ghash-x86.pl: "528B" variant of gcm_ghash_4bit_mmx gives 20-40%
improvement.
This commit is contained in:
parent
d08eae1bda
commit
8525950e7e
@ -7,23 +7,25 @@
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# March, May 2010
|
||||
# March, May, June 2010
|
||||
#
|
||||
# The module implements "4-bit" GCM GHASH function and underlying
|
||||
# single multiplication operation in GF(2^128). "4-bit" means that it
|
||||
# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
|
||||
# code paths: vanilla x86 and vanilla MMX. Former will be executed on
|
||||
# 486 and Pentium, latter on all others. Performance results are for
|
||||
# streamed GHASH subroutine and are expressed in cycles per processed
|
||||
# byte, less is better:
|
||||
# 486 and Pentium, latter on all others. MMX GHASH features so called
|
||||
# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
|
||||
# of per-key storage [+512 bytes shared table]. Performance results
|
||||
# are for streamed GHASH subroutine and are expressed in cycles per
|
||||
# processed byte, less is better:
|
||||
#
|
||||
# gcc 2.95.3(*) MMX assembler x86 assembler
|
||||
#
|
||||
# Pentium 100/112(**) - 50
|
||||
# PIII 63 /77 14.5 24
|
||||
# P4 96 /122 24.5 84(***)
|
||||
# Opteron 50 /71 14.5 30
|
||||
# Core2 54 /68 10.5 18
|
||||
# PIII 63 /77 12.2 24
|
||||
# P4 96 /122 18.0 84(***)
|
||||
# Opteron 50 /71 10.1 30
|
||||
# Core2 54 /68 8.6 18
|
||||
#
|
||||
# (*) gcc 3.4.x was observed to generate few percent slower code,
|
||||
# which is one of reasons why 2.95.3 results were chosen,
|
||||
@ -33,7 +35,7 @@
|
||||
# position-independent;
|
||||
# (***) see comment in non-MMX routine for further details;
|
||||
#
|
||||
# To summarize, it's >2-4 times faster than gcc-generated code. To
|
||||
# To summarize, it's >2-5 times faster than gcc-generated code. To
|
||||
# anchor it to something else SHA1 assembler processes one byte in
|
||||
# 11-13 cycles on contemporary x86 cores. As for choice of MMX in
|
||||
# particular, see comment at the end of the file...
|
||||
@ -318,6 +320,10 @@ if (!$x86only) {{{
|
||||
|
||||
&static_label("rem_4bit");
|
||||
|
||||
if (0) {{ # "May" MMX version is kept for reference...
|
||||
|
||||
$S=12; # shift factor for rem_4bit
|
||||
|
||||
&function_begin_B("_mmx_gmult_4bit_inner");
|
||||
# MMX version performs 3.5 times better on P4 (see comment in non-MMX
|
||||
# routine for further details), 100% better on Opteron, ~70% better
|
||||
@ -465,6 +471,329 @@ if (!$x86only) {{{
|
||||
&stack_pop(4+1);
|
||||
&function_end("gcm_ghash_4bit_mmx");
|
||||
|
||||
}} else {{ # "June" MMX version...
