/**
 * The Whirlpool hashing function.
 *
 * <P>
 * <b>References</b>
 *
 * <P>
 * The Whirlpool algorithm was developed by
 * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
 * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
 *
 * See
 *      P.S.L.M. Barreto, V. Rijmen,
 *      ``The Whirlpool hashing function,''
 *      NESSIE submission, 2000 (tweaked version, 2001),
 *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
 *
 * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
 * Vincent Rijmen. Lookup "reference implementations" on
 * <http://planeta.terra.com.br/informatica/paulobarreto/>
 *
 * =============================================================================
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "wp_locl.h"
#include <string.h>

typedef unsigned char u8;
#if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32)
typedef unsigned __int64 u64;
#elif defined(__arch64__)
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif

#define ROUNDS  10

#define STRICT_ALIGNMENT
#if defined(__i386) || defined(__i386__) || \
    defined(__x86_64) || defined(__x86_64__) || \
    defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)
/*
 * Well, formally there're couple of other architectures, which permit
 * unaligned loads, specifically those not crossing cache lines, IA-64 and
 * PowerPC...
 */
# undef STRICT_ALIGNMENT
#endif

#undef SMALL_REGISTER_BANK
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
# define SMALL_REGISTER_BANK
# if defined(WHIRLPOOL_ASM)
#  ifndef OPENSSL_SMALL_FOOTPRINT
/*
 * it appears that for elder non-MMX
 * CPUs this is actually faster!
 */
#   define OPENSSL_SMALL_FOOTPRINT
#  endif
#  define GO_FOR_MMX(ctx,inp,num)     do {                    \
        extern unsigned long OPENSSL_ia32cap_P[];               \
        void whirlpool_block_mmx(void *,const void *,size_t);   \
        if (!(OPENSSL_ia32cap_P[0] & (1<<23)))  break;          \
        whirlpool_block_mmx(ctx->H.c,inp,num);  return;         \
                                        } while (0)
# endif
#endif

#undef ROTATE
#if defined(_MSC_VER)
# if defined(_WIN64)            /* applies to both IA-64 and AMD64 */
#  pragma intrinsic(_rotl64)
#  define ROTATE(a,n) _rotl64((a),n)
# endif
#elif defined(__GNUC__) && __GNUC__>=2
# if defined(__x86_64) || defined(__x86_64__)
#  if defined(L_ENDIAN)
#   define ROTATE(a,n)       ({ u64 ret; asm ("rolq %1,%0"   \
                                   : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
#  elif defined(B_ENDIAN)
       /*
        * Most will argue that x86_64 is always little-endian. Well, yes, but
        * then we have stratus.com who has modified gcc to "emulate"
        * big-endian on x86. Is there evidence that they [or somebody else]
        * won't do same for x86_64? Naturally no. And this line is waiting
        * ready for that brave soul:-)
        */
#   define ROTATE(a,n)       ({ u64 ret; asm ("rorq %1,%0"   \
                                   : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
#  endif
# elif defined(__ia64) || defined(__ia64__)
#  if defined(L_ENDIAN)
#   define ROTATE(a,n)       ({ u64 ret; asm ("shrp %0=%1,%1,%2"     \
                                   : "=r"(ret) : "r"(a),"M"(64-(n))); ret; })
#  elif defined(B_ENDIAN)
#   define ROTATE(a,n)       ({ u64 ret; asm ("shrp %0=%1,%1,%2"     \
                                   : "=r"(ret) : "r"(a),"M"(n)); ret; })
#  endif
# endif
#endif

#if defined(OPENSSL_SMALL_FOOTPRINT)
# if !defined(ROTATE)
#  if defined(L_ENDIAN)         /* little-endians have to rotate left */
#   define ROTATE(i,n)       ((i)<<(n) ^ (i)>>(64-n))
#  elif defined(B_ENDIAN)       /* big-endians have to rotate right */
#   define ROTATE(i,n)       ((i)>>(n) ^ (i)<<(64-n))
#  endif
# endif
# if defined(ROTATE) && !defined(STRICT_ALIGNMENT)
#  define STRICT_ALIGNMENT      /* ensure smallest table size */
# endif
#endif

