This is rollback to 0.9.6h bn_mul.c to address problem reported in RT#272.

This commit is contained in:
Andy Polyakov 2002-12-16 18:17:24 +00:00
parent 1f1a32541f
commit db186beee4
2 changed files with 87 additions and 445 deletions

View File

@ -433,10 +433,13 @@ void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n); int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl); int cl, int dl);
#if 0
/* bn_mul.c rollback <appro> */
void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2, void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
int dna,int dnb,BN_ULONG *t); int dna,int dnb,BN_ULONG *t);
void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
int n,int tna,int tnb,BN_ULONG *t); int n,int tna,int tnb,BN_ULONG *t);
#endif
void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t); void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n); void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2, void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,

View File

@ -56,325 +56,10 @@
* [including the GNU Public Licence.] * [including the GNU Public Licence.]
*/ */
#ifndef BN_DEBUG
# undef NDEBUG /* avoid conflicting definitions */
# define NDEBUG
#endif
#include <stdio.h> #include <stdio.h>
#include <assert.h>
#include "cryptlib.h" #include "cryptlib.h"
#include "bn_lcl.h" #include "bn_lcl.h"
#if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__)) || defined(__DJGPP__) /* Assembler implementation exists only for x86 */
/* Here follows specialised variants of bn_add_words() and
bn_sub_words(). They have the property performing operations on
arrays of different sizes. The sizes of those arrays is expressed through
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
which is the delta between the two lengths, calculated as len(a)-len(b).
All lengths are the number of BN_ULONGs... For the operations that require
a result array as parameter, it must have the length cl+abs(dl).
These functions should probably end up in bn_asm.c as soon as there are
assembler counterparts for the systems that use assembler files. */
BN_ULONG bn_sub_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, t;
assert(cl >= 0);
c = bn_sub_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
for (;;)
{
t = b[0];
r[0] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[1];
r[1] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[2];
r[2] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[3];
r[3] = (0-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
#endif
while(c)
{
t = a[0];
r[0] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[1];
r[1] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[2];
r[2] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[3];
r[3] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
save_dl = dl;
a += 4;
r += 4;
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
#endif
BN_ULONG bn_add_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, l, t;
assert(cl >= 0);
c = bn_add_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
while (c)
{
l=(c+b[0])&BN_MASK2;
c=(l < c);
r[0]=l;
if (++dl >= 0) break;
l=(c+b[1])&BN_MASK2;
c=(l < c);
r[1]=l;
if (++dl >= 0) break;
l=(c+b[2])&BN_MASK2;
c=(l < c);
r[2]=l;
if (++dl >= 0) break;
l=(c+b[3])&BN_MASK2;
c=(l < c);
r[3]=l;
if (++dl >= 0) break;
save_dl = dl;
b+=4;
r+=4;
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
#endif
if (save_dl < dl)
{
switch (dl - save_dl)
{
case 1:
r[1] = b[1];
if (++dl >= 0) break;
case 2:
r[2] = b[2];
if (++dl >= 0) break;
case 3:
r[3] = b[3];
if (++dl >= 0) break;
}
b += 4;
r += 4;
}
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = b[0];
if (++dl >= 0) break;
r[1] = b[1];
if (++dl >= 0) break;
r[2] = b[2];
if (++dl >= 0) break;
r[3] = b[3];
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
#endif
while (c)
{
t=(a[0]+c)&BN_MASK2;
c=(t < c);
r[0]=t;
if (--dl <= 0) break;
t=(a[1]+c)&BN_MASK2;
c=(t < c);
r[1]=t;
if (--dl <= 0) break;
t=(a[2]+c)&BN_MASK2;
c=(t < c);
