/* crypto/engine/eng_rsax.c */ /* Copyright (c) 2010-2010 Intel Corp. * Author: Vinodh.Gopal@intel.com * Jim Guilford * Erdinc.Ozturk@intel.com * Maxim.Perminov@intel.com * Ying.Huang@intel.com * * More information about algorithm used can be found at: * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf */ /* ==================================================================== * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA #include #endif #include /* RSAX is available **ONLY* on x86_64 CPUs */ #undef COMPILE_RSAX #if (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM) #define COMPILE_RSAX static ENGINE *ENGINE_rsax (void); #endif void ENGINE_load_rsax (void) { /* On non-x86 CPUs it just returns. */ #ifdef COMPILE_RSAX ENGINE *toadd = ENGINE_rsax(); if(!toadd) return; ENGINE_add(toadd); ENGINE_free(toadd); ERR_clear_error(); #endif } #ifdef COMPILE_RSAX #define E_RSAX_LIB_NAME "rsax engine" static int e_rsax_destroy(ENGINE *e); static int e_rsax_init(ENGINE *e); static int e_rsax_finish(ENGINE *e); static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); #ifndef OPENSSL_NO_RSA /* RSA stuff */ static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); static int e_rsax_rsa_finish(RSA *r); #endif static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = { {0, NULL, NULL, 0} }; #ifndef OPENSSL_NO_RSA /* Our internal RSA_METHOD that we provide pointers to */ static RSA_METHOD e_rsax_rsa = { "Intel RSA-X method", NULL, NULL, NULL, NULL, e_rsax_rsa_mod_exp, NULL, NULL, e_rsax_rsa_finish, RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE, NULL, NULL, NULL }; #endif /* Constants used when creating the ENGINE */ static const char *engine_e_rsax_id = "rsax"; static const char *engine_e_rsax_name = "RSAX engine support"; /* This internal function is used by ENGINE_rsax() */ static int bind_helper(ENGINE *e) { #ifndef OPENSSL_NO_RSA const RSA_METHOD *meth1; #endif if(!ENGINE_set_id(e, engine_e_rsax_id) || !ENGINE_set_name(e, engine_e_rsax_name) || #ifndef OPENSSL_NO_RSA !ENGINE_set_RSA(e, &e_rsax_rsa) || #endif !ENGINE_set_destroy_function(e, e_rsax_destroy) || !ENGINE_set_init_function(e, e_rsax_init) || !ENGINE_set_finish_function(e, e_rsax_finish) || !ENGINE_set_ctrl_function(e, e_rsax_ctrl) || !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns)) return 0; #ifndef OPENSSL_NO_RSA meth1 = RSA_PKCS1_SSLeay(); e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc; e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec; e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc; e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec; e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp; #endif return 1; } static ENGINE *ENGINE_rsax(void) { ENGINE *ret = ENGINE_new(); if(!ret) return NULL; if(!bind_helper(ret)) { ENGINE_free(ret); return NULL; } return ret; } #ifndef OPENSSL_NO_RSA /* Used to attach our own key-data to an RSA structure */ static int rsax_ex_data_idx = -1; #endif static int e_rsax_destroy(ENGINE *e) { return 1; } /* (de)initialisation functions. */ static int e_rsax_init(ENGINE *e) { #ifndef OPENSSL_NO_RSA if (rsax_ex_data_idx == -1) rsax_ex_data_idx = RSA_get_ex_new_index(0, NULL, NULL, NULL, NULL); #endif if (rsax_ex_data_idx == -1) return 0; return 1; } static int e_rsax_finish(ENGINE *e) { return 1; } static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)) { int to_return = 1; switch(cmd) { /* The command isn't understood by this engine */ default: to_return = 0; break; } return to_return; } #ifndef OPENSSL_NO_RSA #include typedef uint64_t UINT64; typedef uint16_t UINT16; /* Table t is interleaved in the following manner: * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ... * A particular 512-bit value is stored in t[][index] rather than the more * normal t[index][]; i.e. the qwords of a particular entry in t are not * adjacent in memory */ /* Init BIGNUM b from the interleaved UINT64 array */ static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array); /* Extract array elements from BIGNUM b * To set the whole array from b, call with n=8 */ static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array); struct mod_ctx_512 { UINT64 t[8][8]; UINT64 m[8]; UINT64 m1[8]; /* 2^278 % m */ UINT64 m2[8]; /* 2^640 % m */ UINT64 k1[2]; /* (- 1/m) % 2^128 */ }; static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data); void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ UINT64 *g, /* 512 bits, 8 qwords */ UINT64 *exp, /* 512 