/*
 * Table size depends on STRICT_ALIGNMENT and whether or not endian-
 * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not
 * defined, which is normally the case on x86[_64] CPUs, the table is
 * 4KB large unconditionally. Otherwise if ROTATE is defined, the
 * table is 2KB large, and otherwise - 16KB. 2KB table requires a
 * whole bunch of additional rotations, but I'm willing to "trade,"
 * because 16KB table certainly trashes L1 cache. I wish all CPUs
 * could handle unaligned load as 4KB table doesn't trash the cache,
 * nor does it require additional rotations.
 */
/*
 * Note that every Cn macro expands as two loads: one byte load and
 * one quadword load. One can argue that that many single-byte loads
 * is too excessive, as one could load a quadword and "milk" it for
 * eight 8-bit values instead. Well, yes, but in order to do so *and*
 * avoid excessive loads you have to accomodate a handful of 64-bit
 * values in the register bank and issue a bunch of shifts and mask.
 * It's a tradeoff: loads vs. shift and mask in big register bank[!].
 * On most CPUs eight single-byte loads are faster and I let other
 * ones to depend on smart compiler to fold byte loads if beneficial.
 * Hand-coded assembler would be another alternative:-)
 */
#ifdef STRICT_ALIGNMENT
# if defined(ROTATE)
#  define N   1
#  define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7
#  define C0(K,i)     (Cx.q[K.c[(i)*8+0]])
#  define C1(K,i)     ROTATE(Cx.q[K.c[(i)*8+1]],8)
#  define C2(K,i)     ROTATE(Cx.q[K.c[(i)*8+2]],16)
#  define C3(K,i)     ROTATE(Cx.q[K.c[(i)*8+3]],24)
#  define C4(K,i)     ROTATE(Cx.q[K.c[(i)*8+4]],32)
#  define C5(K,i)     ROTATE(Cx.q[K.c[(i)*8+5]],40)
#  define C6(K,i)     ROTATE(Cx.q[K.c[(i)*8+6]],48)
#  define C7(K,i)     ROTATE(Cx.q[K.c[(i)*8+7]],56)
# else
#  define N   8
#  define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
                                        c7,c0,c1,c2,c3,c4,c5,c6, \
                                        c6,c7,c0,c1,c2,c3,c4,c5, \
                                        c5,c6,c7,c0,c1,c2,c3,c4, \
                                        c4,c5,c6,c7,c0,c1,c2,c3, \
                                        c3,c4,c5,c6,c7,c0,c1,c2, \
                                        c2,c3,c4,c5,c6,c7,c0,c1, \
                                        c1,c2,c3,c4,c5,c6,c7,c0
#  define C0(K,i)     (Cx.q[0+8*K.c[(i)*8+0]])
#  define C1(K,i)     (Cx.q[1+8*K.c[(i)*8+1]])
#  define C2(K,i)     (Cx.q[2+8*K.c[(i)*8+2]])
#  define C3(K,i)     (Cx.q[3+8*K.c[(i)*8+3]])
#  define C4(K,i)     (Cx.q[4+8*K.c[(i)*8+4]])
#  define C5(K,i)     (Cx.q[5+8*K.c[(i)*8+5]])
#  define C6(K,i)     (Cx.q[6+8*K.c[(i)*8+6]])
#  define C7(K,i)     (Cx.q[7+8*K.c[(i)*8+7]])
# endif
#else
# define N     2
# define LL(c0,c1,c2,c3,c4,c5,c6,c7)   c0,c1,c2,c3,c4,c5,c6,c7, \
                                        c0,c1,c2,c3,c4,c5,c6,c7
# define C0(K,i)       (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]])
# define C1(K,i)       (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]])
# define C2(K,i)       (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]])
# define C3(K,i)       (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]])
# define C4(K,i)       (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]])
# define C5(K,i)       (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]])
# define C6(K,i)       (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]])
# define C7(K,i)       (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]])
#endif