r[2]=t;
if (--dl <= 0) break;
t=(a[3]+c)&BN_MASK2;
c=(t < c);
r[3]=t;
if (--dl <= 0) break;
save_dl = dl;
a+=4;
r+=4;
}
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (dl > 0)
{
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
#ifdef BN_RECURSION #ifdef BN_RECURSION
/* Karatsuba recursive multiplication algorithm /* Karatsuba recursive multiplication algorithm
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */ * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
@ -390,15 +75,14 @@ BN_ULONG bn_add_part_words(BN_ULONG *r,
* a[1]*b[1] * a[1]*b[1]
*/ */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t) BN_ULONG *t)
{ {
int n=n2/2,c1,c2; int n=n2/2,c1,c2;
int tna=n+dna, tnb=n+dnb;
unsigned int neg,zero; unsigned int neg,zero;
BN_ULONG ln,lo,*p; BN_ULONG ln,lo,*p;
# ifdef BN_COUNT # ifdef BN_COUNT
fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2); printf(" bn_mul_recursive %d * %d\n",n2,n2);
# endif # endif
# ifdef BN_MUL_COMBA # ifdef BN_MUL_COMBA
# if 0 # if 0
@ -408,40 +92,34 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
return; return;
} }
# endif # endif
/* Only call bn_mul_comba 8 if n2 == 8 and the if (n2 == 8)
* two arrays are complete [steve]
*/
if (n2 == 8 && dna == 0 && dnb == 0)
{ {
bn_mul_comba8(r,a,b); bn_mul_comba8(r,a,b);
return; return;
} }
# endif /* BN_MUL_COMBA */ # endif /* BN_MUL_COMBA */
/* Else do normal multiply */
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
{ {
bn_mul_normal(r,a,n2+dna,b,n2+dnb); /* This should not happen */
if ((dna + dnb) < 0) bn_mul_normal(r,a,n2,b,n2);
memset(&r[2*n2 + dna + dnb], 0,
sizeof(BN_ULONG) * -(dna + dnb));
return; return;
} }
/* r=(a[0]-a[1])*(b[1]-b[0]) */ /* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); c1=bn_cmp_words(a,&(a[n]),n);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); c2=bn_cmp_words(&(b[n]),b,n);
zero=neg=0; zero=neg=0;
switch (c1*3+c2) switch (c1*3+c2)
{ {
case -4: case -4:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
break; break;
case -3: case -3:
zero=1; zero=1;
break; break;
case -2: case -2:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
neg=1; neg=1;
break; break;
case -1: case -1:
@ -450,22 +128,21 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
zero=1; zero=1;
break; break;
case 2: case 2:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ bn_sub_words(t, a, &(a[n]),n); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
neg=1; neg=1;
break; break;
case 3: case 3:
zero=1; zero=1;
break; break;
case 4: case 4:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); bn_sub_words(t, a, &(a[n]),n);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); bn_sub_words(&(t[n]),&(b[n]),b, n);
break; break;
} }
# ifdef BN_MUL_COMBA # ifdef BN_MUL_COMBA
if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take if (n == 4)
extra args to do this well */
{ {
if (!zero) if (!zero)
bn_mul_comba4(&(t[n2]),t,&(t[n])); bn_mul_comba4(&(t[n2]),t,&(t[n]));
@ -475,9 +152,7 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
bn_mul_comba4(r,a,b); bn_mul_comba4(r,a,b);
bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
} }
else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could else if (n == 8)
take extra args to do this
well */
{ {
if (!zero) if (!zero)
bn_mul_comba8(&(t[n2]),t,&(t[n])); bn_mul_comba8(&(t[n2]),t,&(t[n]));
@ -492,11 +167,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
{ {
p= &(t[n2*2]); p= &(t[n2*2]);
if (!zero) if (!zero)
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
else else
memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
bn_mul_recursive(r,a,b,n,0,0,p); bn_mul_recursive(r,a,b,n,p);
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
} }
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
@ -545,39 +220,39 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
/* n+tn is the word length /* n+tn is the word length
* t needs to be n*4 is size, as does r */ * t needs to be n*4 is size, as does r */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
