The recent updates to libssl to enforce stricter return code checking, left
a small number of instances behind where return codes were being swallowed
(typically because the function they were being called from was declared as
void). This commit fixes those instances to handle the return codes more
appropriately.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Change ssl_set_handshake_header from return void to returning int, and
handle error return code appropriately.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Mark most functions returning a result defined in any libssl header file
with __owur to warn if they are used without checking the return value.
Use -DUNUSED_RETURN compiler flag with gcc to activate these warnings.
Some functions returning a result are skipped if it is common and valid to
use these functions without checking the return value.
Reviewed-by: Richard Levitte <levitte@openssl.org>
It created the cert structure in SSL_CTX or SSL if it was NULL, but they can
never be NULL as the comments already said.
Reviewed-by: Dr. Stephen Henson <steve@openssl.org>
From RFC4507:
"The ticket_lifetime_hint field contains a hint from the server about how
long the ticket should be stored. The value indicates the lifetime in
seconds as a 32-bit unsigned integer in network byte order."
Reviewed-by: Tim Hudson <tjh@openssl.org>
Rewrite ssl3_send_client_key_exchange to retain the premaster secret
instead of using it immediately.
This is needed because the premaster secret is used after the client key
exchange message has been sent to compute the extended master secret.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Retrieve handshake hashes in a separate function. This tidies the existing
code and will be used for extended master secret generation.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Add a "flags" field to SSL_SESSION. This will contain various flags
such as encrypt-then-mac and extended master secret support.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Remove OPENSSL_NO_BUF_FREELISTS. This was turned on by default,
so the work here is removing the 'maintain our own freelist' code.
Also removed a minor old Windows-multibyte/widechar conversion flag.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Remove support for SHA0 and DSS0 (they were broken), and remove
the ability to attempt to build without SHA (it didn't work).
For simplicity, remove the option of not building various SHA algorithms;
you could argue that SHA_224/256/384/512 should be kept, since they're
like crypto algorithms, but I decided to go the other way.
So these options are gone:
GENUINE_DSA OPENSSL_NO_SHA0
OPENSSL_NO_SHA OPENSSL_NO_SHA1
OPENSSL_NO_SHA224 OPENSSL_NO_SHA256
OPENSSL_NO_SHA384 OPENSSL_NO_SHA512
Reviewed-by: Richard Levitte <levitte@openssl.org>
Sometimes it fails to format them very well, and sometimes it corrupts them!
This commit moves some particularly problematic ones.
Reviewed-by: Tim Hudson <tjh@openssl.org>
MS Server gated cryptography is obsolete and dates from the time of export
restrictions on strong encryption and is only used by ancient versions of
MSIE.
Reviewed-by: Matt Caswell <matt@openssl.org>
and instead use the value provided by the underlying BIO. Also provide some
new DTLS_CTRLs so that the library user can set the mtu without needing to
know this constant. These new DTLS_CTRLs provide the capability to set the
link level mtu to be used (i.e. including this IP/UDP overhead). The previous
DTLS_CTRLs required the library user to subtract this overhead first.
Reviewed-by: Tim Hudson <tjh@openssl.org>
The client sends a session ID with the session ticket, and uses
the returned ID to detect resumption, so we do not need to peek
at handshake messages: s->hit tells us explicitly if we're resuming.
An equivalent change was independently made in BoringSSL, see commit
407886f589cf2dbaed82db0a44173036c3bc3317.
Reviewed-by: Matt Caswell <matt@openssl.org>
The supported signature algorithms extension needs to be processed before
the certificate to use is decided and before a cipher is selected (as the
set of shared signature algorithms supported may impact the choice).
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit 56e8dc542b)
Conflicts:
ssl/ssl.h
ssl/ssl_err.c
Support separate parse and add callback arguments.
Add new callback so an application can free extension data.
Change return value for send functions so < 0 is an error 0
omits extension and > 0 includes it. This is more consistent
with the behaviour of other functions in OpenSSL.
Modify parse_cb handling so <= 0 is an error.
Make SSL_CTX_set_custom_cli_ext and SSL_CTX_set_custom_cli_ext argument
order consistent.
NOTE: these changes WILL break existing code.
Remove (now inaccurate) in line documentation.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Use "parse" and "add" for function and callback names instead of
"first" and "second".
Change arguments to callback so the extension type is unsigned int
and the buffer length is size_t. Note: this *will* break existing code.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Reject attempts to use extensions handled internally.
Add flags to each extension structure to indicate if an extension
has been sent or received. Enforce RFC5246 compliance by rejecting
duplicate extensions and unsolicited extensions and only send a
server extension if we have sent the corresponding client extension.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Use the same structure for client and server custom extensions.