static const
    union {
    u8 c[(256 * N + ROUNDS) * sizeof(u64)];
    u64 q[(256 * N + ROUNDS)];
} Cx = {
        {
            /* Note endian-neutral representation:-) */
            LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8),
            LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26),
            LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8),
            LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb),
            LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb),
            LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11),
            LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09),
            LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d),
            LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b),
            LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff),
            LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c),
            LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e),
            LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96),
            LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30),
            LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d),
            LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8),
            LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47),
            LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35),
            LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37),
            LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a),
            LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2),
            LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c),
            LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84),
            LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80),
            LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5),
            LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3),
            LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21),
            LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c),
            LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43),
            LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29),
            LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d),
            LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5),
            LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd),
            LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8),
            LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92),
            LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e),
            LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13),
            LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23),
            LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20),
            LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44),
            LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2),
            LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf),
            LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c),
            LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a),
            LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50),
            LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9),
            LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14),
            LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9),
            LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c),
            LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f),
            LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90),
            LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07),
            LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd),
            LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3),
            LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d),
            LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78),
            LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97),
            LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02),
            LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73),
            LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7),
            LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6),
            LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2),
            LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49),
            LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56),
            LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70),
            LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd),
            LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb),
            LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71),
            LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b),
            LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf),
            LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45),
            LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a),
            LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4),
            LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58),
            LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e),
            LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f),
            LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac),
            LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0),
            LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef),
            LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6),
            LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c),
            LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12),
            LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93),
            LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde),
            LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6),
            LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1),
            LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b),
            LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f),
            LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31),
            LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8),
            LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9),
            LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc),
            LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e),
            LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b),
            LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf),
            LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59),
            LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2),
            LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77),
            LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33),
            LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4),
            LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27),
            LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb),
            LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89),
            LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32),
            LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54),
            LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d),
            LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64),
            LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d),
            LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d),
            LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f),
            LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca),
            LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7),
            LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d),
            LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce),
            LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f),
            LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f),
            LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63),
            LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a),
            LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc),
            LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82),
            LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a),
            LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48),
            LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95),
            LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf),
            LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d),
            LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0),
            LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91),
            LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8),
            LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b),
            LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
            LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9),
            LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e),
            LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1),
            LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6),
            LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28),
            LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3),
            LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74),
            LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe),
            LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d),
            LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea),
            LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57),
            LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38),
            LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad),
            LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4),
            LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda),
            LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7),
            LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb),
            LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9),
            LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a),
            LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03),
            LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a),
            LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e),
            LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60),
            LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc),
            LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46),
            LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f),
            LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76),
            LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa),
            LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36),
            LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae),
            LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b),
            LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85),
            LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e),
            LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7),
            LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55),
            LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a),
            LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81),
            LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52),
            LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62),
            LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3),
            LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10),
            LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab),
            LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0),
            LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5),
            LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec),
            LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16),
            LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94),
            LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f),
            LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5),
            LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98),
            LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17),
            LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4),
            LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1),
            LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e),
            LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42),
            LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34),
            LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08),
            LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee),
            LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61),
            LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1),
            LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f),
            LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24),
            LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3),
            LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25),
            LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22),
            LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65),
            LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79),
            LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69),
            LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9),
            LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19),
            LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe),
            LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a),
            LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0),
            LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99),
            LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83),
            LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04),
            LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66),
            LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0),
            LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1),
            LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd),
            LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40),
            LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c),
            LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18),
            LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b),
            LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51),
            LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05),
            LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c),
            LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39),
            LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa),
            LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b),
            LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc),
            LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e),
            LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0),
            LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88),
            LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67),
            LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a),
            LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87),
            LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1),
            LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72),
            LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53),
            LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01),
            LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b),
            LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4),
            LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3),
            LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15),
            LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c),
            LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5),
            LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5),
            LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4),
            LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba),
            LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6),
            LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7),
            LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06),
            LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41),
            LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7),
            LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f),
            LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e),
            LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6),
            LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2),
            LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68),
            LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c),
            LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed),
            LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75),
            LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86),
            LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b),
            LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2),
#define RC      (&(Cx.q[256*N]))
            0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f,
            /* rc[ROUNDS] */
            0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b,
            0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b,
            0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58,
            0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4,
            0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95,
            0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d,
            0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33
        }
    };

void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n)
{
    int r;
    const u8 *p = inp;
    union {
        u64 q[8];
        u8 c[64];
    } S, K, *H = (void *)ctx->H.q;

#ifdef GO_FOR_MMX
    GO_FOR_MMX(ctx, inp, n);
#endif
    do {
#ifdef OPENSSL_SMALL_FOOTPRINT
        u64 L[8];
        int i;

        for (i = 0; i < 64; i++)
            S.c[i] = (K.c[i] = H->c[i]) ^ p[i];
        for (r = 0; r < ROUNDS; r++) {
            for (i = 0; i < 8; i++) {
                L[i] = i ? 0 : RC[r];
                L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^
                    C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^
                    C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^
                    C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7);
            }
            memcpy(K.q, L, 64);
            for (i = 0; i < 8; i++) {
                L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^
                    C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^
                    C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^
                    C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7);
            }
            memcpy(S.q, L, 64);
        }
        for (i = 0; i < 64; i++)
            H->c[i] ^= S.c[i] ^ p[i];
#else
        u64 L0, L1, L2, L3, L4, L5, L6, L7;

