Simplify and fix ec_GFp_simple_points_make_affine

(which didn't always handle value 0 correctly).

Reviewed-by: emilia@openssl.org
This commit is contained in:
Bodo Moeller 2014-08-01 17:18:14 +02:00
parent a3efe1b6e9
commit d5213519c0
3 changed files with 138 additions and 120 deletions

View File

@ -4,6 +4,11 @@
Changes between 1.0.1h and 1.0.2 [xx XXX xxxx]
*) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.)
for corner cases. (Certain input points at infinity could lead to
bogus results, with non-infinity inputs mapped to infinity too.)
[Bodo Moeller]
*) Initial support for PowerISA 2.0.7, first implemented in POWER8.
This covers AES, SHA256/512 and GHASH. "Initial" means that most
common cases are optimized and there still is room for further

View File

@ -1181,9 +1181,8 @@ int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ct
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *tmp0, *tmp1;
size_t pow2 = 0;
BIGNUM **heap = NULL;
BIGNUM *tmp, *tmp_Z;
BIGNUM **prod_Z = NULL;
size_t i;
int ret = 0;
@ -1198,124 +1197,104 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT
}
BN_CTX_start(ctx);
tmp0 = BN_CTX_get(ctx);
tmp1 = BN_CTX_get(ctx);
if (tmp0 == NULL || tmp1 == NULL) goto err;
tmp = BN_CTX_get(ctx);
tmp_Z = BN_CTX_get(ctx);
if (tmp == NULL || tmp_Z == NULL) goto err;
/* Before converting the individual points, compute inverses of all Z values.
* Modular inversion is rather slow, but luckily we can do with a single
* explicit inversion, plus about 3 multiplications per input value.
*/
pow2 = 1;
while (num > pow2)
pow2 <<= 1;
/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
* We need twice that. */
pow2 <<= 1;
heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
if (heap == NULL) goto err;
/* The array is used as a binary tree, exactly as in heapsort:
*
* heap[1]
* heap[2] heap[3]
* heap[4] heap[5] heap[6] heap[7]
* heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
*
* We put the Z's in the last line;
* then we set each other node to the product of its two child-nodes (where
* empty or 0 entries are treated as ones);
* then we invert heap[1];
* then we invert each other node by replacing it by the product of its
* parent (after inversion) and its sibling (before inversion).
*/
heap[0] = NULL;
for (i = pow2/2 - 1; i > 0; i--)
heap[i] = NULL;
prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]);
if (prod_Z == NULL) goto err;
for (i = 0; i < num; i++)
heap[pow2/2 + i] = &points[i]->Z;
for (i = pow2/2 + num; i < pow2; i++)
heap[i] = NULL;
/* set each node to the product of its children */
for (i = pow2/2 - 1; i > 0; i--)
{
heap[i] = BN_new();
if (heap[i] == NULL) goto err;
if (heap[2*i] != NULL)
{
if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
{
if (!BN_copy(heap[i], heap[2*i])) goto err;
}
else
{
if (BN_is_zero(heap[2*i]))
{
if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
}
else
{
if (!group->meth->field_mul(group, heap[i],
heap[2*i], heap[2*i + 1], ctx)) goto err;
}
}
}
prod_Z[i] = BN_new();
if (prod_Z[i] == NULL) goto err;
}
/* invert heap[1] */
if (!BN_is_zero(heap[1]))
{
if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
{
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
goto err;
}
}
if (group->meth->field_encode != 0)
{
/* in the Montgomery case, we just turned R*H (representing H)
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
* i.e. we have need to multiply by the Montgomery factor twice */
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
}
/* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
* skipping any zero-valued inputs (pretend that they're 1). */
/* set other heap[i]'s to their inverses */
for (i = 2; i < pow2/2 + num; i += 2)
if (!BN_is_zero(&points[0]->Z))
{
/* i is even */
if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
if (!BN_copy(prod_Z[0], &points[0]->Z)) goto err;
}
else
{
if (group->meth->field_set_to_one != 0)
{
if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
if (!BN_copy(heap[i], tmp0)) goto err;
if (!BN_copy(heap[i + 1], tmp1)) goto err;
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) goto err;
}
else
{
if (!BN_copy(heap[i], heap[i/2])) goto err;
if (!BN_one(prod_Z[0])) goto err;
}
}
/* we have replaced all non-zero Z's by their inverses, now fix up all the points */
for (i = 1; i < num; i++)
{
if (!BN_is_zero(&points[i]->Z))
{
if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], &points[i]->Z, ctx)) goto err;
}
else
{
if (!BN_copy(prod_Z[i], prod_Z[i - 1])) goto err;
}
}
/* Now use a single explicit inversion to replace every
* non-zero points[i]->Z by its inverse. */
if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx))
{
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
goto err;
}
if (group->meth->field_encode != 0)
{
/* In the Montgomery case, we just turned R*H (representing H)
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
* i.e. we need to multiply by the Montgomery factor twice. */
if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err;
if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err;
}
for (i = num - 1; i > 0; --i)
{
/* Loop invariant: tmp is the product of the inverses of
* points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
if (!BN_is_zero(&points[i]->Z))
{
/* Set tmp_Z to the inverse of points[i]->Z (as product
* of Z inverses 0 .. i, Z values 0 .. i - 1). */
if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) goto err;
/* Update tmp to satisfy the loop invariant for i - 1. */
if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx)) goto err;
/* Replace points[i]->Z by its inverse. */
if (!BN_copy(&points[i]->Z, tmp_Z)) goto err;
}
}
if (!BN_is_zero(&points[0]->Z))
{
/* Replace points[0]->Z by its inverse. */
if (!BN_copy(&points[0]->Z, tmp)) goto err;
}
/* Finally, fix up the X and Y coordinates for all points. */
for (i = 0; i < num; i++)
{
EC_POINT *p = points[i];
if (!BN_is_zero(&p->Z))
{
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;
if (!group->meth->field_sqr(group, tmp, &p->Z, ctx)) goto err;
if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx)) goto err;
if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx)) goto err;
if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) goto err;
if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
if (group->meth->field_set_to_one != 0)
{
if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
@ -1329,20 +1308,19 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT
}
ret = 1;
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
if (heap != NULL)
if (prod_Z != NULL)
{
/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
for (i = pow2/2 - 1; i > 0; i--)
for (i = 0; i < num; i++)
{
if (heap[i] != NULL)
BN_clear_free(heap[i]);
if (prod_Z[i] != NULL)
BN_clear_free(prod_Z[i]);
}
OPENSSL_free(heap);
OPENSSL_free(prod_Z);
}
return ret;
}

