BN_sqrt
This commit is contained in:
parent
06676624fc
commit
cd2eebfd64
@ -37,12 +37,12 @@ APPS=
|
||||
LIB=$(TOP)/libcrypto.a
|
||||
LIBSRC= bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c bn_mod.c \
|
||||
bn_print.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
|
||||
bn_kron.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c \
|
||||
bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c \
|
||||
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c
|
||||
|
||||
LIBOBJ= bn_add.o bn_div.o bn_exp.o bn_lib.o bn_ctx.o bn_mul.o bn_mod.o \
|
||||
bn_print.o bn_rand.o bn_shift.o bn_word.o bn_blind.o \
|
||||
bn_kron.o bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) \
|
||||
bn_kron.o bn_sqrt.o bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) \
|
||||
bn_recp.o bn_mont.o bn_mpi.o bn_exp2.o
|
||||
|
||||
SRC= $(LIBSRC)
|
||||
|
@ -238,7 +238,7 @@ typedef struct bignum_st
|
||||
} BIGNUM;
|
||||
|
||||
/* Used for temp variables */
|
||||
#define BN_CTX_NUM 16
|
||||
#define BN_CTX_NUM 20
|
||||
#define BN_CTX_NUM_POS 12
|
||||
typedef struct bignum_ctx
|
||||
{
|
||||
@ -357,6 +357,7 @@ int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_
|
||||
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
|
||||
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||||
const BIGNUM *m, BN_CTX *ctx);
|
||||
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
||||
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
|
||||
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
|
||||
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx);
|
||||
@ -414,6 +415,8 @@ int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx);
|
||||
int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */
|
||||
BIGNUM *BN_mod_inverse(BIGNUM *ret,
|
||||
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
|
||||
BIGNUM *BN_mod_sqrt(BIGNUM *ret,
|
||||
const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
|
||||
BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe,
|
||||
const BIGNUM *add, const BIGNUM *rem,
|
||||
void (*callback)(int,int,void *),void *cb_arg);
|
||||
@ -517,6 +520,7 @@ void bn_dump1(FILE *o, const char *a, const BN_ULONG *b,int n);
|
||||
#define BN_F_BN_MOD_INVERSE 110
|
||||
#define BN_F_BN_MOD_LSHIFT_QUICK 119
|
||||
#define BN_F_BN_MOD_MUL_RECIPROCAL 111
|
||||
#define BN_F_BN_MOD_SQRT 121
|
||||
#define BN_F_BN_MPI2BN 112
|
||||
#define BN_F_BN_NEW 113
|
||||
#define BN_F_BN_RAND 114
|
||||
@ -531,8 +535,11 @@ void bn_dump1(FILE *o, const char *a, const BN_ULONG *b,int n);
|
||||
#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105
|
||||
#define BN_R_INPUT_NOT_REDUCED 110
|
||||
#define BN_R_INVALID_LENGTH 106
|
||||
#define BN_R_NOT_A_SQUARE 111
|
||||
#define BN_R_NOT_INITIALIZED 107
|
||||
#define BN_R_NO_INVERSE 108
|
||||
#define BN_R_P_IS_NOT_PRIME 112
|
||||
#define BN_R_TOO_MANY_ITERATIONS 113
|
||||
#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -83,6 +83,7 @@ static ERR_STRING_DATA BN_str_functs[]=
|
||||
{ERR_PACK(0,BN_F_BN_MOD_INVERSE,0), "BN_mod_inverse"},
|
||||
{ERR_PACK(0,BN_F_BN_MOD_LSHIFT_QUICK,0), "BN_mod_lshift_quick"},
|
||||
{ERR_PACK(0,BN_F_BN_MOD_MUL_RECIPROCAL,0), "BN_mod_mul_reciprocal"},
|
||||
{ERR_PACK(0,BN_F_BN_MOD_SQRT,0), "BN_mod_sqrt"},
|
||||
{ERR_PACK(0,BN_F_BN_MPI2BN,0), "BN_mpi2bn"},
|
||||
{ERR_PACK(0,BN_F_BN_NEW,0), "BN_new"},
|
||||
{ERR_PACK(0,BN_F_BN_RAND,0), "BN_rand"},
|
||||
@ -100,8 +101,11 @@ static ERR_STRING_DATA BN_str_reasons[]=
|
||||
{BN_R_EXPAND_ON_STATIC_BIGNUM_DATA ,"expand on static bignum data"},
|
||||
{BN_R_INPUT_NOT_REDUCED ,"input not reduced"},
|
||||
{BN_R_INVALID_LENGTH ,"invalid length"},