# ifdef STRICT_ALIGNMENT
        if ((size_t)p & 7) {
            memcpy(S.c, p, 64);
            S.q[0] ^= (K.q[0] = H->q[0]);
            S.q[1] ^= (K.q[1] = H->q[1]);
            S.q[2] ^= (K.q[2] = H->q[2]);
            S.q[3] ^= (K.q[3] = H->q[3]);
            S.q[4] ^= (K.q[4] = H->q[4]);
            S.q[5] ^= (K.q[5] = H->q[5]);
            S.q[6] ^= (K.q[6] = H->q[6]);
            S.q[7] ^= (K.q[7] = H->q[7]);
        } else
# endif
        {
            const u64 *pa = (const u64 *)p;
            S.q[0] = (K.q[0] = H->q[0]) ^ pa[0];
            S.q[1] = (K.q[1] = H->q[1]) ^ pa[1];
            S.q[2] = (K.q[2] = H->q[2]) ^ pa[2];
            S.q[3] = (K.q[3] = H->q[3]) ^ pa[3];
            S.q[4] = (K.q[4] = H->q[4]) ^ pa[4];
            S.q[5] = (K.q[5] = H->q[5]) ^ pa[5];
            S.q[6] = (K.q[6] = H->q[6]) ^ pa[6];
            S.q[7] = (K.q[7] = H->q[7]) ^ pa[7];
        }

        for (r = 0; r < ROUNDS; r++) {
# ifdef SMALL_REGISTER_BANK
            L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^
                C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r];
            L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^
                C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2);
            L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^
                C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3);
            L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^
                C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4);
            L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^
                C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5);
            L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^
                C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6);
            L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^
                C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7);
            L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^
                C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0);

            K.q[0] = L0;
            K.q[1] = L1;
            K.q[2] = L2;
            K.q[3] = L3;
            K.q[4] = L4;
            K.q[5] = L5;
            K.q[6] = L6;
            K.q[7] = L7;

            L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^
                C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1);
            L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^
                C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2);
            L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^
                C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3);
            L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^
                C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4);
            L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^
                C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5);
            L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^
                C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6);
            L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^
                C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7);
            L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^
                C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0);

            S.q[0] = L0;
            S.q[1] = L1;
            S.q[2] = L2;
            S.q[3] = L3;
            S.q[4] = L4;
            S.q[5] = L5;
            S.q[6] = L6;
            S.q[7] = L7;
# else
            L0 = C0(K, 0);
            L1 = C1(K, 0);
            L2 = C2(K, 0);
            L3 = C3(K, 0);
            L4 = C4(K, 0);
            L5 = C5(K, 0);
            L6 = C6(K, 0);
            L7 = C7(K, 0);
            L0 ^= RC[r];

            L1 ^= C0(K, 1);
            L2 ^= C1(K, 1);
            L3 ^= C2(K, 1);
            L4 ^= C3(K, 1);
            L5 ^= C4(K, 1);
            L6 ^= C5(K, 1);
            L7 ^= C6(K, 1);
            L0 ^= C7(K, 1);

            L2 ^= C0(K, 2);
            L3 ^= C1(K, 2);
            L4 ^= C2(K, 2);
            L5 ^= C3(K, 2);
            L6 ^= C4(K, 2);
            L7 ^= C5(K, 2);
            L0 ^= C6(K, 2);
            L1 ^= C7(K, 2);

            L3 ^= C0(K, 3);
            L4 ^= C1(K, 3);
            L5 ^= C2(K, 3);
            L6 ^= C3(K, 3);
            L7 ^= C4(K, 3);
            L0 ^= C5(K, 3);
            L1 ^= C6(K, 3);
            L2 ^= C7(K, 3);

            L4 ^= C0(K, 4);
            L5 ^= C1(K, 4);
            L6 ^= C2(K, 4);
            L7 ^= C3(K, 4);
            L0 ^= C4(K, 4);
            L1 ^= C5(K, 4);
            L2 ^= C6(K, 4);
            L3 ^= C7(K, 4);

            L5 ^= C0(K, 5);
            L6 ^= C1(K, 5);
            L7 ^= C2(K, 5);
            L0 ^= C3(K, 5);
            L1 ^= C4(K, 5);
            L2 ^= C5(K, 5);
            L3 ^= C6(K, 5);
            L4 ^= C7(K, 5);