int tna, int tnb, BN_ULONG *t) int n, BN_ULONG *t)
{ {
int i,j,n2=n*2; int i,j,n2=n*2;
unsigned int c1,c2,neg,zero; unsigned int c1,c2,neg,zero;
BN_ULONG ln,lo,*p; BN_ULONG ln,lo,*p;
# ifdef BN_COUNT # ifdef BN_COUNT
fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
tna, n, tnb, n);
# endif # endif
if (n < 8) if (n < 8)
{ {
bn_mul_normal(r,a,n+tna,b,n+tnb); i=tn+n;
bn_mul_normal(r,a,i,b,i);
return; return;
} }
/* r=(a[0]-a[1])*(b[1]-b[0]) */ /* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); c1=bn_cmp_words(a,&(a[n]),n);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); c2=bn_cmp_words(&(b[n]),b,n);
zero=neg=0; zero=neg=0;
switch (c1*3+c2) switch (c1*3+c2)
{ {
case -4: case -4:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
break; break;
case -3: case -3:
zero=1; zero=1;
/* break; */ /* break; */
case -2: case -2:
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
neg=1; neg=1;
break; break;
case -1: case -1:
@ -586,16 +261,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
zero=1; zero=1;
/* break; */ /* break; */
case 2: case 2:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ bn_sub_words(t, a, &(a[n]),n); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
neg=1; neg=1;
break; break;
case 3: case 3:
zero=1; zero=1;
/* break; */ /* break; */
case 4: case 4:
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); bn_sub_words(t, a, &(a[n]),n);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); bn_sub_words(&(t[n]),&(b[n]),b, n);
break; break;
} }
/* The zero case isn't yet implemented here. The speedup /* The zero case isn't yet implemented here. The speedup
@ -614,59 +289,54 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
{ {
bn_mul_comba8(&(t[n2]),t,&(t[n])); bn_mul_comba8(&(t[n2]),t,&(t[n]));
bn_mul_comba8(r,a,b); bn_mul_comba8(r,a,b);
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
} }
else else
{ {
p= &(t[n2*2]); p= &(t[n2*2]);
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
bn_mul_recursive(r,a,b,n,0,0,p); bn_mul_recursive(r,a,b,n,p);
i=n/2; i=n/2;
/* If there is only a bottom half to the number, /* If there is only a bottom half to the number,
* just do it */ * just do it */
if (tna > tnb) j=tn-i;
j = tna - i;
else
j = tnb - i;
if (j == 0) if (j == 0)
{ {
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
i,tna-i,tnb-i,p);
memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
} }
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
{ {
bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
i,tna-i,tnb-i,p); j,i,p);
memset(&(r[n2+tna+tnb]),0, memset(&(r[n2+tn*2]),0,
sizeof(BN_ULONG)*(n2-tna-tnb)); sizeof(BN_ULONG)*(n2-tn*2));
} }
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
{ {
memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
{ {
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
} }
else else
{ {
for (;;) for (;;)
{ {
i/=2; i/=2;
if (i < tna && i < tnb) if (i < tn)
{ {
bn_mul_part_recursive(&(r[n2]), bn_mul_part_recursive(&(r[n2]),
&(a[n]),&(b[n]), &(a[n]),&(b[n]),
i,tna-i,tnb-i,p); tn-i,i,p);
break; break;
} }
else if (i <= tna && i <= tnb) else if (i == tn)
{ {
bn_mul_recursive(&(r[n2]), bn_mul_recursive(&(r[n2]),
&(a[n]),&(b[n]), &(a[n]),&(b[n]),
i,tna-i,tnb-i,p); i,p);
break; break;
} }
} }
@ -727,10 +397,10 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int n=n2/2; int n=n2/2;
# ifdef BN_COUNT # ifdef BN_COUNT
fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
# endif # endif
bn_mul_recursive(r,a,b,n,0,0,&(t[0])); bn_mul_recursive(r,a,b,n,&(t[0]));
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
{ {
bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
@ -761,7 +431,7 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
BN_ULONG ll,lc,*lp,*mp; BN_ULONG ll,lc,*lp,*mp;
# ifdef BN_COUNT # ifdef BN_COUNT
fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); printf(" bn_mul_high %d * %d\n",n2,n2);
# endif # endif
n=n2/2; n=n2/2;
