/* ==================================================================== * Copyright (c) 2001-2014 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * */ #include #ifndef OPENSSL_NO_AES #include # include # include # include # include # include # include "evp_locl.h" # include "modes_lcl.h" # include typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int tls_aad_len; /* TLS AAD length */ ctr128_f ctr; } EVP_AES_GCM_CTX; typedef struct { union { double align; AES_KEY ks; } ks1, ks2; /* AES key schedules to use */ XTS128_CONTEXT xts; void (*stream) (const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); } EVP_AES_XTS_CTX; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ int tls_aad_len; /* TLS AAD length */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_AES_CCM_CTX; # ifndef OPENSSL_NO_OCB typedef struct { union { double align; AES_KEY ks; } ksenc; /* AES key schedule to use for encryption */ union { double align; AES_KEY ks; } ksdec; /* AES key schedule to use for decryption */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ OCB128_CONTEXT ocb; unsigned char *iv; /* Temporary IV store */ unsigned char tag[16]; unsigned char data_buf[16]; /* Store partial data blocks */ unsigned char aad_buf[16]; /* Store partial AAD blocks */ int data_buf_len; int aad_buf_len; int ivlen; /* IV length */ int taglen; } EVP_AES_OCB_CTX; # endif # define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) # ifdef VPAES_ASM int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); # endif # ifdef BSAES_ASM void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); # endif # ifdef AES_CTR_ASM void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, const unsigned char ivec[AES_BLOCK_SIZE]); # endif # ifdef AES_XTS_ASM void AES_xts_encrypt(const char *inp, char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void AES_xts_decrypt(const char *inp, char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); # endif # if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) # include "ppc_arch.h" # ifdef VPAES_ASM # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC) # endif # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207) # define HWAES_set_encrypt_key aes_p8_set_encrypt_key # define HWAES_set_decrypt_key aes_p8_set_decrypt_key # define HWAES_encrypt aes_p8_encrypt # define HWAES_decrypt aes_p8_decrypt # define HWAES_cbc_encrypt aes_p8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks # endif # if defined(AES_ASM) && !defined(I386_ONLY) && ( \ ((defined(__i386) || defined(__i386__) || \ defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) extern unsigned int OPENSSL_ia32cap_P[]; # ifdef VPAES_ASM # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) # endif # ifdef BSAES_ASM # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) # endif /* * AES-NI section */ # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char *ivec); void aesni_xts_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_xts_decrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_ccm64_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); void aesni_ccm64_decrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) size_t aesni_gcm_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); # define AES_gcm_encrypt aesni_gcm_encrypt size_t aesni_gcm_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); # define AES_gcm_decrypt aesni_gcm_decrypt void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in, size_t len); # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \ gctx->gcm.ghash==gcm_ghash_avx) # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ gctx->gcm.ghash==gcm_ghash_avx) # undef AES_GCM_ASM2 /* minor size optimization */ # endif static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f) aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); dat->block = (block128_f) aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; else dat->stream.cbc = NULL; } if (ret < 0) { EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; if (len < bl) return 1; aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); return 1; } # define aesni_ofb_cipher aes_ofb_cipher static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb_cipher aes_cfb_cipher static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb8_cipher aes_cfb8_cipher static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb1_cipher aes_cfb1_cipher static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_ctr_cipher aes_ctr_cipher static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aesni_gcm_cipher aes_gcm_cipher static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { /* key_len is two AES keys */ if (enc) { aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_encrypt; xctx->stream = aesni_xts_encrypt; } else { aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_decrypt; xctx->stream = aesni_xts_decrypt; } aesni_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aesni_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } # define aesni_xts_cipher aes_xts_cipher static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aesni_encrypt); cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : (ccm128_f) aesni_ccm64_decrypt_blocks; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aesni_ccm_cipher aes_ccm_cipher static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aesni_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc.ks); aesni_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aesni_encrypt, (block128_f) aesni_decrypt)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aesni_ocb_cipher aes_ocb_cipher static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_init_key, \ aesni_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_##mode##_init_key, \ aesni_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } # elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES) void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aes_t4_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); /* * Key-length specific subroutines were chosen for following reason. * Each SPARC T4 core can execute up to 8 threads which share core's * resources. Loading as much key material to registers allows to * minimize references to shared memory interface, as well as amount * of instructions in inner loops [much needed on T4]. But then having * non-key-length specific routines would require conditional branches * either in inner loops or on subroutines' entries. Former is hardly * acceptable, while latter means code size increase to size occupied * by multiple key-length specfic subroutines, so why fight? */ void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode, bits; EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; bits = ctx->key_len * 8; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = 0; aes_t4_set_decrypt_key(key, bits, ctx->cipher_data); dat->block = (block128_f) aes_t4_decrypt; switch (bits) { case 128: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes128_t4_cbc_decrypt : NULL; break; case 192: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes192_t4_cbc_decrypt : NULL; break; case 256: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes256_t4_cbc_decrypt : NULL; break; default: ret = -1; } } else { ret = 0; aes_t4_set_encrypt_key(key, bits, ctx->cipher_data); dat->block = (block128_f) aes_t4_encrypt; switch (bits) { case 128: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 192: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 256: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; default: ret = -1; } } if (ret < 0) { EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } # define aes_t4_cbc_cipher aes_cbc_cipher static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ecb_cipher aes_ecb_cipher static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ofb_cipher aes_ofb_cipher static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb_cipher aes_cfb_cipher static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb8_cipher aes_cfb8_cipher static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb1_cipher aes_cfb1_cipher static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ctr_cipher aes_ctr_cipher static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 8; aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aes_t4_encrypt); switch (bits) { case 128: gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; break; case 192: gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; break; case 256: gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; break; default: return 0; } /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aes_t4_gcm_cipher aes_gcm_cipher static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 4; xctx->stream = NULL; /* key_len is two AES keys */ if (enc) { aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_encrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_encrypt; break; case 256: xctx->stream = aes256_t4_xts_encrypt; break; default: return 0; } } else { aes_t4_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_decrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_decrypt; break; case 256: xctx->stream = aes256_t4_xts_decrypt; break; default: return 0; } } aes_t4_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aes_t4_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } # define aes_t4_xts_cipher aes_xts_cipher static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 8; aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aes_t4_encrypt); cctx->str = NULL; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aes_t4_ccm_cipher aes_ccm_cipher static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aes_t4_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc.ks); aes_t4_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aes_t4_encrypt, (block128_f) aes_t4_decrypt)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aes_t4_ocb_cipher aes_ocb_cipher static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_init_key, \ aes_t4_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_##mode##_init_key, \ aes_t4_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } # else # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } # endif # if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__)) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # if defined(BSAES_ASM) # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif # if defined(VPAES_ASM) # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES) # define HWAES_set_encrypt_key aes_v8_set_encrypt_key # define HWAES_set_decrypt_key aes_v8_set_decrypt_key # define HWAES_encrypt aes_v8_encrypt # define HWAES_decrypt aes_v8_decrypt # define HWAES_cbc_encrypt aes_v8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks # endif # endif # if defined(HWAES_CAPABLE) int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); void HWAES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, const int enc); void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); # endif # define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_decrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; # endif } else # endif # ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; } else # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else # endif { ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; } else # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_encrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; else # endif # ifdef HWAES_ctr32_encrypt_blocks if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; else # endif (void)0; /* terminate potentially open 'else' */ } else # endif # ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; } else # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else # endif { ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; # ifdef AES_CTR_ASM if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; # endif } if (ret < 0) { EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; if (dat->stream.cbc) (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, ctx->encrypt); else if (ctx->encrypt) CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); else CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; size_t i; EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; if (len < bl) return 1; for (i = 0, len -= bl; i <= len; i += bl) (*dat->block) (in + i, out + i, &dat->ks); return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); return 1; } static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; if (ctx->flags & EVP_CIPH_FLAG_LENGTH_BITS) { CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } while (len >= MAXBITCHUNK) { CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); len -= MAXBITCHUNK; } if (len) CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, ctx->iv, &ctx->num, ctx->encrypt, dat->block); return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = ctx->num; EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data; if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->stream.ctr); else CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num, dat->block); ctx->num = (size_t)num; return 1; } BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); return 1; } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n = 8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); gctx->iv = OPENSSL_malloc(arg); if (gctx->iv == NULL) return 0; } gctx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(c->buf, ptr, arg); gctx->tls_aad_len = arg; { unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; /* Correct length for explicit IV */ len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) len -= EVP_GCM_TLS_TAG_LEN; c->buf[arg - 2] = len >> 8; c->buf[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = out->cipher_data; if (gctx->gcm.key) { if (gctx->gcm.key != &gctx->ks) return 0; gctx_out->gcm.key = &gctx_out->ks; } if (gctx->iv == c->iv) gctx_out->iv = out->iv; else { gctx_out->iv = OPENSSL_malloc(gctx->ivlen); if (gctx_out->iv == NULL) return 0; memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { do { # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) HWAES_encrypt); # ifdef HWAES_ctr32_encrypt_blocks gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; # else gctx->ctr = NULL; # endif break; } else # endif # ifdef BSAES_CAPABLE if (BSAES_CAPABLE) { AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; break; } else # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) vpaes_encrypt); gctx->ctr = NULL; break; } else # endif (void)0; /* terminate potentially open 'else' */ AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); # ifdef AES_CTR_ASM gctx->ctr = (ctr128_f) AES_ctr32_encrypt; # else gctx->ctr = NULL; # endif } while (0); /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /* * Handle TLS GCM packet format. This consists of the last portion of the IV * followed by the payload and finally the tag. On encrypt generate IV, * encrypt payload and write the tag. On verify retrieve IV, decrypt payload * and verify tag. */ static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* * Set IV from start of buffer or generate IV and write to start of * buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (ctx->encrypt) { /* Encrypt payload */ if (gctx->ctr) { size_t bulk = 0; # if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } # endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; # if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } # endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (gctx->ctr) { size_t bulk = 0; # if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } # endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; # if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } # endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (gctx->ctr) { size_t bulk = 0; # if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } # endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; # if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } # endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } else { if (gctx->ctr) { size_t bulk = 0; # if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } # endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; # if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } # endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } # define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY) BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = c->cipher_data; if (type == EVP_CTRL_COPY) { EVP_CIPHER_CTX *out = ptr; EVP_AES_XTS_CTX *xctx_out = out->cipher_data; if (xctx->xts.key1) { if (xctx->xts.key1 != &xctx->ks1) return 0; xctx_out->xts.key1 = &xctx_out->ks1; } if (xctx->xts.key2) { if (xctx->xts.key2 != &xctx->ks2) return 0; xctx_out->xts.key2 = &xctx_out->ks2; } return 1; } else if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { # ifdef AES_XTS_ASM xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; # else xctx->stream = NULL; # endif /* key_len is two AES keys */ # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { if (enc) { HWAES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_encrypt; } else { HWAES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_decrypt; } HWAES_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) HWAES_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else # endif # ifdef BSAES_CAPABLE if (BSAES_CAPABLE) xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; else # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { if (enc) { vpaes_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_encrypt; } else { vpaes_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_decrypt; } vpaes_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) vpaes_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else # endif (void)0; /* terminate potentially open 'else' */ if (enc) { AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_encrypt; } else { AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_decrypt; } AES_set_encrypt_key(key + ctx->key_len / 2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) AES_encrypt; xctx->xts.key1 = &xctx->ks1; } while (0); if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!xctx->xts.key1 || !xctx->xts.key2) return 0; if (!out || !in || len < AES_BLOCK_SIZE) return 0; if (xctx->stream) (*xctx->stream) (in, out, len, xctx->xts.key1, xctx->xts.key2, ctx->iv); else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, ctx->encrypt)) return 0; return 1; } # define aes_xts_cleanup NULL # define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY) BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; cctx->tls_aad_len = -1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(c->buf, ptr, arg); cctx->tls_aad_len = arg; { uint16_t len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; /* Correct length for explicit IV */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) len -= cctx->M; c->buf[arg - 2] = len >> 8; c->buf[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return cctx->M; case EVP_CTRL_CCM_SET_IV_FIXED: /* Sanity check length */ if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Just copy to first part of IV */ memcpy(c->iv, ptr, arg); return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if (c->encrypt && ptr) return 0; if (ptr) { cctx->tag_set = 1; memcpy(c->buf, ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (!c->encrypt || !cctx->tag_set) return 0; if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_CCM_CTX *cctx_out = out->cipher_data; if (cctx->ccm.key) { if (cctx->ccm.key != &cctx->ks) return 0; cctx_out->ccm.key = &cctx_out->ks; } return 1; } default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) HWAES_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } else # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) vpaes_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } # endif AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) AES_encrypt); cctx->str = NULL; cctx->key_set = 1; } while (0); if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; CCM128_CONTEXT *ccm = &cctx->ccm; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) return -1; /* If encrypting set explicit IV from sequence number (start of AAD) */ if (ctx->encrypt) memcpy(out, ctx->buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Get rest of IV from explicit IV */ memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Correct length value */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; /* Use saved AAD */ CRYPTO_ccm128_aad(ccm, ctx->buf, cctx->tls_aad_len); /* Fix buffer to point to payload */ in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (ctx->encrypt) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) return -1; return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; } else { if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, in + len, cctx->M)) return len; } } OPENSSL_cleanse(out, len); return -1; } } static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->key_set) return -1; if (cctx->tls_aad_len >= 0) return aes_ccm_tls_cipher(ctx, out, in, len); if (!cctx->iv_set) return -1; if (!ctx->encrypt && !cctx->tag_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* EVP_*Final() doesn't return any data */ if (!in) return 0; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (ctx->encrypt) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, ctx->buf, cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } # define aes_ccm_cleanup NULL BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) typedef struct { union { double align; AES_KEY ks; } ks; /* Indicates if IV has been set */ unsigned char *iv; } EVP_AES_WRAP_CTX; static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { if (ctx->encrypt) AES_set_encrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); else AES_set_decrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); if (!iv) wctx->iv = NULL; } if (iv) { memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); wctx->iv = ctx->iv; } return 1; } static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inlen) { EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; size_t rv; /* AES wrap with padding has IV length of 4, without padding 8 */ int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; /* No final operation so always return zero length */ if (!in) return 0; /* Input length must always be non-zero */ if (!inlen) return -1; /* If decrypting need at least 16 bytes and multiple of 8 */ if (!ctx->encrypt && (inlen < 16 || inlen & 0x7)) return -1; /* If not padding input must be multiple of 8 */ if (!pad && inlen & 0x7) return -1; if (!out) { if (ctx->encrypt) { /* If padding round up to multiple of 8 */ if (pad) inlen = (inlen + 7) / 8 * 8; /* 8 byte prefix */ return inlen + 8; } else { /* * If not padding output will be exactly 8 bytes smaller than * input. If padding