New ctrl sets current certificate based on certain criteria. Currently
two options: set the first valid certificate as current and set the
next valid certificate as current. Using these an application can
iterate over all certificates in an SSL_CTX or SSL structure.
The standard terminology in https://tools.ietf.org/html/rfc5426 is
"DHE". "openssl ciphers" outputs "DHE" (for the most part). But
users of the library currently cannot specify "DHE", they must
currently specify "EDH".
This change allows users to specify the common term in cipher suite
strings without breaking backward compatibility.
The standard terminology in https://tools.ietf.org/html/rfc4492 is
ECDHE. "openssl ciphers" outputs ECDHE. But users of the library
currently cannot specify ECDHE, they must specify EECDH.
This change allows users to specify the common term in cipher suite
strings without breaking backward compatibility.
New functions to retrieve internal pointers to X509_VERIFY_PARAM
for SSL_CTX and SSL structures.
(cherry picked from commit be0c9270690ed9c1799900643cab91de146de857)
PR#3169
This patch, which currently applies successfully against master and
1_0_2, adds the following functions:
SSL_[CTX_]select_current_cert() - set the current certificate without
disturbing the existing structure.
SSL_[CTX_]get0_chain_certs() - get the current certificate's chain.
SSL_[CTX_]clear_chain_certs() - clear the current certificate's chain.
The patch also adds these functions to, and fixes some existing errors
in, SSL_CTX_add1_chain_cert.pod.
Instead, send random bytes, unless SSL_SEND_{CLIENT,SERVER}RANDOM_MODE
is set.
This is a forward-port of commits:
4af793036f6ef4f0a1078e5d7155426a98d50e37
f4c93b46edb51da71f09eda99e83eaf193a33c08
3da721dac9382c48812c8eba455528fd59af2eef
2583270191a8b27eed303c03ece1da97b9b69fd3
While the gmt_unix_time record was added in an ostensible attempt to
mitigate the dangers of a bad RNG, its presence leaks the host's view
of the current time in the clear. This minor leak can help
fingerprint TLS instances across networks and protocols... and what's
worse, it's doubtful thet the gmt_unix_time record does any good at
all for its intended purpose, since:
* It's quite possible to open two TLS connections in one second.
* If the PRNG output is prone to repeat itself, ephemeral
handshakes (and who knows what else besides) are broken.
Removed prior audit proof logic - audit proof support was implemented using the generic TLS extension API
Tests exercising the new supplemental data registration and callback api can be found in ssltest.c.
Implemented changes to s_server and s_client to exercise supplemental data callbacks via the -auth argument, as well as additional flags to exercise supplemental data being sent only during renegotiation.
This change adds support for ALPN[1] in OpenSSL. ALPN is the IETF
blessed version of NPN and we'll be supporting both ALPN and NPN for
some time yet.
[1] https://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg-00
Conflicts:
ssl/ssl3.h
ssl/t1_lib.c
Check for Suite B support using method flags instead of version numbers:
anything supporting TLS 1.2 cipher suites will also support Suite B.
Return an error if an attempt to use DTLS 1.0 is made in Suite B mode.
Add new methods DTLS_*_method() which support both DTLS 1.0 and DTLS 1.2 and
pick the highest version the peer supports during negotiation.
As with SSL/TLS options can change this behaviour specifically
SSL_OP_NO_DTLSv1 and SSL_OP_NO_DTLSv1_2.
Add correct flags for DTLS 1.2, update s_server and s_client to handle
DTLS 1.2 methods.
Currently no support for version negotiation: i.e. if client/server selects
DTLS 1.2 it is that or nothing.
client hello message. Previously this could only be retrieved on an initial
connection and it was impossible to determine the cipher IDs of any uknown
ciphersuites.
some invalid operations for testing purposes. Currently this can be used
to sign using digests the peer doesn't support, EC curves the peer
doesn't support and use certificates which don't match the type associated
with a ciphersuite.
by a certificate chain. Add additional tests to handle client
certificates: checks for matching certificate type and issuer name
comparison.
Print out results of checks for each candidate chain tested in
s_server/s_client.
possible to have different stores per SSL structure or one store in
the parent SSL_CTX. Include distint stores for certificate chain
verification and chain building. New ctrl SSL_CTRL_BUILD_CERT_CHAIN
to build and store a certificate chain in CERT structure: returing
an error if the chain cannot be built: this will allow applications
to test if a chain is correctly configured.
Note: if the CERT based stores are not set then the parent SSL_CTX
store is used to retain compatibility with existing behaviour.
details in s_client.
Also add ctrl to set client certificate types. If not used sensible values
will be included based on supported signature algorithms: for example if
we don't include any DSA signing algorithms the DSA certificate type is
omitted.
Fix restriction in old code where certificate types would be truncated
if it exceeded TLS_CT_NUMBER.
the permitted signature algorithms for server and client authentication
are the same but it is now possible to set different algorithms for client
authentication only.
is required by client or server. An application can decide which
certificate chain to present based on arbitrary criteria: for example
supported signature algorithms. Add very simple example to s_server.
This fixes many of the problems and restrictions of the existing client
certificate callback: for example you can now clear existing certificates
and specify the whole chain.
the certificate can be used for (if anything). Set valid_flags field
in new tls1_check_chain function. Simplify ssl_set_cert_masks which used
to have similar checks in it.
Add new "cert_flags" field to CERT structure and include a "strict mode".
This enforces some TLS certificate requirements (such as only permitting
certificate signature algorithms contained in the supported algorithms
extension) which some implementations ignore: this option should be used
with caution as it could cause interoperability issues.
Only store encoded versions of peer and configured signature algorithms.
Determine shared signature algorithms and cache the result along with NID
equivalents of each algorithm.
TLS v1.2. These are sent as an extension for clients and during a certificate
request for servers.
TODO: add support for shared signature algorithms, respect shared algorithms
when deciding which ciphersuites and certificates to permit.