/* crypto/asn1/a_bitstr.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "cryptlib.h" #include int ASN1_BIT_STRING_set(ASN1_BIT_STRING *x, unsigned char *d, int len) { return M_ASN1_BIT_STRING_set(x, d, len); } int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a, unsigned char **pp) { int ret,j,bits,len; unsigned char *p,*d; if (a == NULL) return(0); len=a->length; if (len > 0) { if (a->flags & ASN1_STRING_FLAG_BITS_LEFT) { bits=(int)a->flags&0x07; } else { for ( ; len > 0; len--) { if (a->data[len-1]) break; } j=a->data[len-1]; if (j & 0x01) bits=0; else if (j & 0x02) bits=1; else if (j & 0x04) bits=2; else if (j & 0x08) bits=3; else if (j & 0x10) bits=4; else if (j & 0x20) bits=5; else if (j & 0x40) bits=6; else if (j & 0x80) bits=7; else bits=0; /* should not happen */ } } else bits=0; ret=1+len; if (pp == NULL) return(ret); p= *pp; *(p++)=(unsigned char)bits; d=a->data; memcpy(p,d,len); p+=len; if (len > 0) p[-1]&=(0xff<flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear */ ret->flags|=(ASN1_STRING_FLAG_BITS_LEFT|(i&0x07)); /* set */ if (len-- > 1) /* using one because of the bits left byte */ { s=(unsigned char *)OPENSSL_malloc((int)len); if (s == NULL) { i=ERR_R_MALLOC_FAILURE; goto err; } memcpy(s,p,(int)len); s[len-1]&=(0xff<length=(int)len; if (ret->data != NULL) OPENSSL_free(ret->data); ret->data=s; ret->type=V_ASN1_BIT_STRING; if (a != NULL) (*a)=ret; *pp=p; return(ret); err: ASN1err(ASN1_F_C2I_ASN1_BIT_STRING,i); if ((ret != NULL) && ((a == NULL) || (*a != ret))) M_ASN1_BIT_STRING_free(ret); return(NULL); } /* These next 2 functions from Goetz Babin-Ebell */ int ASN1_BIT_STRING_set_bit(ASN1_BIT_STRING *a, int n, int value) { int w,v,iv; unsigned char *c; w=n/8; v=1<<(7-(n&0x07)); iv= ~v; if (!value) v=0; if (a == NULL) return 0; a->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear, set on write */ if ((a->length < (w+1)) || (a->data == NULL)) { if (!value) return(1); /* Don't need to set */ if (a->data == NULL) c=(unsigned char *)OPENSSL_malloc(w+1); else c=(unsigned char *)OPENSSL_realloc_clean(a->data, a->length, w+1); if (c == NULL) { ASN1err(ASN1_F_ASN1_BIT_STRING_SET_BIT,ERR_R_MALLOC_FAILURE); return 0; } if (w+1-a->length > 0) memset(c+a->length, 0, w+1-a->length); a->data=c; a->length=w+1; } a->data[w]=((a->data[w])&iv)|v; while ((a->length > 0) && (a->data[a->length-1] == 0)) a->length--; return(1); } int ASN1_BIT_STRING_get_bit(const ASN1_BIT_STRING *a, int n) { int w,v; w=n/8; v=1<<(7-(n&0x07)); if ((a == NULL) || (a->length < (w+1)) || (a->data == NULL)) return(0); return((a->data[w]&v) != 0); } /* * Checks if the given bit string contains only bits specified by * the flags vector. Returns 0 if there is at least one bit set in 'a' * which is not specified in 'flags', 1 otherwise. * 'len' is the length of 'flags'. */ int ASN1_BIT_STRING_check(const ASN1_BIT_STRING *a, const unsigned char *flags, int flags_len) { int i, ok; /* Check if there is one bit set at all. */ if (!a || !a->data) return 1; /* Check each byte of the internal representation of the bit string. */ ok = 1; for (i = 0; i < a->length && ok; ++i) { unsigned char mask = i < flags_len ? ~flags[i] : 0xff; /* We are done if there is an unneeded bit set. */ ok = (a->data[i] & mask) == 0; } return ok; }