|
||||
# ... has "April" gcm_gmult_4bit_mmx with folded loop.
|
||||
# This is done to conserve code size...
|
||||
$S=16; # shift factor for rem_4bit
|
||||
|
||||
sub mmx_loop() {
|
||||
# MMX version performs 2.8 times better on P4 (see comment in non-MMX
|
||||
# routine for further details), 40% better on Opteron and Core2, 50%
|
||||
# better on PIII... In other words effort is considered to be well
|
||||
# spent...
|
||||
my $inp = shift;
|
||||
my $rem_4bit = shift;
|
||||
my $cnt = $Zhh;
|
||||
my $nhi = $Zhl;
|
||||
my $nlo = $Zlh;
|
||||
my $rem = $Zll;
|
||||
|
||||
my ($Zlo,$Zhi) = ("mm0","mm1");
|
||||
my $tmp = "mm2";
|
||||
|
||||
&xor ($nlo,$nlo); # avoid partial register stalls on PIII
|
||||
&mov ($nhi,$Zll);
|
||||
&mov (&LB($nlo),&LB($nhi));
|
||||
&mov ($cnt,14);
|
||||
&shl (&LB($nlo),4);
|
||||
&and ($nhi,0xf0);
|
||||
&movq ($Zlo,&QWP(8,$Htbl,$nlo));
|
||||
&movq ($Zhi,&QWP(0,$Htbl,$nlo));
|
||||
&movd ($rem,$Zlo);
|
||||
&jmp (&label("mmx_loop"));
|
||||
|
||||
&set_label("mmx_loop",16);
|
||||
&psrlq ($Zlo,4);
|
||||
&and ($rem,0xf);
|
||||
&movq ($tmp,$Zhi);
|
||||
&psrlq ($Zhi,4);
|
||||
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
|
||||
&mov (&LB($nlo),&BP(0,$inp,$cnt));
|
||||
&psllq ($tmp,60);
|
||||
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
||||
&dec ($cnt);
|
||||
&movd ($rem,$Zlo);
|
||||
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
|
||||
&mov ($nhi,$nlo);
|
||||
&pxor ($Zlo,$tmp);
|
||||
&js (&label("mmx_break"));
|
||||
|
||||
&shl (&LB($nlo),4);
|
||||
&and ($rem,0xf);
|
||||
&psrlq ($Zlo,4);
|
||||
&and ($nhi,0xf0);
|
||||
&movq ($tmp,$Zhi);
|
||||
&psrlq ($Zhi,4);
|
||||
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
|
||||
&psllq ($tmp,60);
|
||||
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
||||
&movd ($rem,$Zlo);
|
||||
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
|
||||
&pxor ($Zlo,$tmp);
|
||||
&jmp (&label("mmx_loop"));
|
||||
|
||||
&set_label("mmx_break",16);
|
||||
&shl (&LB($nlo),4);
|
||||
&and ($rem,0xf);
|
||||
&psrlq ($Zlo,4);
|
||||
&and ($nhi,0xf0);
|
||||
&movq ($tmp,$Zhi);
|
||||
&psrlq ($Zhi,4);
|
||||
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
|
||||
&psllq ($tmp,60);
|
||||
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
||||
&movd ($rem,$Zlo);
|
||||
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
|
||||
&pxor ($Zlo,$tmp);
|
||||
|
||||
&psrlq ($Zlo,4);
|
||||
&and ($rem,0xf);
|
||||
&movq ($tmp,$Zhi);
|
||||
&psrlq ($Zhi,4);
|
||||
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
|
||||
&psllq ($tmp,60);
|
||||
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
||||
&movd ($rem,$Zlo);
|
||||
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
|
||||
&pxor ($Zlo,$tmp);
|
||||
|
||||
&psrlq ($Zlo,32); # lower part of Zlo is already there
|
||||
&movd ($Zhl,$Zhi);
|
||||
&psrlq ($Zhi,32);
|
||||
&movd ($Zlh,$Zlo);
|
||||
&movd ($Zhh,$Zhi);
|
||||
|
||||
&bswap ($Zll);
|
||||
&bswap ($Zhl);
|
||||
&bswap ($Zlh);
|
||||
&bswap ($Zhh);
|
||||
}
|
||||
|
||||
&function_begin("gcm_gmult_4bit_mmx");
|
||||
&mov ($inp,&wparam(0)); # load Xi
|
||||
&mov ($Htbl,&wparam(1)); # load Htable
|
||||
|
||||
&call (&label("pic_point"));
|
||||
&set_label("pic_point");
|
||||
&blindpop("eax");
|
||||
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
|
||||
|
||||
&movz ($Zll,&BP(15,$inp));
|
||||
|
||||
&mmx_loop($inp,"eax");
|
||||
|
||||
&emms ();
|
||||
&mov (&DWP(12,$inp),$Zll);
|
||||
&mov (&DWP(4,$inp),$Zhl);
|
||||
&mov (&DWP(8,$inp),$Zlh);
|
||||
&mov (&DWP(0,$inp),$Zhh);
|
||||
&function_end("gcm_gmult_4bit_mmx");