@ -814,8 +484,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
else else
# endif # endif
{ {
bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
} }
/* s0 == low(al*bl) /* s0 == low(al*bl)
@ -940,19 +610,19 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{ {
int ret=0;
int top,al,bl; int top,al,bl;
BIGNUM *rr; BIGNUM *rr;
int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
int i; int i;
#endif #endif
#ifdef BN_RECURSION #ifdef BN_RECURSION
BIGNUM *t=NULL; BIGNUM *t;
int j=0,k; int j,k;
#endif #endif
#ifdef BN_COUNT #ifdef BN_COUNT
fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); printf("BN_mul %d * %d\n",a->top,b->top);
#endif #endif
bn_check_top(a); bn_check_top(a);
@ -1005,55 +675,21 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
#ifdef BN_RECURSION #ifdef BN_RECURSION
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
{ {
if (i >= -1 && i <= 1) if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax)
{ {
int sav_j =0; #if 0 /* tribute to const-ification, bl<b->dmax above covers for this */
/* Find out the power of two lower or equal if (bn_wexpand(b,al) == NULL) goto err;
to the longest of the two numbers */ #endif
if (i >= 0) b->d[bl]=0;
{
j = BN_num_bits_word((BN_ULONG)al);
}
if (i == -1)
{
j = BN_num_bits_word((BN_ULONG)bl);
}
sav_j = j;
j = 1<<(j-1);
assert(j <= al || j <= bl);
k = j+j;
t = BN_CTX_get(ctx);
if (al > j || bl > j)
{
bn_wexpand(t,k*4);
bn_wexpand(rr,k*4);
bn_mul_part_recursive(rr->d,a->d,b->d,
j,al-j,bl-j,t->d);
}
else /* al <= j || bl <= j */
{
bn_wexpand(t,k*2);
bn_wexpand(rr,k*2);
bn_mul_recursive(rr->d,a->d,b->d,
j,al-j,bl-j,t->d);
}
rr->top=top;
goto end;
}
#if 0
if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
{
BIGNUM *tmp_bn = (BIGNUM *)b;
if (bn_wexpand(tmp_bn,al) == NULL) goto err;
tmp_bn->d[bl]=0;
bl++; bl++;
i--; i--;
} }
else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax)
{ {
BIGNUM *tmp_bn = (BIGNUM *)a; #if 0 /* tribute to const-ification, al<a->dmax above covers for this */
if (bn_wexpand(tmp_bn,bl) == NULL) goto err; if (bn_wexpand(a,bl) == NULL) goto err;
tmp_bn->d[al]=0; #endif
a->d[al]=0;
al++; al++;
i++; i++;
} }
@ -1070,17 +706,26 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
if (bn_wexpand(t,k*2) == NULL) goto err; if (bn_wexpand(t,k*2) == NULL) goto err;
if (bn_wexpand(rr,k*2) == NULL) goto err; if (bn_wexpand(rr,k*2) == NULL) goto err;
bn_mul_recursive(rr->d,a->d,b->d,al,t->d); bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
rr->top=top;
goto end;
} }
#if 0 /* tribute to const-ification, rsa/dsa performance is not affected */
else else
{ {
if (bn_wexpand(t,k*4) == NULL) goto err; if (bn_wexpand(a,k) == NULL ) goto err;
if (bn_wexpand(rr,k*4) == NULL) goto err; if (bn_wexpand(b,k) == NULL ) goto err;
if (bn_wexpand(t,k*4) == NULL ) goto err;
if (bn_wexpand(rr,k*4) == NULL ) goto err;
for (i=a->top; i<k; i++)
a->d[i]=0;
for (i=b->top; i<k; i++)
b->d[i]=0;
bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
} }
rr->top=top; rr->top=top;
goto end; goto end;
}
#endif #endif
}
} }
#endif /* BN_RECURSION */ #endif /* BN_RECURSION */
if (bn_wexpand(rr,top) == NULL) goto err; if (bn_wexpand(rr,top) == NULL) goto err;
@ -1103,7 +748,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
BN_ULONG *rr; BN_ULONG *rr;
#ifdef BN_COUNT #ifdef BN_COUNT
fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); printf(" bn_mul_normal %d * %d\n",na,nb);
#endif #endif
if (na < nb) if (na < nb)
@ -1116,13 +761,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
} }
rr= &(r[na]); rr= &(r[na]);
if (nb <= 0) rr[0]=bn_mul_words(r,a,na,b[0]);
{
(void)bn_mul_words(r,a,na,0);
return;
}
else
rr[0]=bn_mul_words(r,a,na,b[0]);
for (;;) for (;;)
{ {
@ -1143,7 +782,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
{ {
#ifdef BN_COUNT #ifdef BN_COUNT
fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); printf(" bn_mul_low_normal %d * %d\n",n,n);
#endif #endif
bn_mul_words(r,a,n,b[0]); bn_mul_words(r,a,n,b[0]);