#!/usr/bin/env perl # Specific mode implementations for SPARC T4 modules. my ($inp,$out,$len,$key,$ivec,$enc)=map("%i$_",(0..5)); my ($ileft,$iright,$ooff,$omask,$ivoff)=map("%l$_",(1..7)); sub alg_cbc_encrypt_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_cbc_encrypt .align 32 ${alg}${bits}_t4_cbc_encrypt: save %sp, -$::frame, %sp ___ $::code.=<<___ if (!$::evp); andcc $ivec, 7, $ivoff alignaddr $ivec, %g0, $ivec ldd [$ivec + 0], %f0 ! load ivec bz,pt %icc, 1f ldd [$ivec + 8], %f2 ldd [$ivec + 16], %f4 faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 1: ___ $::code.=<<___ if ($::evp); ld [$ivec + 0], %f0 ld [$ivec + 4], %f1 ld [$ivec + 8], %f2 ld [$ivec + 12], %f3 ___ $::code.=<<___; call _${alg}${bits}_load_enckey srlx $len, 4, $len and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff alignaddrl $out, %g0, $out srl $omask, $ooff, $omask .L${bits}_cbc_enc_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g4, %o0, %o0 ! ^= rk[0] xor %g5, %o1, %o1 movxtod %o0, %f12 movxtod %o1, %f14 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 call _${alg}${bits}_encrypt_1x add $inp, 16, $inp brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_cbc_enc_loop add $out, 16, $out ___ $::code.=<<___ if ($::evp); st %f0, [$ivec + 0] st %f1, [$ivec + 4] st %f2, [$ivec + 8] st %f3, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3f nop std %f0, [$ivec + 0] ! write out ivec std %f2, [$ivec + 8] ___ $::code.=<<___; ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_enc_loop+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f0, [$ivec + 0] st %f1, [$ivec + 4] st %f2, [$ivec + 8] st %f3, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, 3f nop std %f0, [$ivec + 0] ! write out ivec std %f2, [$ivec + 8] ret restore .align 16 3: alignaddrl $ivec, $ivoff, %g0 ! handle unaligned ivec mov 0xff, $omask srl $omask, $ivoff, $omask faligndata %f0, %f0, %f4 faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$ivec + $omask]0xc0 std %f6, [$ivec + 8] add $ivec, 16, $ivec orn %g0, $omask, $omask stda %f8, [$ivec + $omask]0xc0 ___ $::code.=<<___; ret restore .type ${alg}${bits}_t4_cbc_encrypt,#function .size ${alg}${bits}_t4_cbc_encrypt,.-${alg}${bits}_t4_cbc_encrypt ___ } sub alg_cbc_decrypt_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_cbc_decrypt .align 32 ${alg}${bits}_t4_cbc_decrypt: save %sp, -$::frame, %sp ___ $::code.=<<___ if (!$::evp); andcc $ivec, 7, $ivoff alignaddr $ivec, %g0, $ivec ldd [$ivec + 0], %f12 ! load ivec bz,pt %icc, 1f ldd [$ivec + 8], %f14 ldd [$ivec + 16], %f0 faligndata %f12, %f14, %f12 faligndata %f14, %f0, %f14 1: ___ $::code.=<<___ if ($::evp); ld [$ivec + 0], %f12 ! load ivec ld [$ivec + 4], %f13 ld [$ivec + 8], %f14 ld [$ivec + 12], %f15 ___ $::code.=<<___; call _${alg}${bits}_load_deckey srlx $len, 4, $len andcc $len, 1, %g0 ! is number of blocks even? and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff alignaddrl $out, %g0, $out bz %icc, .L${bits}_cbc_dec_loop2x srl $omask, $ooff, $omask .L${bits}_cbc_dec_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g4, %o0, %o2 ! ^= rk[0] xor %g5, %o1, %o3 movxtod %o2, %f0 movxtod %o3, %f2 call _${alg}${bits}_decrypt_1x add $inp, 16, $inp fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 movxtod %o0, %f12 movxtod %o1, %f14 brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_cbc_dec_loop2x add $out, 16, $out ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_dec_loop2x+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_cbc_dec_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 4f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 4: xor %g4, %o0, %o4 ! ^= rk[0] xor %g5, %o1, %o5 movxtod %o4, %f0 movxtod %o5, %f2 xor %g4, %o2, %o4 xor %g5, %o3, %o5 movxtod %o4, %f4 movxtod %o5, %f6 call _${alg}${bits}_decrypt_2x add $inp, 32, $inp movxtod %o0, %f8 movxtod %o1, %f10 fxor %f12, %f0, %f0 ! ^= ivec fxor %f14, %f2, %f2 movxtod %o2, %f12 movxtod %o3, %f14 fxor %f8, %f4, %f4 fxor %f10, %f6, %f6 brnz,pn $ooff, 2f sub $len, 2, $len std %f0, [$out + 0] std %f2, [$out + 8] std %f4, [$out + 16] std %f6, [$out + 24] brnz,pt $len, .L${bits}_cbc_dec_loop2x add $out, 32, $out ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ___ $::code.=<<___; ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f8 ! handle unaligned output faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f6, %f6 stda %f8, [$out + $omask]0xc0 ! partial store std %f0, [$out + 8] std %f2, [$out + 16] std %f4, [$out + 24] add $out, 32, $out orn %g0, $omask, $omask stda %f6, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_cbc_dec_loop2x+4 orn %g0, $omask, $omask ___ $::code.=<<___ if ($::evp); st %f12, [$ivec + 0] st %f13, [$ivec + 4] st %f14, [$ivec + 8] st %f15, [$ivec + 12] ___ $::code.=<<___ if (!$::evp); brnz,pn $ivoff, .L${bits}_cbc_dec_unaligned_ivec nop std %f12, [$ivec + 0] ! write out ivec std %f14, [$ivec + 8] ret restore .align 16 .L${bits}_cbc_dec_unaligned_ivec: alignaddrl $ivec, $ivoff, %g0 ! handle unaligned ivec mov 0xff, $omask srl $omask, $ivoff, $omask faligndata %f12, %f12, %f0 faligndata %f12, %f14, %f2 faligndata %f14, %f14, %f4 stda %f0, [$ivec + $omask]0xc0 std %f2, [$ivec + 8] add $ivec, 16, $ivec orn %g0, $omask, $omask stda %f4, [$ivec + $omask]0xc0 ___ $::code.=<<___; ret restore .type ${alg}${bits}_t4_cbc_decrypt,#function .size ${alg}${bits}_t4_cbc_decrypt,.-${alg}${bits}_t4_cbc_decrypt ___ } sub alg_ctr32_implement { my ($alg,$bits) = @_; $::code.=<<___; .globl ${alg}${bits}_t4_ctr32_encrypt .align 32 ${alg}${bits}_t4_ctr32_encrypt: save %sp, -$::frame, %sp call _${alg}${bits}_load_enckey nop ld [$ivec + 0], %l4 ! counter ld [$ivec + 4], %l5 ld [$ivec + 8], %l6 ld [$ivec + 12], %l7 sllx %l4, 32, %o5 or %l5, %o5, %o5 sllx %l6, 32, %g1 xor %o5, %g4, %g4 ! ^= rk[0] xor %g1, %g5, %g5 movxtod %g4, %f14 ! most significant 64 bits andcc $len, 1, %g0 ! is number of blocks even? and $inp, 7, $ileft andn $inp, 7, $inp sll $ileft, 3, $ileft mov 64, $iright mov 0xff, $omask sub $iright, $ileft, $iright and $out, 7, $ooff alignaddrl $out, %g0, $out bz %icc, .L${bits}_ctr32_loop2x srl $omask, $ooff, $omask .L${bits}_ctr32_loop: ldx [$inp + 0], %o0 brz,pt $ileft, 4f ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 sllx %o1, $ileft, %o1 or %g1, %o0, %o0 srlx %o2, $iright, %o2 or %o2, %o1, %o1 4: xor %g5, %l7, %g1 ! ^= rk[0] add %l7, 1, %l7 movxtod %g1, %f2 srl %l7, 0, %l7 ! clruw ___ $::code.=<<___ if ($alg eq "aes"); aes_eround01 %f16, %f14, %f2, %f4 aes_eround23 %f18, %f14, %f2, %f2 ___ $::code.=<<___ if ($alg eq "cmll"); camellia_f %f16, %f2, %f14, %f2 camellia_f %f18, %f14, %f2, %f0 ___ $::code.