Don't call internal functions directly call them through
SSL_test_functions(). This also makes unit testing work on
Windows and platforms that don't export internal functions
from shared libraries.
By default unit testing is not enabled: it requires the compile
time option "enable-unit-test".
Reviewed-by: Geoff Thorpe <geoff@openssl.org>
This meant alarger renumbering in util/libeay.num due to symbols
appearing in 1.0.0-stable and 1.0.1-stable. However, since there's
been no release on this branch yet, it should be harmless.
compression identity is already present among the registered
compression methods, and if so, reject the addition request.
Declare SSL_COMP_get_compression_method() so it can be used properly.
Change ssltest.c so it checks what compression methods are available
and enumerates them. As a side-effect, built-in compression methods
will be automagically loaded that way. Additionally, change the
identities for ZLIB and RLE to be conformant to
draft-ietf-tls-compression-05.txt.
Finally, make update.
Next on my list: have the built-in compression methods added
"automatically" instead of requiring that the author call
SSL_COMP_add_compression_method() or
SSL_COMP_get_compression_methods().
Note that since some private kssl functions were exported, the
simplest way to rebuild the number table was to toss everything that
was new since OpenSSL 0.9.6b. This is safe, since those functions
have not yet been exported in an OpenSSL release. Beware, people who
trust intermediary snapshots!
functions on platform were that's the best way to handle exporting
global variables in shared libraries. To enable this functionality,
one must configure with "EXPORT_VAR_AS_FN" or defined the C macro
"OPENSSL_EXPORT_VAR_AS_FUNCTION" in crypto/opensslconf.h (the latter
is normally done by Configure or something similar).
To implement a global variable, use the macro OPENSSL_IMPLEMENT_GLOBAL
in the source file (foo.c) like this:
OPENSSL_IMPLEMENT_GLOBAL(int,foo)=1;
OPENSSL_IMPLEMENT_GLOBAL(double,bar);
To declare a global variable, use the macros OPENSSL_DECLARE_GLOBAL
and OPENSSL_GLOBAL_REF in the header file (foo.h) like this:
OPENSSL_DECLARE_GLOBAL(int,foo);
#define foo OPENSSL_GLOBAL_REF(foo)
OPENSSL_DECLARE_GLOBAL(double,bar);
#define bar OPENSSL_GLOBAL_REF(bar)
The #defines are very important, and therefore so is including the
header file everywere where the defined globals are used.
The macro OPENSSL_EXPORT_VAR_AS_FUNCTION also affects the definition
of ASN.1 items, but that structure is a bt different.
The largest change is in util/mkdef.pl which has been enhanced with
better and easier to understand logic to choose which symbols should
go into the Windows .def files as well as a number of fixes and code
cleanup (among others, algorithm keywords are now sorted
lexicographically to avoid constant rewrites).
and make all files the depend on it include it without prefixing it
with openssl/.
This means that all Makefiles will have $(TOP) as one of the include
directories.
SSL/TLS session IDs in a server. According to RFC2246, the session ID is an
arbitrary value chosen by the server. It can be useful to have some control
over this "arbitrary value" so as to choose it in ways that can aid in
things like external session caching and balancing (eg. clustering). The
default session ID generation is to fill the ID with random data.
The callback used by default is built in to ssl_sess.c, but registering a
callback in an SSL_CTX or in a particular SSL overrides this. BTW: SSL
callbacks will override SSL_CTX callbacks, and a new SSL structure inherits
any callback set in its 'parent' SSL_CTX. The header comments describe how
this mechanism ticks, and source code comments describe (hopefully) why it
ticks the way it does.
Man pages are on the way ...
[NB: Lutz was also hacking away and helping me to figure out how best to do
this.]