|
||||
|
||||
######################################################################
|
||||
# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
|
||||
# (see gcm128.c for details). It provides further 20-40% performance
|
||||
# improvement over *previous* version of this module.
|
||||
|
||||
&static_label("rem_8bit");
|
||||
|
||||
&function_begin("gcm_ghash_4bit_mmx");
|
||||
{ my ($Zlo,$Zhi) = ("mm7","mm6");
|
||||
my $rem_8bit = "esi";
|
||||
my $Htbl = "ebx";
|
||||
|
||||
# parameter block
|
||||
&mov ("eax",&wparam(0)); # Xi
|
||||
&mov ("ebx",&wparam(1)); # Htable
|
||||
&mov ("ecx",&wparam(2)); # inp
|
||||
&mov ("edx",&wparam(3)); # len
|
||||
&mov ("ebp","esp"); # original %esp
|
||||
&call (&label("pic_point"));
|
||||
&set_label ("pic_point");
|
||||
&blindpop ($rem_8bit);
|
||||
&lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
|
||||
|
||||
&sub ("esp",512+16+16); # allocate stack frame...
|
||||
&and ("esp",-64); # ...and align it
|
||||
&sub ("esp",16); # place for (u8)(H[]<<4)
|
||||
|
||||
&add ("edx","ecx"); # pointer to the end of input
|
||||
&mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
|
||||
&mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
|
||||
&mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
|
||||
|
||||
{ my @lo = ("mm0","mm1","mm2");
|
||||
my @hi = ("mm3","mm4","mm5");
|
||||
my @tmp = ("mm6","mm7");
|
||||
my $off1=0,$off2=0,$i;
|
||||
|
||||
&add ($Htbl,128); # optimize for size
|
||||
&lea ("edi",&DWP(16+128,"esp"));
|
||||
&lea ("ebp",&DWP(16+256+128,"esp"));
|
||||
|
||||
# decompose Htable (low and high parts are kept separately),
|
||||
# generate Htable>>4, save to stack...
|
||||
for ($i=0;$i<18;$i++) {
|
||||
|
||||
&mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
|
||||
&movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
|
||||
&psllq ($tmp[1],60) if ($i>1);
|
||||
&movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
|
||||
&por ($lo[2],$tmp[1]) if ($i>1);
|
||||
&movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
|
||||
&psrlq ($lo[1],4) if ($i>0 && $i<17);
|
||||
&movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
|
||||
&movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
|
||||
&movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
|
||||
&psrlq ($hi[1],4) if ($i>0 && $i<17);
|
||||
&movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
|
||||
&shl ("edx",4) if ($i<16);
|
||||
&mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
|
||||
|
||||
unshift (@lo,pop(@lo)); # "rotate" registers
|
||||
unshift (@hi,pop(@hi));
|
||||
unshift (@tmp,pop(@tmp));
|
||||
$off1 += 8 if ($i>0);
|
||||
$off2 += 8 if ($i>1);
|
||||
}
|
||||
}
|
||||
|
||||
&movq ($Zhi,&QWP(0,"eax"));
|
||||
&mov ("ebx",&DWP(8,"eax"));
|
||||
&mov ("edx",&DWP(12,"eax")); # load Xi
|
||||
|
||||
&set_label("outer",16);
|
||||
{ my $nlo = "eax";
|
||||
my $dat = "edx";
|
||||
my @nhi = ("edi","ebp");
|
||||
my @rem = ("ebx","ecx");
|
||||
my @red = ("mm0","mm1","mm2");
|
||||
my $tmp = "mm3";
|
||||
|
||||
&xor ($dat,&DWP(12,"ecx")); # merge input
|
||||
&xor ("ebx",&DWP(8,"ecx"));
|
||||
&pxor ($Zhi,&QWP(0,"ecx"));
|
||||
&lea ("ecx",&DWP(16,"ecx")); # inp+=16
|
||||
#&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
|
||||
&mov (&DWP(528+8,"esp"),"ebx");
|
||||
&movq (&QWP(528+0,"esp"),$Zhi);
|
||||
&mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
|
||||
|
||||
&xor ($nlo,$nlo);
|
||||
&rol ($dat,8);
|
||||
&mov (&LB($nlo),&LB($dat));
|
||||
&mov ($nhi[1],$nlo);
|
||||
&and (&LB($nlo),0x0f);
|
||||
&shr ($nhi[1],4);
|
||||
&pxor ($red[0],$red[0]);
|
||||
&rol ($dat,8); # next byte
|
||||
&pxor ($red[1],$red[1]);
|
||||
&pxor ($red[2],$red[2]);