=<<___; call _${alg}${bits}_encrypt_1x+8 add $inp, 16, $inp movxtod %o0, %f10 movxtod %o1, %f12 fxor %f10, %f0, %f0 ! ^= inp fxor %f12, %f2, %f2 brnz,pn $ooff, 2f sub $len, 1, $len std %f0, [$out + 0] std %f2, [$out + 8] brnz,pt $len, .L${bits}_ctr32_loop2x add $out, 16, $out ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f4 ! handle unaligned output faligndata %f0, %f2, %f6 faligndata %f2, %f2, %f8 stda %f4, [$out + $omask]0xc0 ! partial store std %f6, [$out + 8] add $out, 16, $out orn %g0, $omask, $omask stda %f8, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_ctr32_loop2x+4 orn %g0, $omask, $omask ret restore !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .align 32 .L${bits}_ctr32_loop2x: ldx [$inp + 0], %o0 ldx [$inp + 8], %o1 ldx [$inp + 16], %o2 brz,pt $ileft, 4f ldx [$inp + 24], %o3 ldx [$inp + 32], %o4 sllx %o0, $ileft, %o0 srlx %o1, $iright, %g1 or %g1, %o0, %o0 sllx %o1, $ileft, %o1 srlx %o2, $iright, %g1 or %g1, %o1, %o1 sllx %o2, $ileft, %o2 srlx %o3, $iright, %g1 or %g1, %o2, %o2 sllx %o3, $ileft, %o3 srlx %o4, $iright, %o4 or %o4, %o3, %o3 4: xor %g5, %l7, %g1 ! ^= rk[0] add %l7, 1, %l7 movxtod %g1, %f2 srl %l7, 0, %l7 ! clruw xor %g5, %l7, %g1 add %l7, 1, %l7 movxtod %g1, %f6 srl %l7, 0, %l7 ! clruw ___ $::code.=<<___ if ($alg eq "aes"); aes_eround01 %f16, %f14, %f2, %f8 aes_eround23 %f18, %f14, %f2, %f2 aes_eround01 %f16, %f14, %f6, %f10 aes_eround23 %f18, %f14, %f6, %f6 ___ $::code.=<<___ if ($alg eq "cmll"); camellia_f %f16, %f2, %f14, %f2 camellia_f %f16, %f6, %f14, %f6 camellia_f %f18, %f14, %f2, %f0 camellia_f %f18, %f14, %f6, %f4 ___ $::code.=<<___; call _${alg}${bits}_encrypt_2x+16 add $inp, 32, $inp movxtod %o0, %f8 movxtod %o1, %f10 movxtod %o2, %f12 fxor %f8, %f0, %f0 ! ^= inp movxtod %o3, %f8 fxor %f10, %f2, %f2 fxor %f12, %f4, %f4 fxor %f8, %f6, %f6 brnz,pn $ooff, 2f sub $len, 2, $len std %f0, [$out + 0] std %f2, [$out + 8] std %f4, [$out + 16] std %f6, [$out + 24] brnz,pt $len, .L${bits}_ctr32_loop2x add $out, 32, $out ret restore .align 16 2: ldxa [$inp]0x82, %o0 ! avoid read-after-write hazard ! and ~3x deterioration ! in inp==out case faligndata %f0, %f0, %f8 ! handle unaligned output faligndata %f0, %f2, %f0 faligndata %f2, %f4, %f2 faligndata %f4, %f6, %f4 faligndata %f6, %f6, %f6 stda %f8, [$out + $omask]0xc0 ! partial store std %f0, [$out + 8] std %f2, [$out + 16] std %f4, [$out + 24] add $out, 32, $out orn %g0, $omask, $omask stda %f6, [$out + $omask]0xc0 ! partial store brnz,pt $len, .L${bits}_ctr32_loop2x+4 orn %g0, $omask, $omask ret restore .type ${alg}${bits}_t4_ctr32_encrypt,#function .size ${alg}${bits}_t4_ctr32_encrypt,.-${alg}${bits}_t4_ctr32_encrypt ___ } # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis { my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %visopf = ( "faligndata" => 0x048, "fnot2" => 0x066, "fxor" => 0x06c, "fsrc2" => 0x078 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unalignaddr { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my $ref = "$mnemonic\t$rs1,$rs2,$rd"; my $opf = $mnemonic =~ /l$/ ? 