Remove two bn_wexpand() from BN_mul(), which is a step toward getting

BN_mul() correctly constified, avoids two realloc()'s that aren't
really necessary and saves memory to boot.  This required a small
change in bn_mul_part_recursive() and the addition of variants of
bn_cmp_words(), bn_add_words() and bn_sub_words() that can take arrays
with differing sizes.

The test results show a performance that very closely matches the
original code from before my constification.  This may seem like a
very small win from a performance point of view, but if one remembers
that the variants of bn_cmp_words(), bn_add_words() and bn_sub_words()
are not at all optimized for the moment (and there's no corresponding
assembler code), and that their use may be just as non-optimal, I'm
pretty confident there are possibilities...

This code needs reviewing!
This commit is contained in:
Richard Levitte 2000-11-18 22:58:26 +00:00
parent e06cc57118
commit baa257f1ed
2 changed files with 346 additions and 28 deletions

View File

@ -4,6 +4,15 @@
Changes between 0.9.6 and 0.9.7 [xx XXX 2000]
*) Remove a few calls to bn_wexpand() in BN_sqr() (the one in there
was actually never needed) and in BN_mul(). The removal in BN_mul()
required a small change in bn_mul_part_recursive() and the addition
of the static functions bn_cmp_part_words(), bn_sub_part_words()
and bn_add_part_words() which do the same thing as bn_cmp_words(),
bn_sub_words() and bn_add_words() except they take arrays with
differing sizes.
[Richard Levitte]
*) In 'openssl passwd', verify passwords read from the terminal
unless the '-salt' option is used (which usually means that
verification would just waste user's time since the resulting