|
||||
{BN_R_NOT_A_SQUARE ,"not a square"},
|
||||
{BN_R_NOT_INITIALIZED ,"not initialized"},
|
||||
{BN_R_NO_INVERSE ,"no inverse"},
|
||||
{BN_R_P_IS_NOT_PRIME ,"p is not prime"},
|
||||
{BN_R_TOO_MANY_ITERATIONS ,"too many iterations"},
|
||||
{BN_R_TOO_MANY_TEMPORARY_VARIABLES ,"too many temporary variables"},
|
||||
{0,NULL}
|
||||
};
|
||||
|
@ -205,6 +205,8 @@ int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
|
||||
if (a->top == 1 && !a->neg)
|
||||
{
|
||||
BN_ULONG A = a->d[0];
|
||||
if (m->top == 1)
|
||||
A %= m->d[0]; /* make sure that A is reduced */
|
||||
ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
|
||||
}
|
||||
else
|
||||
@ -235,8 +237,13 @@ int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
||||
|
||||
if (bits == 0)
|
||||
{
|
||||
BN_one(r);
|
||||
return(1);
|
||||
ret = BN_one(r);
|
||||
return ret;
|
||||
}
|
||||
if (BN_is_zero(a))
|
||||
{
|
||||
ret = BN_zero(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
@ -355,8 +362,13 @@ int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
||||
bits=BN_num_bits(p);
|
||||
if (bits == 0)
|
||||
{
|
||||
BN_one(rr);
|
||||
return(1);
|
||||
ret = BN_one(rr);
|
||||
return ret;
|
||||
}
|
||||
if (BN_is_zero(a))
|
||||
{
|
||||
ret = BN_zero(rr);
|
||||
return ret;
|
||||
}
|
||||
BN_CTX_start(ctx);
|
||||
d = BN_CTX_get(ctx);
|
||||
@ -500,9 +512,15 @@ int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
|
||||
bits = BN_num_bits(p);
|
||||
if (bits == 0)
|
||||
{
|
||||
BN_one(rr);
|
||||
return(1);
|
||||
ret = BN_one(rr);
|
||||
return ret;
|
||||
}
|
||||
if (a == 0)
|
||||
{
|
||||
ret = BN_zero(rr);
|
||||
return ret;
|
||||
}
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
d = BN_CTX_get(ctx);
|
||||
r = BN_CTX_get(ctx);
|
||||
@ -611,8 +629,13 @@ int BN_mod_exp_simple(BIGNUM *r,
|
||||
|
||||
if (bits == 0)
|
||||
{
|
||||
BN_one(r);
|
||||
return(1);
|
||||
ret = BN_one(r);
|
||||
return ret;
|
||||
}
|
||||
if (BN_is_zero(a))
|
||||
{
|
||||
ret = BN_one(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
|
@ -141,9 +141,15 @@ int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
|
||||
bits2=BN_num_bits(p2);
|
||||
if ((bits1 == 0) && (bits2 == 0))
|
||||
{
|
||||
BN_one(rr);
|
||||
return(1);
|
||||
ret = BN_one(rr);
|
||||
return ret;
|
||||
}
|
||||
if (BN_is_zero(a1) || BN_is_zero(a2))
|
||||
{
|
||||
ret = BN_zero(rr);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bits=(bits1 > bits2)?bits1:bits2;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
|
@ -1,5 +1,3 @@
|
||||
/* totally untested */
|
||||
|
||||
/* crypto/bn/bn_kron.c */
|
||||
/* ====================================================================
|
||||
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
||||
|
@ -1 +1,308 @@
|
||||
XXX
|
||||
/* crypto/bn/bn_mod.c */
|
||||
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
|
||||
* and Bodo Moeller for the OpenSSL project. */
|
||||
/* ====================================================================
|
||||
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. All advertising materials mentioning features or use of this
|
||||
* software must display the following acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||||
*
|
||||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||||
* endorse or promote products derived from this software without
|
||||
* prior written permission. For written permission, please contact
|
||||
* openssl-core@openssl.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "OpenSSL"
|
||||
* nor may "OpenSSL" appear in their names without prior written
|
||||
* permission of the OpenSSL Project.
