ctx->len.u[1]<<3; if (ctx->res) GCM_MUL(ctx,Xi); if (is_endian.little) { #ifdef BSWAP8 alen = BSWAP8(alen); clen = BSWAP8(clen); #else u8 *p = ctx->len.c; ctx->len.u[0] = alen; ctx->len.u[1] = clen; alen = (u64)GETU32(p) <<32|GETU32(p+4); clen = (u64)GETU32(p+8)<<32|GETU32(p+12); #endif } ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx,Xi); ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; } #if defined(SELFTEST) #include #include /* Test Case 1 */ static const u8 K1[16], *P1=NULL, *A1=NULL, IV1[12], *C1=NULL, T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a}; /* Test Case 2 */ #define K2 K1 #define A2 A1 #define IV2 IV1 static const u8 P2[16], C2[]= {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0xb9,0x71,0xb2,0xfe,0x78}, T2[]= {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0xb2,0x12,0x57,0xbd,0xdf}; /* Test Case 3 */ #define A3 A2 static const u8 K3[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, P3[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, C3[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85}, T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4,}; /* Test Case 4 */ #define K4 K3 #define IV4 IV3 static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, A4[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, 0xab,0xad,0xda,0xd2}, C4[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91}, T4[]= {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0x5a,0xe7,0x12,0x1a,0x47}; /* Test Case 5 */ #define K5 K4 #define P5 P4 static const u8 A5[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, 0xab,0xad,0xda,0xd2}, IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55, 0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23, 0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42, 0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98}, T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb}; /* Test Case 6 */ #define K6 K5 #define P6 P5 #define A6 A5 static const u8 IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, C6[]= {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0xac,0xa1,0x3f,0xb8,0x94, 0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0x3c,0xca,0x7e,0x2c,0xa7, 0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0x81,0xd4,0x8c,0x7c,0x6f, 0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0xe5}, T6[]= {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0x3c,0x16,0x99,0xd0,0x50}; /* Test Case 7 */ static const u8 K7[24], *P7=NULL, *A7=NULL, IV7[12], *C7=NULL, T7[]= {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0xf3,0x12,0x57,0x24,0x35}; /* Test Case 8 */ #define K8 K7 #define IV8 IV7 #define A8 A7 static const u8 P8[16], C8[]= {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0x43,0x84,0xb0,0xf6,0x00}, T8[]= {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0x58,0x75,0x14,0xf0,0xfb}; /* Test Case 9 */ #define A9 A8 static const u8 K9[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c}, P9[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, C9[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10,0xac,0xad,0xe2,0x56}, T9[]= {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0x4d,0xb8,0x67,0x4a,0x14}; /* Test Case 10 */ #define K10 K9 #define IV10 IV9 static const u8 P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, 0xab,0xad,0xda,0xd2}, C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10}, T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0xbd,0x6d,0x27,0x61,0x8c}; /* Test Case 11 */ #define K11 K10 #define P11 P10 #define A11 A10 static const u8 IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0x6e,0x25,0x32,0x4d,0xb8, 0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0x0f,0xc4,0x50,0x70,0x57, 0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0xd4,0xd4,0xda,0xd1,0xc9, 0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0xf7}, T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0xa4,0x0d,0x35,0x33,0xf8}; /* Test Case 12 */ #define K12 K11 #define P12 P11 #define A12 A11 static const u8 IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0x5a,0x8f,0xdc,0xf9,0xff, 0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0x98,0x28,0x66,0x6e,0x45, 0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0x58,0x9b,0x29,0x2d,0xb3, 0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0x3b}, T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0xc3,0xd3,0x76,0xa6,0xd9}; /* Test Case 13 */ static const u8 K13[32], *P13=NULL, *A13=NULL, IV13[12], *C13=NULL, T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0xf1,0xc4,0xcb,0x73,0x8b}; /* Test Case 14 */ #define K14 K13 #define A14 A13 static const u8 P14[16], IV14[12], C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0xd3,0xba,0xf3,0x9d,0x18}, T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0xb5,0xd4,0x8a,0xb9,0x19}; /* Test Case 15 */ #define A15 A14 static const u8 K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad}, T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0x22,0x70,0xe3,0xcc,0x6c}; /* Test Case 16 */ #define K16 K15 #define IV16 IV15 static const u8 P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, 0xab,0xad,0xda,0xd2}, C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62}, T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0x53,0xbb,0x2d,0x55,0x1b}; /* Test Case 17 */ #define K17 K16 #define P17 P16 #define A17 A16 static const u8 IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0x3b,0xf1,0x98,0x44,0xcb, 0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0xd7,0x9b,0xba,0x9d,0xe0, 0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0x36,0x3b,0xc7,0x3f,0x78, 0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0x1f}, T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0x13,0xfe,0x2e,0xa8,0xf2}; /* Test Case 18 */ #define K18 K17 #define P18 P17 #define A18 A17 static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0x53,0x65,0x9e,0x2a,0x20, 0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0x4f,0x6f,0x74,0x6b,0xf4, 0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0xf1,0xc5,0xd8,0x2c,0xde, 0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0x3f}, T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0xcf,0x5a,0xe9,0xf1,0x9a}; #define TEST_CASE(n) do { \ u8 out[sizeof(P##n)]; \ AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \ CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \ CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \ CRYPTO_gcm128_finish(&ctx); \ if (memcmp(ctx.Xi.c,T##n,16) || (C##n && memcmp(out,C##n,sizeof(out)))) \ ret++, printf ("encrypt test#%d failed.\n",n);\ CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \ CRYPTO_gcm128_finish(&ctx); \ if (memcmp(ctx.Xi.c,T##n,16) || (P##n && memcmp(out,P##n,sizeof(out)))) \ ret++, printf ("decrypt test#%d failed.\n",n);\ } while(0) int main() { GCM128_CONTEXT ctx; AES_KEY key; int ret=0; TEST_CASE(1); TEST_CASE(2); TEST_CASE(3); TEST_CASE(4); TEST_CASE(5); TEST_CASE(6); TEST_CASE(7); TEST_CASE(8); TEST_CASE(9); TEST_CASE(10); TEST_CASE(11); TEST_CASE(12); TEST_CASE(13); TEST_CASE(14); TEST_CASE(15); TEST_CASE(16); TEST_CASE(17); TEST_CASE(18); #ifdef OPENSSL_CPUID_OBJ { size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc(); union { u64 u; u8 c[1024]; } buf; AES_set_encrypt_key(K1,sizeof(K1)*8,&key); CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1)); CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); start = OPENSSL_rdtsc(); CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); gcm_t = OPENSSL_rdtsc() - start; CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), &key,ctx.Yi.c,ctx.EKi.c,&ctx.res, (block128_f)AES_encrypt); start = OPENSSL_rdtsc(); CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), &key,ctx.Yi.c,ctx.EKi.c,&ctx.res, (block128_f)AES_encrypt); ctr_t = OPENSSL_rdtsc() - start; printf("%.2f-%.2f=%.2f\n", gcm_t/(double)sizeof(buf), ctr_t/(double)sizeof(buf), (gcm_t-ctr_t)/(double)sizeof(buf)); #ifdef GHASH GHASH(buf.c,sizeof(buf),&ctx); start = OPENSSL_rdtsc(); GHASH(buf.c,sizeof(buf),&ctx); gcm_t = OPENSSL_rdtsc() - start; printf("%.2f\n",gcm_t/(double)sizeof(buf)); #endif } #endif return ret; } #endif