View File

@ -57,9 +57,328 @@
*/
#include <stdio.h>
#include <assert.h>
#include "cryptlib.h"
#include "bn_lcl.h"
/* Here follows specialised variants of bn_cmp_words(), bn_add_words() and
bn_sub_words(). They all have the property performing operations on
arrays of different sizes. The sizes of those arrays is expressed through
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
which is the delta between the two lengths, calculated as len(a)-len(b).
All lengths are the number of BN_ULONGs... For the operations that require
a result array as parameter, it must have the length cl+abs(dl).
These functions should probably end up in bn_asm.c as soon as there are
assembler counterparts for the systems that use assembler files. */
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
if (dl < 0) /* a < b */
return -1;
if (dl > 0) /* a > b */
return 1;
return bn_cmp_words(a,b,cl);
}
BN_ULONG bn_sub_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, t;
assert(cl >= 0);
c = bn_sub_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
for (;;)
{
t = b[0];
r[0] = (-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[1];
r[1] = (-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[2];
r[2] = (-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
t = b[3];
r[3] = (-t-c)&BN_MASK2;
if (t != 0) c=1;
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
#endif
while(c)
{
t = a[0];
r[0] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[1];
r[1] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[2];
r[2] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
t = a[3];
r[3] = (t-c)&BN_MASK2;
if (t != 0) c=0;
if (--dl <= 0) break;
save_dl = dl;
a += 4;
r += 4;
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
BN_ULONG bn_add_part_words(BN_ULONG *r,
const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl)
{
BN_ULONG c, l, t;
assert(cl >= 0);
c = bn_sub_words(r, a, b, cl);
if (dl == 0)
return c;
r += cl;
a += cl;
b += cl;
if (dl < 0)
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
while (c)
{
l=(c+b[0])&BN_MASK2;
c=(l < c);
r[0]=l;
if (++dl >= 0) break;
l=(c+b[1])&BN_MASK2;
c=(l < c);
r[1]=l;
if (++dl >= 0) break;
l=(c+b[2])&BN_MASK2;
c=(l < c);
r[2]=l;
if (++dl >= 0) break;
l=(c+b[3])&BN_MASK2;
c=(l < c);
r[3]=l;
if (++dl >= 0) break;
save_dl = dl;
b+=4;
r+=4;
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
#endif
if (save_dl < dl)
{
switch (dl - save_dl)
{
case 1:
r[1] = b[1];
if (++dl >= 0) break;
case 2:
r[2] = b[2];
if (++dl >= 0) break;
case 3:
r[3] = b[3];
if (++dl >= 0) break;
}
b += 4;
r += 4;
}
}
if (dl < 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = b[0];
if (++dl >= 0) break;
r[1] = b[1];
if (++dl >= 0) break;
r[2] = b[2];
if (++dl >= 0) break;
r[3] = b[3];
if (++dl >= 0) break;
b += 4;
r += 4;
}
}
}
else
{
int save_dl = dl;
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
#endif
while (c)
{
t=(a[0]+c)&BN_MASK2;
c=(t < c);
r[0]=t;
if (--dl <= 0) break;
t=(a[1]+c)&BN_MASK2;
c=(t < c);
r[1]=t;
if (--dl <= 0) break;
t=(a[2]+c)&BN_MASK2;
c=(t < c);
r[2]=t;
if (--dl <= 0) break;
t=(a[3]+c)&BN_MASK2;
c=(t < c);
r[3]=t;
if (--dl <= 0) break;
save_dl = dl;
a+=4;
r+=4;
}
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
if (dl > 0)
{
if (save_dl > dl)
{
switch (save_dl - dl)
{
case 1:
r[1] = a[1];
if (--dl <= 0) break;
case 2:
r[2] = a[2];
if (--dl <= 0) break;
case 3:
r[3] = a[3];
if (--dl <= 0) break;
}
a += 4;
r += 4;
}
}
if (dl > 0)
{
#ifdef BN_COUNT
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
for(;;)
{
r[0] = a[0];
if (--dl <= 0) break;
r[1] = a[1];
if (--dl <= 0) break;
r[2] = a[2];
if (--dl <= 0) break;
r[3] = a[3];
if (--dl <= 0) break;
a += 4;
r += 4;
}
}
}
return c;
}
#ifdef BN_RECURSION
/* Karatsuba recursive multiplication algorithm
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
@ -228,7 +547,8 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
BN_ULONG ln,lo,*p;
# ifdef BN_COUNT
fprintf(stderr," bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
tn, n,tn, n);
# endif
if (n < 8)
{
@ -238,21 +558,21 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_words(a,&(a[n]),n);
c2=bn_cmp_words(&(b[n]),b,n);
c1=bn_cmp_part_words(a,&(a[n]),tn,n-tn);
c2=bn_cmp_part_words(&(b[n]),b,tn,tn-n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
bn_sub_part_words(t, &(a[n]),a, tn,tn-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tn,n-tn); /* - */
break;
case -3:
zero=1;
/* break; */
case -2:
bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
bn_sub_part_words(t, &(a[n]),a, tn,tn-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tn,tn-n); /* + */
neg=1;
break;
case -1:
@ -261,16 +581,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
zero=1;
/* break; */
case 2:
bn_sub_words(t, a, &(a[n]),n); /* + */
bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
bn_sub_part_words(t, a, &(a[n]),tn,n-tn); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tn,n-tn); /* - */
neg=1;
break;
case 3:
zero=1;
/* break; */
case 4:
bn_sub_words(t, a, &(a[n]),n);
bn_sub_words(&(t[n]),&(b[n]),b, n);
bn_sub_part_words(t, a, &(a[n]),tn,n-tn);
bn_sub_part_words(&(t[n]),&(b[n]),b, tn,tn-n);
break;
}
/* The zero case isn't yet implemented here. The speedup
@ -678,21 +998,19 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
{
BIGNUM *tmp_bn = free_b;
b = free_b = bn_dup_expand(b,al);
free_b->d[bl]=0;
BIGNUM *tmp_bn = (BIGNUM *)b;
bn_wexpand(tmp_bn,al);
tmp_bn->d[bl]=0;
bl++;
i--;
if (tmp_bn) BN_free(tmp_bn);
}
else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
{
BIGNUM *tmp_bn = free_a;
a = free_a = bn_dup_expand(a,bl);
free_a->d[al]=0;
BIGNUM *tmp_bn = (BIGNUM *)a;
bn_wexpand(tmp_bn,bl);
tmp_bn->d[al]=0;
al++;
i++;
if (tmp_bn) BN_free(tmp_bn);
}
if (i == 0)
{
@ -710,17 +1028,8 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
}
else
{
BIGNUM *tmp_a = free_a,*tmp_b = free_b;
a = free_a = bn_dup_expand(a,k);
b = free_b = bn_dup_expand(b,k);
if (tmp_a) BN_free(tmp_a);
if (tmp_b) BN_free(tmp_b);
bn_wexpand(t,k*4);
bn_wexpand(rr,k*4);
for (i=free_a->top; i<k; i++)
free_a->d[i]=0;
for (i=free_b->top; i<k; i++)
free_b->d[i]=0;
bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
}
rr->top=top;