constant BIGNUMs. It turns out that this trips up different but equally
useful compiler warnings to -Wcast-qual, and so wasn't worth the ugliness
it created. (Thanks to Ulf for the forehead-slap.)
and structures as constant without having to cast away const at any point.
There is still plenty of other code that makes gcc's "-Wcast-qual" unhappy,
but crypto/bn/ is now ok. Purists are welcome to suggest alternatives.
constructing BIGNUM structures with pointers offset into other bignums
(among other things). This corrects some of it that is too plainly insane,
and tries to ensure that bignums are normalised when passed to other
functions.
structures being passed in to or out of API functions, and this corrects a
couple of cases found so far.
Also, lop off a couple of bytes of white-space.
I have tried to convert 'len' type variable declarations to unsigned as a
means to address these warnings when appropriate, but when in doubt I have
used casts in the comparisons instead. The better solution (that would get
us all lynched by API users) would be to go through and convert all the
function prototypes and structure definitions to use unsigned variables
except when signed is necessary. The proliferation of (signed) "int" for
strictly non-negative uses is unfortunate.
except internally to the allocator BN_CTX_new(), as such this deprecates
the use of BN_CTX_init() in the API. Moreover, the structure definition of
BN_CTX is taken out of bn_lcl.h and moved into bn_ctx.c itself.
NDEBUG should probably only be "forced" in the top-level configuration, but
until it is I will avoid removing it from bn_ctx.c which might surprise
people with massive slow-downs in their keygens. So I've left it in
bn_ctx.c but tidied up the preprocessor logic a touch and made it more
tolerant of debugging efforts.
be) precompiled out in the API headers. This change is to ensure that if
it is defined when compiling openssl, the deprecated functions aren't
implemented either.
sure the loop does correctly stop and breaking ("division by zero")
modulus operations are not performed. The (pre-generated) prime
table crypto/bn/bn_prime.h was already correct, but it could not be
re-generated on some platforms because of the "division by zero"
situation in the script.
replaced #if logic around bn_sub_part_words in bn_mul.c. I rely upon
OPENSSL_BN_ASM_PART_WORDS being added by ./Configure script. Would it
still work on non-Unix platforms?
- a patch to fix a memory leak in rsa_gen.c
- a note about compiler warnings with unions
- a note about improving structure element names
This applies his patch and implements a solution to the notes.
key-generation and prime-checking functions. Rather than explicitly passing
callback functions and caller-defined context data for the callbacks, a new
structure BN_GENCB is defined that encapsulates this; a pointer to the
structure is passed to all such functions instead.
This wrapper structure allows the encapsulation of "old" and "new" style
callbacks - "new" callbacks return a boolean result on the understanding
that returning FALSE should terminate keygen/primality processing. The
BN_GENCB abstraction will allow future callback modifications without
needing to break binary compatibility nor change the API function
prototypes. The new API functions have been given names ending in "_ex" and
the old functions are implemented as wrappers to the new ones. The
OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined,
declaration of the older functions will be skipped. NB: Some
openssl-internal code will stick with the older callbacks for now, so
appropriate "#undef" logic will be put in place - this is in case the user
is *building* openssl (rather than *including* its headers) with this
symbol defined.
There is another change in the new _ex functions; the key-generation
functions do not return key structures but operate on structures passed by
the caller, the return value is a boolean. This will allow for a smoother
transition to having key-generation as "virtual function" in the various
***_METHOD tables.
the divisor was a bit more complex than I first saw. The lost bit
can't just be discarded, as there are cases where it is important.
For example, look at dividing 320000 with 80000 vs. 80001 (all
decimals), the difference is crucial. The trick here is to check if
that lost bit was 1, and in that case, do the following:
1. subtract the quotient from the remainder
2. as long as the remainder is negative, add the divisor (the whole
divisor, not the shofted down copy) to it, and decrease the
quotient by one.
There's probably a nice mathematical proof for this already, but I
won't bother with that, unless someone requests it from me.
PR: 338
Here's the description, submitted by Gisle Vanem <giva@bgnett.no>:
1. sock_init() renamed to ssl_sock_init() in ./apps/s_socket.c due
to name-clash with Watt-32.
2. rand() renamed to Rand() in ./crypto/bn/divtest.c due to name-clash
with <stdlib.h>
3. Added calls to dbug_init()/sock_init() in some demo programs.
4. Changed cflags/lflags in configure. Watt-32 install root now taken
from $WATT_ROOT.