bits, 8 qwords */ struct mod_ctx_512 *data); typedef struct st_e_rsax_mod_ctx { UINT64 type; union { struct mod_ctx_512 b512; } ctx; } E_RSAX_MOD_CTX; static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m) { E_RSAX_MOD_CTX *hptr; if (idx < 0 || idx > 2) return NULL; hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); if (!hptr) { hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX)); if (!hptr) return NULL; hptr[2].type = hptr[1].type= hptr[0].type = 0; RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr); } if (hptr[idx].type == BN_num_bits(m)) return hptr+idx; if (BN_num_bits(m) == 512) { UINT64 _m[8]; bn_extract_to_array_512(m, 8, _m); memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512)); mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512); } hptr[idx].type = BN_num_bits(m); return hptr+idx; } static int e_rsax_rsa_finish(RSA *rsa) { E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); if(!hptr) return 0; OPENSSL_free(hptr); RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL); return 1; } static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx ) { if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) { if (BN_num_bits(m) == 512) { UINT64 _r[8]; UINT64 _g[8]; UINT64 _e[8]; /* Init the arrays from the BIGNUMs */ bn_extract_to_array_512(g, 8, _g); bn_extract_to_array_512(e, 8, _e); mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512); /* Return the result in the BIGNUM */ interleaved_array_to_bn_512(r, _r); return 1; } } return BN_mod_exp_mont(r, g, e, m, ctx, in_mont); } /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular * exponentiation routine precalculations and a structure to hold the * necessary values. These files are meant to live in crypto/rsa/ in * the target openssl. */ /* * Local method: extracts a piece from a BIGNUM, to fit it into * an array. Call with n=8 to extract an entire 512-bit BIGNUM */ static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array) { int i; UINT64 tmp; unsigned char bn_buff[64]; memset(bn_buff, 0, 64); if (BN_num_bytes(b) > 64) { printf ("Can't support this byte size\n"); return 0; } if (BN_num_bytes(b)!=0) { if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) { printf ("Error's in bn2bin\n"); /* We have to error, here */ return 0; } } while (n-- > 0) { array[n] = 0; for (i=7; i>=0; i--) { tmp = bn_buff[63-(n*8+i)]; array[n] |= tmp << (8*i); } } return 1; } /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */ static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array) { unsigned char tmp[64]; int n=8; int i; while (n-- > 0) { for (i = 7; i>=0; i--) { tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } } BN_bin2bn(tmp, 64, b); return 0; } /* The main 512bit precompute call */ static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data) { BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2; /* We need a BN_CTX for the modulo functions */ BN_CTX* ctx; /* Some tmps */ UINT64 _t[8]; int i, j, ret = 0; /* Init _m with m */ BN_init(&_m); interleaved_array_to_bn_512(&_m, m); memset(_t, 0, 64); /* Inits */ BN_init(&two_768); BN_init(&two_640); BN_init(&two_128); BN_init(&two_512); BN_init(&tmp); BN_init(&tmp2); /* Create our context */ if ((ctx=BN_CTX_new()) == NULL) { goto err; } BN_CTX_start(ctx); /* * For production, if you care, these only need to be set once, * and may be made constants. */ BN_lshift(&two_768, BN_value_one(), 768); BN_lshift(&two_640, BN_value_one(), 640); BN_lshift(&two_128, BN_value_one(), 128); BN_lshift(&two_512, BN_value_one(), 512); if (0 == (m[7] & 0x8000000000000000)) { exit(1); } if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */ exit(1); } /* Precompute m1 */ BN_mod(&tmp, &two_768, &_m, ctx); if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) { goto err; } /* Precompute m2 */ BN_mod(&tmp, &two_640, &_m, ctx); if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) { goto err; } /* * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should * be non-negative. */ BN_mod_inverse(&tmp, &_m, &two_128, ctx); if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); } if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) { goto err; } /* Precompute t */ for (i=0; i<8; i++) { BN_zero(&tmp); if (i & 1) { BN_add(&tmp, &two_512, &tmp); } if (i & 2) { BN_add(&tmp, &two_512, &tmp); } if (i & 4) { BN_add(&tmp, &two_640, &tmp); } BN_nnmod(&tmp2, &tmp, &_m, ctx); if (!bn_extract_to_array_512(&tmp2, 8, _t)) { goto err; } for (j=0; j<8; j++) data->t[j][i] = _t[j]; } /* Precompute m */ for (i=0; i<8; i++) { data->m[i] = m[i]; } ret = 1; err: /* Cleanup */ if (ctx != NULL) { BN_CTX_end(ctx); } BN_free(&two_768); BN_free(&two_640); BN_free(&two_128); BN_free(&two_512); BN_free(&tmp); BN_free(&tmp2); BN_free(&_m); return ret; } static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { BIGNUM *r1,*m1,*vrfy; BIGNUM local_dmp1,local_dmq1,local_c,local_r1; BIGNUM *dmp1,*dmq1,*c,*pr1; int ret=0; BN_CTX_start(ctx); r1 = BN_CTX_get(ctx); m1 = BN_CTX_get(ctx); vrfy = BN_CTX_get(ctx); { BIGNUM local_p, local_q; BIGNUM *p = NULL, *q = NULL; int error = 0; /* Make sure BN_mod_inverse in Montgomery * intialization uses the BN_FLG_CONSTTIME flag * (unless RSA_FLAG_NO_CONSTTIME is set) */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { BN_init(&local_p); p = &local_p; BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); BN_init(&local_q); q = &local_q; BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME); } else { p = rsa->p; q = rsa->q; } if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx)) error = 1; if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) error = 1; } /* clean up */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { BN_free(&local_p); BN_free(&local_q); } if ( error ) goto err; } if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) goto err; /* compute I mod q */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { c = &local_c; BN_with_flags(c, I, BN_FLG_CONSTTIME); if (!BN_mod(r1,c,rsa->q,ctx)) goto err; } else { if (!BN_mod(r1,I,rsa->q,ctx)) goto err; } /* compute r1^dmq1 mod q */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { dmq1 = &local_dmq1; BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); } else dmq1 = rsa->dmq1; if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx, rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err; /* compute I mod p */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { c = &local_c; BN_with_flags(c, I, BN_FLG_CONSTTIME); if (!BN_mod(r1,c,rsa->p,ctx)) goto err; } else { if (!BN_mod(r1,I,rsa->p,ctx)) goto err; } /* compute r1^dmp1 mod p */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { dmp1 = &local_dmp1; BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); } else dmp1 = rsa->dmp1; if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx, rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err; if (!BN_sub(r0,r0,m1)) goto err; /* This will help stop the size of r0 increasing, which does * affect the multiply if it optimised for a power of 2 size */ if (BN_is_negative(r0)) if (!BN_add(r0,r0,rsa->p)) goto err; if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err; /* Turn BN_FLG_CONSTTIME flag on before division operation */ if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { pr1 = &local_r1; BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); } else pr1 = r1; if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err; /* If p < q it is occasionally possible for the correction of * adding 'p' if r0 is negative above to leave the result still * negative. This can break the private key operations: the following * second correction should *always* correct this rare occurrence. * This will *never* happen with OpenSSL generated keys because * they ensure p > q [steve] */ if (BN_is_negative(r0)) if (!BN_add(r0,r0,rsa->p)) goto err; if (!BN_mul(r1,r0,rsa->q,ctx)) goto err; if (!BN_add(r0,r1,m1)) goto err; if (rsa->e && rsa->n) { if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err; /* If 'I' was greater than (or equal to) rsa->n, the operation * will be equivalent to using 'I mod n'. However, the result of * the verify will *always* be less than 'n' so we don't check * for absolute equality, just congruency. */ if (!BN_sub(vrfy, vrfy, I)) goto err; if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; if (BN_is_negative(vrfy)) if (!BN_add(vrfy, vrfy, rsa->n)) goto err; if (!BN_is_zero(vrfy)) { /* 'I' and 'vrfy' aren't congruent mod n. Don't leak * miscalculated CRT output, just do a raw (slower) * mod_exp and return that instead. */ BIGNUM local_d; BIGNUM *d = NULL; if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { d = &local_d; BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); } else d = rsa->d; if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx, rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err; } } ret=1; err: BN_CTX_end(ctx); return ret; } #endif /* !OPENSSL_NO_RSA */ #endif /* !COMPILE_RSAX */