#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # April 2007. # # Performance improvement over vanilla C code varies from 85% to 45% # depending on key length and benchmark. Unfortunately in this context # these are not very impressive results [for code that utilizes "wide" # 64x64=128-bit multiplication, which is not commonly available to C # programmers], at least hand-coded bn_asm.c replacement is known to # provide 30-40% better results for longest keys. Well, on a second # thought it's not very surprising, because z-CPUs are single-issue # and _strictly_ in-order execution, while bn_mul_mont is more or less # dependent on CPU ability to pipe-line instructions and have several # of them "in-flight" at the same time. I mean while other methods, # for example Karatsuba, aim to minimize amount of multiplications at # the cost of other operations increase, bn_mul_mont aim to neatly # "overlap" multiplications and the other operations [and on most # platforms even minimize the amount of the other operations, in # particular references to memory]. But it's possible to improve this # module performance by implementing dedicated squaring code-path and # possibly by unrolling loops... # January 2009. # # Reschedule to minimize/avoid Address Generation Interlock hazard, # make inner loops counter-based. while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $mn0="%r0"; $num="%r1"; # int bn_mul_mont( $rp="%r2"; # BN_ULONG *rp, $ap="%r3"; # const BN_ULONG *ap, $bp="%r4"; # const BN_ULONG *bp, $np="%r5"; # const BN_ULONG *np, $n0="%r6"; # const BN_ULONG *n0, #$num="160(%r15)" # int num); $bi="%r2"; # zaps rp $j="%r7"; $ahi="%r8"; $alo="%r9"; $nhi="%r10"; $nlo="%r11"; $AHI="%r12"; $NHI="%r13"; $count="%r14"; $sp="%r15"; $code.=<<___; .text .globl bn_mul_mont .type bn_mul_mont,\@function bn_mul_mont: lgf $num,164($sp) # pull $num sla $num,3 # $num to enumerate bytes la $bp,0($num,$bp) stg %r2,16($sp) cghi $num,16 # lghi %r2,0 # blr %r14 # if($num<16) return 0; cghi $num,128 # bhr %r14 # if($num>128) return 0; stmg %r3,%r15,24($sp) lghi $rp,-160-8 # leave room for carry bit lcgr $j,$num # -$num lgr %r0,$sp la $rp,0($rp,$sp) la $sp,0($j,$rp) # alloca stg %r0,0($sp) # back chain sra $num,3 # restore $num la $bp,0($j,$bp) # restore $bp ahi $num,-1 # adjust $num for inner loop lg $n0,0($n0) # pull n0 lg $bi,0($bp) lg $alo,0($ap) mlgr $ahi,$bi # ap[0]*bp[0] lgr $AHI,$ahi lgr $mn0,$alo # "tp[0]"*n0 msgr $mn0,$n0 lg $nlo,0($np) # mlgr $nhi,$mn0 # np[0]*m1 algr $nlo,$alo # +="tp[0]" lghi $NHI,0 alcgr $NHI,$nhi la $j,8(%r0) # j=1 lr $count,$num .align 16 .L1st: lg $alo,0($j,$ap) mlgr $ahi,$bi # ap[j]*bp[0] algr $alo,$AHI lghi $AHI,0 alcgr $AHI,$ahi lg $nlo,0($j,$np) mlgr $nhi,$mn0 # np[j]*m1 algr $nlo,$NHI lghi $NHI,0 alcgr $nhi,$NHI # +="tp[j]" algr $nlo,$alo alcgr $NHI,$nhi stg $nlo,160-8($j,$sp) # tp[j-1]= la $j,8($j) # j++ brct $count,.L1st algr $NHI,$AHI lghi $AHI,0 alcgr $AHI,$AHI # upmost overflow bit stg $NHI,160-8($j,$sp) stg $AHI,160($j,$sp) la $bp,8($bp) # bp++ .Louter: lg $bi,0($bp) # bp[i] lg $alo,0($ap) mlgr $ahi,$bi # ap[0]*bp[i] alg $alo,160($sp) # +=tp[0] lghi $AHI,0 alcgr $AHI,$ahi lgr $mn0,$alo msgr $mn0,$n0 # tp[0]*n0 lg $nlo,0($np) # np[0] mlgr $nhi,$mn0 # np[0]*m1 algr $nlo,$alo # +="tp[0]" lghi $NHI,0 alcgr $NHI,$nhi la $j,8(%r0) # j=1 lr $count,$num .align 16 .Linner: lg $alo,0($j,$ap) mlgr $ahi,$bi # ap[j]*bp[i] algr $alo,$AHI lghi $AHI,0 alcgr $ahi,$AHI alg $alo,160($j,$sp)# +=tp[j] alcgr $AHI,$ahi lg $nlo,0($j,$np) mlgr $nhi,$mn0 # np[j]*m1 algr $nlo,$NHI lghi $NHI,0 alcgr $nhi,$NHI algr $nlo,$alo # +="tp[j]" alcgr $NHI,$nhi stg $nlo,160-8($j,$sp) # tp[j-1]= la $j,8($j) # j++ brct $count,.Linner algr $NHI,$AHI lghi $AHI,0 alcgr $AHI,$AHI alg $NHI,160($j,$sp)# accumulate previous upmost overflow bit lghi $ahi,0 alcgr $AHI,$ahi # new upmost overflow bit stg $NHI,160-8($j,$sp) stg $AHI,160($j,$sp) la $bp,8($bp) # bp++ clg $bp,160+8+32($j,$sp) # compare to &bp[num] jne .Louter lg $rp,160+8+16($j,$sp) # reincarnate rp la $ap,160($sp) ahi $num,1 # restore $num, incidentally clears "borrow" la $j,0(%r0) lr $count,$num .Lsub: lg $alo,0($j,$ap) slbg $alo,0($j,$np) stg $alo,0($j,$rp) la $j,8($j) brct $count,.Lsub lghi $ahi,0 slbgr $AHI,$ahi # handle upmost carry ngr $ap,$AHI lghi $np,-1 xgr $np,$AHI ngr $np,$rp ogr $ap,$np # ap=borrow?tp:rp la $j,0(%r0) lgr $count,$num .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh stg $j,160($j,$sp) # zap tp stg $alo,0($j,$rp) la $j,8($j) brct $count,.Lcopy la %r1,160+8+48($j,$sp) lmg %r6,%r15,0(%r1) lghi %r2,1 # signal "processed" br %r14 .size bn_mul_mont,.-bn_mul_mont .string "Montgomery Multiplication for s390x, CRYPTOGAMS by " ___ print $code; close STDOUT;