|
||||
*
|
||||
* 6. Redistributions of any form whatsoever must retain the following
|
||||
* acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This product includes cryptographic software written by Eric Young
|
||||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||||
* Hudson (tjh@cryptsoft.com).
|
||||
*
|
||||
*/
|
||||
|
||||
#include "cryptlib.h"
|
||||
#include "bn_lcl.h"
|
||||
|
||||
|
||||
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
||||
/* Returns 'ret' such that
|
||||
* ret^2 == a (mod p),
|
||||
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
|
||||
* in Algebraic Computational Number Theory", algorithm 1.5.1).
|
||||
* 'p' must be prime!
|
||||
*/
|
||||
{
|
||||
BIGNUM *ret = in;
|
||||
int err = 1;
|
||||
int r;
|
||||
BIGNUM *b, *q, *t, *x, *y;
|
||||
int e, i, j;
|
||||
|
||||
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
||||
{
|
||||
if (BN_abs_is_word(p, 2))
|
||||
{
|
||||
if (ret == NULL)
|
||||
ret = BN_new();
|
||||
if (ret == NULL)
|
||||
goto end;
|
||||
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
|
||||
{
|
||||
BN_free(ret);
|
||||
return NULL;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
||||
return(NULL);
|
||||
}
|
||||
|
||||
#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
|
||||
r = BN_kronecker(a, p, ctx);
|
||||
if (r < -1) return NULL;
|
||||
if (r == -1)
|
||||
{
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
||||
return(NULL);
|
||||
}
|
||||
#endif
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
b = BN_CTX_get(ctx);
|
||||
q = BN_CTX_get(ctx);
|
||||
t = BN_CTX_get(ctx);
|
||||
x = BN_CTX_get(ctx);
|
||||
y = BN_CTX_get(ctx);
|
||||
if (y == NULL) goto end;
|
||||
|
||||
if (ret == NULL)
|
||||
ret = BN_new();
|
||||
if (ret == NULL) goto end;
|
||||
|
||||
/* now write |p| - 1 as 2^e*q where q is odd */
|
||||
e = 1;
|
||||
while (!BN_is_bit_set(p, e))
|
||||
e++;
|
||||
if (!BN_rshift(q, p, e)) goto end;
|
||||
q->neg = 0;
|
||||
|
||||
if (e == 1)
|
||||
{
|
||||
/* The easy case: (p-1)/2 is odd, so 2 has an inverse
|
||||
* modulo (p-1)/2, and square roots can be computed
|
||||
* directly by modular exponentiation.
|
||||
* We have
|
||||
* 2 * (p+1)/4 == 1 (mod (p-1)/2),
|
||||
* so we can use exponent (p+1)/4, i.e. (q+1)/2.
|
||||
*/
|
||||
if (!BN_add_word(q,1)) goto end;
|
||||
if (!BN_rshift1(q,q)) goto end;
|
||||
if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
|
||||
err = 0;
|
||||
goto end;
|
||||
}
|
||||
|
||||
/* e > 1, so we really have to use the Tonelli/Shanks algorithm.
|
||||
* First, find some y that is not a square. */
|
||||
i = 1;
|
||||
do
|
||||
{
|
||||
/* For efficiency, try small numbers first;
|
||||
* if this fails, try random numbers.
|
||||
*/
|
||||
if (i < 20)
|
||||
{
|
||||
if (!BN_set_word(y, i)) goto end;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
|
||||
if (BN_ucmp(y, p) >= 0)
|
||||
{
|
||||
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
|
||||
}
|
||||
/* now 0 <= y < |p| */
|
||||
if (BN_is_zero(y))
|
||||
if (!BN_set_word(y, i)) goto end;
|
||||
}
|
||||
|
||||
r = BN_kronecker(y, p, ctx);
|
||||
if (r < -1) goto end;
|
||||
if (r == 0)
|
||||
{
|
||||
/* m divides p */
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
||||
goto end;
|
||||
}
|
||||
}
|
||||
while (r == 1 && i++ < 80);
|
||||
|
||||
if (r != -1)
|
||||
{
|
||||
/* Many rounds and still no non-square -- this is more likely
|
||||
* a bug than just bad luck.