Add utility functions in new file t1_ext.c.
Use new utility functions to handle custom server and client extensions
and remove a lot of code duplication.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Move custom extension structures from SSL_CTX to CERT structure.
This change means the form can be revised in future without binary
compatibility issues. Also since CERT is part of SSL structures
so per-SSL custom extensions could be supported in future as well as
per SSL_CTX.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Don't call internal functions directly call them through
SSL_test_functions(). This also makes unit testing work on
Windows and platforms that don't export internal functions
from shared libraries.
By default unit testing is not enabled: it requires the compile
time option "enable-unit-test".
Reviewed-by: Geoff Thorpe <geoff@openssl.org>
Security callback: selects which parameters are permitted including
sensible defaults based on bits of security.
The "parameters" which can be selected include: ciphersuites,
curves, key sizes, certificate signature algorithms, supported
signature algorithms, DH parameters, SSL/TLS version, session tickets
and compression.
In some cases prohibiting the use of a parameters will mean they are
not advertised to the peer: for example cipher suites and ECC curves.
In other cases it will abort the handshake: e.g DH parameters or the
peer key size.
Documentation to follow...
New function ssl_cipher_disabled.
Check for disabled client ciphers using ssl_cipher_disabled.
New function to return only supported ciphers.
New option to ciphers utility to print only supported ciphers.
Add auto DH parameter support. This is roughly equivalent to the
ECDH auto curve selection but for DH. An application can just call
SSL_CTX_set_auto_dh(ctx, 1);
and appropriate DH parameters will be used based on the size of the
server key.
Unlike ECDH there is no way a peer can indicate the range of DH parameters
it supports. Some peers cannot handle DH keys larger that 1024 bits for
example. In this case if you call:
SSL_CTX_set_auto_dh(ctx, 2);
Only 1024 bit DH parameters will be used.
If the server key is 7680 bits or more in size then 8192 bit DH parameters
will be used: these will be *very* slow.
The old export ciphersuites aren't supported but those are very
insecure anyway.
If multiple TLS extensions are expected but not received, the TLS extension and supplemental data 'generate' callbacks are the only chance for the receive-side to trigger a specific TLS alert during the handshake.
Removed logic which no-op'd TLS extension generate callbacks (as the generate callbacks need to always be called in order to trigger alerts), and updated the serverinfo-specific custom TLS extension callbacks to track which custom TLS extensions were received by the client, where no-ops for 'generate' callbacks are appropriate.
New ctrl sets current certificate based on certain criteria. Currently
two options: set the first valid certificate as current and set the
next valid certificate as current. Using these an application can
iterate over all certificates in an SSL_CTX or SSL structure.
DHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEDH should probably be deprecated at some
point, though.
ECDHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEECDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEECDH should probably be deprecated at some
point, though.
PR#3169
This patch, which currently applies successfully against master and
1_0_2, adds the following functions:
SSL_[CTX_]select_current_cert() - set the current certificate without
disturbing the existing structure.
SSL_[CTX_]get0_chain_certs() - get the current certificate's chain.
SSL_[CTX_]clear_chain_certs() - clear the current certificate's chain.
The patch also adds these functions to, and fixes some existing errors
in, SSL_CTX_add1_chain_cert.pod.
Instead, send random bytes, unless SSL_SEND_{CLIENT,SERVER}RANDOM_MODE
is set.
This is a forward-port of commits:
4af793036ff4c93b46ed3da721dac92583270191
While the gmt_unix_time record was added in an ostensible attempt to
mitigate the dangers of a bad RNG, its presence leaks the host's view
of the current time in the clear. This minor leak can help
fingerprint TLS instances across networks and protocols... and what's
worse, it's doubtful thet the gmt_unix_time record does any good at
all for its intended purpose, since:
* It's quite possible to open two TLS connections in one second.
* If the PRNG output is prone to repeat itself, ephemeral
handshakes (and who knows what else besides) are broken.
Experimental support for encrypt then mac from
draft-gutmann-tls-encrypt-then-mac-02.txt
To enable it set the appropriate extension number (0x10 for the test server)
using e.g. -DTLSEXT_TYPE_encrypt_then_mac=0x10
For non-compliant peers (i.e. just about everything) this should have no
effect.
Removed prior audit proof logic - audit proof support was implemented using the generic TLS extension API
Tests exercising the new supplemental data registration and callback api can be found in ssltest.c.
Implemented changes to s_server and s_client to exercise supplemental data callbacks via the -auth argument, as well as additional flags to exercise supplemental data being sent only during renegotiation.
Check for Suite B support using method flags instead of version numbers:
anything supporting TLS 1.2 cipher suites will also support Suite B.