            L6 ^= C0(K, 6);
            L7 ^= C1(K, 6);
            L0 ^= C2(K, 6);
            L1 ^= C3(K, 6);
            L2 ^= C4(K, 6);
            L3 ^= C5(K, 6);
            L4 ^= C6(K, 6);
            L5 ^= C7(K, 6);

            L7 ^= C0(K, 7);
            L0 ^= C1(K, 7);
            L1 ^= C2(K, 7);
            L2 ^= C3(K, 7);
            L3 ^= C4(K, 7);
            L4 ^= C5(K, 7);
            L5 ^= C6(K, 7);
            L6 ^= C7(K, 7);

            K.q[0] = L0;
            K.q[1] = L1;
            K.q[2] = L2;
            K.q[3] = L3;
            K.q[4] = L4;
            K.q[5] = L5;
            K.q[6] = L6;
            K.q[7] = L7;

            L0 ^= C0(S, 0);
            L1 ^= C1(S, 0);
            L2 ^= C2(S, 0);
            L3 ^= C3(S, 0);
            L4 ^= C4(S, 0);
            L5 ^= C5(S, 0);
            L6 ^= C6(S, 0);
            L7 ^= C7(S, 0);

            L1 ^= C0(S, 1);
            L2 ^= C1(S, 1);
            L3 ^= C2(S, 1);
            L4 ^= C3(S, 1);
            L5 ^= C4(S, 1);
            L6 ^= C5(S, 1);
            L7 ^= C6(S, 1);
            L0 ^= C7(S, 1);

            L2 ^= C0(S, 2);
            L3 ^= C1(S, 2);
            L4 ^= C2(S, 2);
            L5 ^= C3(S, 2);
            L6 ^= C4(S, 2);
            L7 ^= C5(S, 2);
            L0 ^= C6(S, 2);
            L1 ^= C7(S, 2);

            L3 ^= C0(S, 3);
            L4 ^= C1(S, 3);
            L5 ^= C2(S, 3);
            L6 ^= C3(S, 3);
            L7 ^= C4(S, 3);
            L0 ^= C5(S, 3);
            L1 ^= C6(S, 3);
            L2 ^= C7(S, 3);

            L4 ^= C0(S, 4);
            L5 ^= C1(S, 4);
            L6 ^= C2(S, 4);
            L7 ^= C3(S, 4);
            L0 ^= C4(S, 4);
            L1 ^= C5(S, 4);
            L2 ^= C6(S, 4);
            L3 ^= C7(S, 4);

            L5 ^= C0(S, 5);
            L6 ^= C1(S, 5);
            L7 ^= C2(S, 5);
            L0 ^= C3(S, 5);
            L1 ^= C4(S, 5);
            L2 ^= C5(S, 5);
            L3 ^= C6(S, 5);
            L4 ^= C7(S, 5);

            L6 ^= C0(S, 6);
            L7 ^= C1(S, 6);
            L0 ^= C2(S, 6);
            L1 ^= C3(S, 6);
            L2 ^= C4(S, 6);
            L3 ^= C5(S, 6);
            L4 ^= C6(S, 6);
            L5 ^= C7(S, 6);

            L7 ^= C0(S, 7);
            L0 ^= C1(S, 7);
            L1 ^= C2(S, 7);
            L2 ^= C3(S, 7);
            L3 ^= C4(S, 7);
            L4 ^= C5(S, 7);
            L5 ^= C6(S, 7);
            L6 ^= C7(S, 7);

            S.q[0] = L0;
            S.q[1] = L1;
            S.q[2] = L2;
            S.q[3] = L3;
            S.q[4] = L4;
            S.q[5] = L5;
            S.q[6] = L6;
            S.q[7] = L7;
# endif
        }

# ifdef STRICT_ALIGNMENT
        if ((size_t)p & 7) {
            int i;
            for (i = 0; i < 64; i++)
                H->c[i] ^= S.c[i] ^ p[i];
        } else
# endif
        {
            const u64 *pa = (const u64 *)p;
            H->q[0] ^= S.q[0] ^ pa[0];
            H->q[1] ^= S.q[1] ^ pa[1];
            H->q[2] ^= S.q[2] ^ pa[2];
            H->q[3] ^= S.q[3] ^ pa[3];
            H->q[4] ^= S.q[4] ^ pa[4];
            H->q[5] ^= S.q[5] ^ pa[5];
            H->q[6] ^= S.q[6] ^ pa[6];
            H->q[7] ^= S.q[7] ^ pa[7];
        }
#endif
        p += 64;
    } while (--n);
}