|
||||
* Even if p is not prime, we should have found some y
|
||||
* such that r == -1.
|
||||
*/
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
|
||||
goto end;
|
||||
}
|
||||
|
||||
|
||||
/* Now that we have some non-square, we can find an element
|
||||
* of order 2^e by computing its q'th power. */
|
||||
if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
|
||||
if (BN_is_one(y))
|
||||
{
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
||||
goto end;
|
||||
}
|
||||
|
||||
/* Now we know that (if p is indeed prime) there is an integer
|
||||
* k, 0 <= k < 2^e, such that
|
||||
*
|
||||
* a^q * y^k == 1 (mod p).
|
||||
*
|
||||
* As a^q is a square and y is not, k must be even.
|
||||
* q+1 is even, too, so there is an element
|
||||
*
|
||||
* X := a^((q+1)/2) * y^(k/2),
|
||||
*
|
||||
* and it satisfies
|
||||
*
|
||||
* X^2 = a^q * a * y^k
|
||||
* = a,
|
||||
*
|
||||
* so it is the square root that we are looking for.
|
||||
*/
|
||||
|
||||
/* t := (q-1)/2 (note that q is odd) */
|
||||
if (!BN_rshift1(t, q)) goto end;
|
||||
|
||||
/* x := a^((q-1)/2) */
|
||||
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
||||
{
|
||||
if (!BN_nnmod(t, a, p, ctx)) goto end;
|
||||
if (BN_is_zero(t))
|
||||
{
|
||||
/* special case: a == 0 (mod p) */
|
||||
if (!BN_zero(ret)) goto end;
|
||||
err = 0;
|
||||
goto end;
|
||||
}
|
||||
else
|
||||
if (!BN_one(x)) goto end;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
|
||||
if (BN_is_zero(x))
|
||||
{
|
||||
/* special case: a == 0 (mod p) */
|
||||
if (!BN_zero(ret)) goto end;
|
||||
err = 0;
|
||||
goto end;
|
||||
}
|
||||
}
|
||||
|
||||
/* b := a*x^2 (= a^q) */
|
||||
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
||||
if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
|
||||
|
||||
/* x := a*x (= a^((q+1)/2)) */
|
||||
if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
|
||||
|
||||
while (1)
|
||||
{
|
||||
/* Now b is a^q * y^k for some even k (0 <= k < 2^E
|
||||
* where E refers to the original value of e, which we
|
||||
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
|
||||
*
|
||||
* We have a*b = x^2,
|
||||
* y^2^(e-1) = -1,
|
||||
* b^2^(e-1) = 1.
|
||||
*/
|
||||
|
||||
if (BN_is_one(b))
|
||||
{
|
||||
if (!BN_copy(ret, x)) goto end;
|
||||
err = 0;
|
||||
goto end;
|
||||
}
|
||||
|
||||
|
||||
/* find smallest i such that b^(2^i) = 1 */
|
||||
i = 1;
|
||||
if (!BN_mod_sqr(t, b, p, ctx)) goto end;
|
||||
while (!BN_is_one(t))
|
||||
{
|
||||
i++;
|
||||
if (i == e)
|
||||
{
|
||||
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
||||
goto end;
|
||||
}
|
||||
if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
|
||||
}
|
||||
|
||||
|
||||
/* t := y^2^(e - i - 1) */
|
||||
if (!BN_copy(t, y)) goto end;
|
||||
for (j = e - i - 1; j > 0; j--)
|
||||
{
|
||||
if (!BN_mod_sqr(t, t, p, ctx)) goto end;
|
||||
}
|
||||
if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
|
||||
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
||||
if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
|
||||
e = i;
|
||||
}
|
||||
|
||||
end:
|
||||
if (err)
|
||||
{
|
||||
if (ret != NULL && ret != in)
|
||||
{
|
||||
BN_clear_free(ret);
|
||||
}
|
||||
ret = NULL;
|
||||