|
||||
|
||||
# Just like in "May" verson modulo-schedule for critical path in
|
||||
# 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final xor
|
||||
# is scheduled so late that rem_8bit is shifted *right* by 16,
|
||||
# which is why last argument to pinsrw is 2, which corresponds to
|
||||
# <<32...
|
||||
for ($j=11,$i=0;$i<15;$i++) {
|
||||
|
||||
if ($i>0) {
|
||||
&pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
|
||||
&rol ($dat,8); # next byte
|
||||
&pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
|
||||
|
||||
&pxor ($Zlo,$tmp);
|
||||
&pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
|
||||
&xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^H[nhi]<<4
|
||||
} else {
|
||||
&movq ($Zlo,&QWP(16,"esp",$nlo,8));
|
||||
&movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
|
||||
}
|
||||
|
||||
&mov (&LB($nlo),&LB($dat));
|
||||
&mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
|
||||
|
||||
&movd ($rem[0],$Zlo);
|
||||
&movz ($rem[1],&LB($rem[1])) if ($i>0);
|
||||
&psrlq ($Zlo,8);
|
||||
|
||||
&movq ($tmp,$Zhi);
|
||||
&mov ($nhi[0],$nlo);
|
||||
&psrlq ($Zhi,8);
|
||||
|
||||
&pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
|
||||
&and (&LB($nlo),0x0f);
|
||||
&psllq ($tmp,56);
|
||||
|
||||
&pxor ($Zhi,$red[1]) if ($i>1);
|
||||
&shr ($nhi[0],4);
|
||||
&pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
|
||||
|
||||
unshift (@red,pop(@red)); # "rotate" registers
|
||||
unshift (@rem,pop(@rem));
|
||||
unshift (@nhi,pop(@nhi));
|
||||
}
|
||||
|
||||
&pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
|
||||
&pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
|
||||
&xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); #$rem[0]); # rem^H[nhi]<<4
|
||||
|
||||
&pxor ($Zlo,$tmp);
|
||||
&pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
|
||||
&movz ($rem[1],&LB($rem[1]));
|
||||
|
||||
&pxor ($red[2],$red[2]); # clear 2nd word
|
||||
&psllq ($red[1],4);
|
||||
|
||||
&movd ($rem[0],$Zlo);
|
||||
&psrlq ($Zlo,4);
|
||||
|
||||
&movq ($tmp,$Zhi);
|
||||
&psrlq ($Zhi,4);
|
||||
&shl ($rem[0],4);
|
||||
|
||||
&pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
|
||||
&psllq ($tmp,60);
|
||||
&movz ($rem[0],&LB($rem[0]));
|
||||
|
||||
&pxor ($Zlo,$tmp);
|
||||
&pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
|
||||
|
||||
&pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
|
||||
&pxor ($Zhi,$red[1]);
|
||||
|
||||
&movd ($dat,$Zlo);
|
||||
&pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3);
|
||||
|
||||
&psllq ($red[0],12);
|
||||
&pxor ($Zhi,$red[0]);
|
||||
&psrlq ($Zlo,32);
|
||||
&pxor ($Zhi,$red[2]);
|
||||
|
||||
&mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
|
||||
&movd ("ebx",$Zlo);
|
||||
&movq ($tmp,$Zhi); # 01234567
|
||||
&psllw ($Zhi,8); # 1.3.5.7.