it will be at least 8 bytes smaller but we * don't know how much. */ return inlen - 8; } } if (pad) { if (ctx->encrypt) rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } else { if (ctx->encrypt) rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } return rv ? (int)rv : -1; } # define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) static const EVP_CIPHER aes_128_wrap = { NID_id_aes128_wrap, 8, 16, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap(void) { return &aes_128_wrap; } static const EVP_CIPHER aes_192_wrap = { NID_id_aes192_wrap, 8, 24, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap(void) { return &aes_192_wrap; } static const EVP_CIPHER aes_256_wrap = { NID_id_aes256_wrap, 8, 32, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap(void) { return &aes_256_wrap; } static const EVP_CIPHER aes_128_wrap_pad = { NID_id_aes128_wrap_pad, 8, 16, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap_pad(void) { return &aes_128_wrap_pad; } static const EVP_CIPHER aes_192_wrap_pad = { NID_id_aes192_wrap_pad, 8, 24, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap_pad(void) { return &aes_192_wrap_pad; } static const EVP_CIPHER aes_256_wrap_pad = { NID_id_aes256_wrap_pad, 8, 32, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap_pad(void) { return &aes_256_wrap_pad; } # ifndef OPENSSL_NO_OCB static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_OCB_CTX *octx = c->cipher_data; EVP_CIPHER_CTX *newc; EVP_AES_OCB_CTX *new_octx; switch (type) { case EVP_CTRL_INIT: octx->key_set = 0; octx->iv_set = 0; octx->ivlen = c->cipher->iv_len; octx->iv = c->iv; octx->taglen = 16; octx->data_buf_len = 0; octx->aad_buf_len = 0; return 1; case EVP_CTRL_AEAD_SET_IVLEN: /* IV len must be 1 to 15 */ if (arg <= 0 || arg > 15) return 0; octx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (!ptr) { /* Tag len must be 0 to 16 */ if (arg < 0 || arg > 16) return 0; octx->taglen = arg; return 1; } if (arg != octx->taglen || c->encrypt) return 0; memcpy(octx->tag, ptr, arg); return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg != octx->taglen || !c->encrypt) return 0; memcpy(ptr, octx->tag, arg); return 1; case EVP_CTRL_COPY: newc = (EVP_CIPHER_CTX *)ptr; new_octx = newc->cipher_data; return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, &new_octx->ksenc.ks, &new_octx->ksdec.ks); default: return -1; } } static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc.ks); vpaes_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) vpaes_encrypt, (block128_f) vpaes_decrypt)) return 0; break; } # endif AES_set_encrypt_key(key, ctx->key_len * 8, &octx->ksenc.ks); AES_set_decrypt_key(key, ctx->key_len * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) AES_encrypt, (block128_f) AES_decrypt)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned char *buf; int *buf_len; int written_len = 0; size_t trailing_len; EVP_AES_OCB_CTX *octx = ctx->cipher_data; /* If IV or Key not set then return error */ if (!octx->iv_set) return -1; if (!octx->key_set) return -1; if (in) { /* * Need to ensure we are only passing full blocks to low level OCB * routines. We do it here rather than in EVP_EncryptUpdate/ * EVP_DecryptUpdate because we need to pass full blocks of AAD too * and those routines don't support that */ /* Are we dealing with AAD or normal data here? */ if (out == NULL) { buf = octx->aad_buf; buf_len = &(octx->aad_buf_len); } else { buf = octx->data_buf; buf_len = &(octx->data_buf_len); } /* * If we've got a partially filled buffer from a previous call then * use that data first */ if (*buf_len) { unsigned int remaining; remaining = 16 - (*buf_len); if (remaining > len) { memcpy(buf + (*buf_len), in, len); *(buf_len) += len; return 0; } memcpy(buf + (*buf_len), in, remaining); /* * If we get here we've filled the buffer, so process it */ len -= remaining; in += remaining; if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, buf, 16)) return -1; } else if (ctx->encrypt) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, 16)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, 16)) return -1; } written_len = 16; *buf_len = 0; } /* Do we have a partial block to handle at the end? */ trailing_len = len % 16; /* * If we've got some full blocks to handle, then process these first */ if (len != trailing_len) { if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) return -1; } else if (ctx->encrypt) { if (!CRYPTO_ocb128_encrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } written_len += len - trailing_len; in += len - trailing_len; } /* Handle any trailing partial block */ if (trailing_len) { memcpy(buf, in, trailing_len); *buf_len = trailing_len; } return written_len; } else { /* * First of all empty the buffer of any partial block that we might * have been provided - both for data and AAD */ if (octx->data_buf_len) { if (ctx->encrypt) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } written_len = octx->data_buf_len; octx->data_buf_len = 0; } if (octx->aad_buf_len) { if (!CRYPTO_ocb128_aad (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) return -1; octx->aad_buf_len = 0; } /* If decrypting then verify */ if (!ctx->encrypt) { if (octx->taglen < 0) return -1; if (CRYPTO_ocb128_finish(&octx->ocb, octx->tag, octx->taglen) != 0) return -1; octx->iv_set = 0; return written_len; } /* If encrypting then just get the tag */ if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) return -1; /* Don't reuse the IV */ octx->iv_set = 0; return written_len; } } static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_OCB_CTX *octx = c->cipher_data; CRYPTO_ocb128_cleanup(&octx->ocb); return 1; } BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, CUSTOM_FLAGS) # endif /* OPENSSL_NO_OCB */ #endif