}
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
@ -92,6 +92,7 @@ int test_mod_mul(BIO *bp,BN_CTX *ctx);
|
||||
int test_mod_exp(BIO *bp,BN_CTX *ctx);
|
||||
int test_exp(BIO *bp,BN_CTX *ctx);
|
||||
int test_kron(BIO *bp,BN_CTX *ctx);
|
||||
int test_sqrt(BIO *bp,BN_CTX *ctx);
|
||||
int rand_neg(void);
|
||||
static int results=0;
|
||||
|
||||
@ -233,6 +234,10 @@ int main(int argc, char *argv[])
|
||||
if (!test_kron(out,ctx)) goto err;
|
||||
BIO_flush(out);
|
||||
|
||||
message(out,"BN_mod_sqrt");
|
||||
if (!test_sqrt(out,ctx)) goto err;
|
||||
BIO_flush(out);
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
BIO_free(out);
|
||||
|
||||
@ -940,11 +945,6 @@ int test_kron(BIO *bp, BN_CTX *ctx)
|
||||
|
||||
if (!BN_generate_prime(b, 512, 0, NULL, NULL, genprime_cb, NULL)) goto err;
|
||||
putc('\n', stderr);
|
||||
if (1 != BN_is_prime(b, 10, NULL, ctx, NULL))
|
||||
{
|
||||
fprintf(stderr, "BN_is_prime failed\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
for (i = 0; i < num0; i++)
|
||||
{
|
||||
@ -998,6 +998,78 @@ int test_kron(BIO *bp, BN_CTX *ctx)
|
||||
return ret;
|
||||
}
|
||||
|
||||
int test_sqrt(BIO *bp, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *a,*p,*r;
|
||||
int i, j;
|
||||
int ret = 0;
|
||||
|
||||
a = BN_new();
|
||||
p = BN_new();
|
||||
r = BN_new();
|
||||
if (a == NULL || p == NULL || r == NULL) goto err;
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
if (i < 8)
|
||||
{
|
||||
unsigned primes[8] = { 2, 3, 7, 11, 13, 17, 19 };
|
||||
|
||||
if (!BN_set_word(p, primes[i])) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!BN_set_word(a, 32)) goto err;
|
||||
if (!BN_set_word(r, 2*i + 1)) goto err;
|
||||
|
||||
if (!BN_generate_prime(p, 256, 0, a, r, genprime_cb, NULL)) goto err;
|
||||
putc('\n', stderr);
|
||||
}
|
||||
|
||||
for (j = 0; j < num2; j++)
|
||||
{
|
||||
/* construct 'a' such that it is a square modulo p,
|
||||
* but in general not a proper square and not reduced modulo p */
|
||||
if (!BN_rand(r, 256, 0, 3)) goto err;
|
||||
if (!BN_nnmod(r, r, p, ctx)) goto err;
|
||||
if (!BN_mod_sqr(r, r, p, ctx)) goto err;
|
||||
if (!BN_rand(a, 256, 0, 3)) goto err;
|
||||
if (!BN_nnmod(a, a, p, ctx)) goto err;
|
||||
if (!BN_mod_sqr(a, a, p, ctx)) goto err;
|
||||
if (!BN_mul(a, a, r, ctx)) goto err;
|
||||
|
||||
if (!BN_mod_sqrt(r, a, p, ctx)) goto err;
|
||||
if (!BN_mod_sqr(r, r, p, ctx)) goto err;
|
||||
|
||||
if (!BN_nnmod(a, a, p, ctx)) goto err;
|
||||
|
||||
if (BN_cmp(a, r) != 0)
|
||||
{
|
||||
fprintf(stderr, "BN_mod_sqrt failed: a = ");
|
||||
BN_print_fp(stderr, a);
|
||||
fprintf(stderr, ", r = ");
|
||||
BN_print_fp(stderr, r);
|
||||
fprintf(stderr, ", p = ");
|
||||
BN_print_fp(stderr, p);
|
||||
fprintf(stderr, "\n");
|
||||
goto err;
|
||||
}
|
||||
|
||||
putc('.', stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
putc('\n', stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
ret = 1;
|
||||
err:
|
||||
if (a != NULL) BN_free(a);
|
||||
if (p != NULL) BN_free(p);
|
||||
if (r != NULL) BN_free(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int test_lshift(BIO *bp,BN_CTX *ctx,BIGNUM *a_)
|
||||
{
|
||||
BIGNUM *a,*b,*c,*d;
|
||||
|
Loading…
x
Reference in New Issue
Block a user