|
||||
&psrlw ($tmp,8); # .0.2.4.6
|
||||
&por ($Zhi,$tmp); # 10325476
|
||||
&bswap ($dat);
|
||||
&pshufw ($Zhi,$Zhi,0b00011011); # 76543210
|
||||
&bswap ("ebx");
|
||||
|
||||
&cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
|
||||
&jne (&label("outer"));
|
||||
}
|
||||
|
||||
&mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
|
||||
&mov (&DWP(12,"eax"),"edx");
|
||||
&mov (&DWP(8,"eax"),"ebx");
|
||||
&movq (&QWP(0,"eax"),$Zhi);
|
||||
|
||||
&mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
|
||||
&emms ();
|
||||
}
|
||||
&function_end("gcm_ghash_4bit_mmx");
|
||||
}}
|
||||
|
||||
if ($sse2) {{
|
||||
######################################################################
|
||||
# PCLMULQDQ version.
|
||||
@ -936,10 +1265,43 @@ my ($Xhi,$Xi)=@_;
|
||||
}} # $sse2
|
||||
|
||||
&set_label("rem_4bit",64);
|
||||
&data_word(0,0x0000<<12,0,0x1C20<<12,0,0x3840<<12,0,0x2460<<12);
|
||||
&data_word(0,0x7080<<12,0,0x6CA0<<12,0,0x48C0<<12,0,0x54E0<<12);
|
||||
&data_word(0,0xE100<<12,0,0xFD20<<12,0,0xD940<<12,0,0xC560<<12);
|
||||
&data_word(0,0x9180<<12,0,0x8DA0<<12,0,0xA9C0<<12,0,0xB5E0<<12);
|
||||
&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
|
||||
&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
|
||||
&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
|
||||
&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
|
||||
&set_label("rem_8bit",64);
|
||||
&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
|
||||
&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
|
||||
&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
|
||||
&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
|
||||
&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
|
||||
&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
|
||||
&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
|
||||
&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
|
||||
&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
|
||||
&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
|
||||
&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
|
||||
&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
|
||||
&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
|
||||
&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
|
||||
&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
|
||||
&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
|
||||
&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
|
||||
&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
|
||||
&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
|
||||
&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
|
||||
&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
|
||||
&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
|
||||
&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
|
||||
&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
|
||||
&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
|
||||
&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
|
||||
&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
|
||||
&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
|
||||
&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
|
||||
&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
|
||||
&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
|
||||
&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
|
||||
}}} # !$x86only
|
||||
|
||||
&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
||||
@ -957,13 +1319,12 @@ my ($Xhi,$Xi)=@_;
|
||||
# per processed byte out of 64KB block. Recall that this number accounts
|
||||
# even for 64KB table setup overhead. As discussed in gcm128.c we choose
|
||||
# to be more conservative in respect to lookup table sizes, but how
|
||||
# do the results compare? As per table in the beginning, minimalistic
|
||||
# MMX version delivers ~11 cycles on same platform. As also discussed in
|
||||
# gcm128.c, next in line "8-bit Shoup's" method should deliver twice the
|
||||
# performance of "4-bit" one. It should be also be noted that in SSE2
|
||||
# case improvement can be "super-linear," i.e. more than twice, mostly
|
||||
# because >>8 maps to single instruction on SSE2 register. This is
|
||||
# unlike "4-bit" case when >>4 maps to same amount of instructions in
|
||||
# both MMX and SSE2 cases. Bottom line is that switch to SSE2 is
|
||||
# considered to be justifiable only in case we choose to implement
|
||||
# "8-bit" method...
|
||||
# do the results compare? Minimalistic "256B" MMX version delivers ~11
|
||||
# cycles on same platform. As also discussed in gcm128.c, next in line
|
||||
# "8-bit Shoup's" method should deliver twice the performance of "4-bit"
|
||||
# one. It should be also be noted that in SSE2 case improvement can be
|
||||
# "super-linear," i.e. more than twice, mostly because >>8 maps to
|
||||
# single instruction on SSE2 register. This is unlike "4-bit" case when
|
||||
# >>4 maps to same amount of instructions in both MMX and SSE2 cases.
|
||||
# Bottom line is that switch to SSE2 is considered to be justifiable
|
||||
# only in case we choose to implement "8-bit" method...
|
||||
|
Loading…
x
Reference in New Issue
Block a user