View File

@ -199,6 +199,7 @@ static void group_order_tests(EC_GROUP *group)
EC_POINT *P = EC_POINT_new(group);
EC_POINT *Q = EC_POINT_new(group);
BN_CTX *ctx = BN_CTX_new();
int i;
n1 = BN_new(); n2 = BN_new(); order = BN_new();
fprintf(stdout, "verify group order ...");
@ -212,21 +213,55 @@ static void group_order_tests(EC_GROUP *group)
if (!EC_POINT_mul(group, Q, order, NULL, NULL, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
fprintf(stdout, " ok\n");
fprintf(stdout, "long/negative scalar tests ... ");
if (!BN_one(n1)) ABORT;
/* n1 = 1 - order */
if (!BN_sub(n1, n1, order)) ABORT;
if(!EC_POINT_mul(group, Q, NULL, P, n1, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
/* n2 = 1 + order */
if (!BN_add(n2, order, BN_value_one())) ABORT;
if(!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
/* n2 = (1 - order) * (1 + order) */
if (!BN_mul(n2, n1, n2, ctx)) ABORT;
if(!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
fprintf(stdout, "long/negative scalar tests ");
for (i = 1; i <= 2; i++)
{
const BIGNUM *scalars[6];
const EC_POINT *points[6];
fprintf(stdout, i == 1 ?
"allowing precomputation ... " :
"without precomputation ... ");
if (!BN_set_word(n1, i)) ABORT;
/* If i == 1, P will be the predefined generator for which
* EC_GROUP_precompute_mult has set up precomputation. */
if (!EC_POINT_mul(group, P, n1, NULL, NULL, ctx)) ABORT;
if (!BN_one(n1)) ABORT;
/* n1 = 1 - order */
if (!BN_sub(n1, n1, order)) ABORT;
if (!EC_POINT_mul(group, Q, NULL, P, n1, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
/* n2 = 1 + order */
if (!BN_add(n2, order, BN_value_one())) ABORT;
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
/* n2 = (1 - order) * (1 + order) = 1 - order^2 */
if (!BN_mul(n2, n1, n2, ctx)) ABORT;
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
/* n2 = order^2 - 1 */
BN_set_negative(n2, 0);
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
/* Add P to verify the result. */
if (!EC_POINT_add(group, Q, Q, P, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
/* Exercise EC_POINTs_mul, including corner cases. */
scalars[0] = n1; points[0] = Q; /* => infinity */
scalars[1] = n2; points[1] = P; /* => -P */
scalars[2] = n1; points[2] = Q; /* => infinity */
scalars[3] = n2; points[3] = Q; /* => infinity */
scalars[4] = n1; points[4] = P; /* => P */
scalars[5] = n2; points[5] = Q; /* => infinity */
if (!EC_POINTs_mul(group, Q, NULL, 5, points, scalars, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
}
fprintf(stdout, "ok\n");
EC_POINT_free(P);
EC_POINT_free(Q);
BN_free(n1);