Return an error if an attempt to use DTLS 1.0 is made in Suite B mode.
Since s->method does not reflect the final client version when a client
hello is sent for SSLv23_client_method it can't be relied on to indicate
if TLS 1.2 ciphers should be used. So use the client version instead.
Add correct flags for DTLS 1.2, update s_server and s_client to handle
DTLS 1.2 methods.
Currently no support for version negotiation: i.e. if client/server selects
DTLS 1.2 it is that or nothing.
Use the enc_flags field to determine whether we should use explicit IV,
signature algorithms or SHA256 default PRF instead of hard coding which
versions support each requirement.
Revise DTLS code. There was a *lot* of code duplication in the
DTLS code that generates records. This makes it harder to maintain and
sometimes a TLS update is omitted by accident from the DTLS code.
Specifically almost all of the record generation functions have code like
this:
some_pointer = buffer + HANDSHAKE_HEADER_LENGTH;
... Record creation stuff ...
set_handshake_header(ssl, SSL_MT_SOMETHING, message_len);
...
write_handshake_message(ssl);
Where the "Record creation stuff" is identical between SSL/TLS and DTLS or
in some cases has very minor differences.
By adding a few fields to SSL3_ENC to include the header length, some flags
and function pointers for handshake header setting and handshake writing the
code can cope with both cases.
Note: although this passes "make test" and some simple DTLS tests there may
be some minor differences in the DTLS code that have to be accounted for.
Add DTLS record header parsing, different client hello format and add
HelloVerifyRequest message type.
Add code to d1_pkt.c to send message headers to the message callback.
Kludge alert. This is arranged by passing padding length in unused
bits of SSL3_RECORD->type, so that orig_len can be reconstructed.
(cherry picked from commit 8bfd4c659f)
We have to use EVP in FIPS mode so we can only partially mitigate
timing differences.
Make an extra call to EVP_DigestSignUpdate to hash additonal blocks
to cover any timing differences caused by removal of padding.
(cherry picked from commit b908e88ec1)
This patch makes the decoding of SSLv3 and TLS CBC records constant
time. Without this, a timing side-channel can be used to build a padding
oracle and mount Vaudenay's attack.
This patch also disables the stitched AESNI+SHA mode pending a similar
fix to that code.
In order to be easy to backport, this change is implemented in ssl/,
rather than as a generic AEAD mode. In the future this should be changed
around so that HMAC isn't in ssl/, but crypto/ as FIPS expects.
(cherry picked from commit e130841bcc)
client hello message. Previously this could only be retrieved on an initial
connection and it was impossible to determine the cipher IDs of any uknown
ciphersuites.
by a certificate chain. Add additional tests to handle client
certificates: checks for matching certificate type and issuer name
comparison.
Print out results of checks for each candidate chain tested in
s_server/s_client.
possible to have different stores per SSL structure or one store in
the parent SSL_CTX. Include distint stores for certificate chain
verification and chain building. New ctrl SSL_CTRL_BUILD_CERT_CHAIN
to build and store a certificate chain in CERT structure: returing
an error if the chain cannot be built: this will allow applications
to test if a chain is correctly configured.
Note: if the CERT based stores are not set then the parent SSL_CTX
store is used to retain compatibility with existing behaviour.
details in s_client.
Also add ctrl to set client certificate types. If not used sensible values
will be included based on supported signature algorithms: for example if
we don't include any DSA signing algorithms the DSA certificate type is
omitted.
Fix restriction in old code where certificate types would be truncated
if it exceeded TLS_CT_NUMBER.
the permitted signature algorithms for server and client authentication
are the same but it is now possible to set different algorithms for client
authentication only.
is required by client or server. An application can decide which
certificate chain to present based on arbitrary criteria: for example
supported signature algorithms. Add very simple example to s_server.
This fixes many of the problems and restrictions of the existing client
certificate callback: for example you can now clear existing certificates
and specify the whole chain.
the certificate can be used for (if anything). Set valid_flags field
in new tls1_check_chain function. Simplify ssl_set_cert_masks which used
to have similar checks in it.
Add new "cert_flags" field to CERT structure and include a "strict mode".
This enforces some TLS certificate requirements (such as only permitting
certificate signature algorithms contained in the supported algorithms
extension) which some implementations ignore: this option should be used
with caution as it could cause interoperability issues.
Only store encoded versions of peer and configured signature algorithms.
Determine shared signature algorithms and cache the result along with NID
equivalents of each algorithm.
TLS v1.2. These are sent as an extension for clients and during a certificate
request for servers.
TODO: add support for shared signature algorithms, respect shared algorithms
when deciding which ciphersuites and certificates to permit.