0x01a :0x18; foreach ($rs1,$rs2,$rd) { if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } else { return $ref; } } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } sub unaes_round { # 4-argument instructions my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); my %aesopf = ( "aes_eround01" => 0, "aes_eround23" => 1, "aes_dround01" => 2, "aes_dround23" => 3, "aes_eround01_l"=> 4, "aes_eround23_l"=> 5, "aes_dround01_l"=> 6, "aes_dround23_l"=> 7, "aes_kexpand1" => 8 ); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if (defined($opf=$aesopf{$mnemonic})) { $rs3 = ($rs3 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs3; foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x19<<19|$rs1<<14|$rs3<<9|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unaes_kexpand { # 3-argument instructions my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %aesopf = ( "aes_kexpand0" => 0x130, "aes_kexpand2" => 0x131 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$aesopf{$mnemonic})) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub uncamellia_f { # 4-argument instructions my ($mnemonic,$rs1,$rs2,$rs3,$rd)=@_; my ($ref,$opf); $ref = "$mnemonic\t$rs1,$rs2,$rs3,$rd"; if (1) { $rs3 = ($rs3 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs3; foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x19<<19|$rs1<<14|$rs3<<9|0xc<<5|$rs2, $ref; } else { return $ref; } } sub uncamellia3 { # 3-argument instructions my ($mnemonic,$rs1,$rs2,$rd)=@_; my ($ref,$opf); my %cmllopf = ( "camellia_fl" => 0x13c, "camellia_fli" => 0x13d ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if (defined($opf=$cmllopf{$mnemonic})) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%f([0-9]{1,2})/); $_=$1; if ($1>=32) { return $ref if ($1&1); # re-encode for upper double register addressing $_=($1|$1>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } sub unmovxtox { # 2-argument instructions my ($mnemonic,$rs,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24, "f" => 0 ); my ($ref,$opf); my %movxopf = ( "movdtox" => 0x110, "movstouw" => 0x111, "movstosw" => 0x113, "movxtod" => 0x118, "movwtos" => 0x119 ); $ref = "$mnemonic\t$rs,$rd"; if (defined($opf=$movxopf{$mnemonic})) { foreach ($rs,$rd) { return $ref if (!/%([fgoli])([0-9]{1,2})/); $_=$bias{$1}+$2; if ($2>=32) { return $ref if ($2&1); # re-encode for upper double register addressing $_=($2|$2>>5)&31; } } return sprintf ".word\t0x%08x !%s", 2<<30|$rd<<25|0x36<<19|$opf<<5|$rs, $ref; } else { return $ref; } } sub emit_assembler { foreach (split("\n",$::code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(f[a-z]+2[sd]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})\s*$/$1\t%f0,$2,$3/g; s/\b(aes_[edk][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &unaes_round($1,$2,$3,$4,$5) /ge or s/\b(aes_kexpand[02])\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unaes_kexpand($1,$2,$3,$4) /ge or s/\b(camellia_f)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/ &uncamellia_f($1,$2,$3,$4,$5) /ge or s/\b(camellia_[^s]+)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &uncamellia3($1,$2,$3,$4) /ge or s/\b(mov[ds]to\w+)\s+(%f[0-9]{1,2}),\s*(%[goli][0-7])/ &unmovxtox($1,$2,$3) /ge or s/\b(mov[xw]to[ds])\s+(%[goli][0-7]),\s*(%f[0-9]{1,2})/ &unmovxtox($1,$2,$3) /ge or s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/ &unvis($1,$2,$3,$4) /ge or s/\b(alignaddr[l]*)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unalignaddr($1,$2,$3,$4) /ge; print $_,"\n"; } } 1;