Change BN_mod_sqrt() so that it verifies that the input value is
really the square of the return value.
This commit is contained in:
parent
5af7d1a3b8
commit
6fb60a84dd
5
CHANGES
5
CHANGES
@ -4,6 +4,11 @@
|
|||||||
|
|
||||||
Changes between 0.9.7 and 0.9.8 [xx XXX 2002]
|
Changes between 0.9.7 and 0.9.8 [xx XXX 2002]
|
||||||
|
|
||||||
|
*) Change BN_mod_sqrt() so that it verifies that the input value
|
||||||
|
is really the square of the return value. (Previously,
|
||||||
|
BN_mod_sqrt would show GIGO behaviour.)
|
||||||
|
[Bodo Moeller]
|
||||||
|
|
||||||
*) Add named elliptic curves over binary fields from X9.62, SECG,
|
*) Add named elliptic curves over binary fields from X9.62, SECG,
|
||||||
and WAP/WTLS; add OIDs that were still missing.
|
and WAP/WTLS; add OIDs that were still missing.
|
||||||
|
|
||||||
|
@ -72,7 +72,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
BIGNUM *ret = in;
|
BIGNUM *ret = in;
|
||||||
int err = 1;
|
int err = 1;
|
||||||
int r;
|
int r;
|
||||||
BIGNUM *b, *q, *t, *x, *y;
|
BIGNUM *A, *b, *q, *t, *x, *y;
|
||||||
int e, i, j;
|
int e, i, j;
|
||||||
|
|
||||||
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
||||||
@ -120,6 +120,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
BN_CTX_start(ctx);
|
BN_CTX_start(ctx);
|
||||||
|
A = BN_CTX_get(ctx);
|
||||||
b = BN_CTX_get(ctx);
|
b = BN_CTX_get(ctx);
|
||||||
q = BN_CTX_get(ctx);
|
q = BN_CTX_get(ctx);
|
||||||
t = BN_CTX_get(ctx);
|
t = BN_CTX_get(ctx);
|
||||||
@ -131,6 +132,9 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
ret = BN_new();
|
ret = BN_new();
|
||||||
if (ret == NULL) goto end;
|
if (ret == NULL) goto end;
|
||||||
|
|
||||||
|
/* A = a mod p */
|
||||||
|
if (!BN_nnmod(A, a, p, ctx)) goto end;
|
||||||
|
|
||||||
/* now write |p| - 1 as 2^e*q where q is odd */
|
/* now write |p| - 1 as 2^e*q where q is odd */
|
||||||
e = 1;
|
e = 1;
|
||||||
while (!BN_is_bit_set(p, e))
|
while (!BN_is_bit_set(p, e))
|
||||||
@ -149,9 +153,9 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
if (!BN_rshift(q, p, 2)) goto end;
|
if (!BN_rshift(q, p, 2)) goto end;
|
||||||
q->neg = 0;
|
q->neg = 0;
|
||||||
if (!BN_add_word(q, 1)) goto end;
|
if (!BN_add_word(q, 1)) goto end;
|
||||||
if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
|
if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
|
||||||
err = 0;
|
err = 0;
|
||||||
goto end;
|
goto vrfy;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (e == 2)
|
if (e == 2)
|
||||||
@ -182,15 +186,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
* November 1992.)
|
* November 1992.)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* make sure that a is reduced modulo p */
|
|
||||||
if (a->neg || BN_ucmp(a, p) >= 0)
|
|
||||||
{
|
|
||||||
if (!BN_nnmod(x, a, p, ctx)) goto end;
|
|
||||||
a = x; /* use x as temporary variable */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* t := 2*a */
|
/* t := 2*a */
|
||||||
if (!BN_mod_lshift1_quick(t, a, p)) goto end;
|
if (!BN_mod_lshift1_quick(t, A, p)) goto end;
|
||||||
|
|
||||||
/* b := (2*a)^((|p|-5)/8) */
|
/* b := (2*a)^((|p|-5)/8) */
|
||||||
if (!BN_rshift(q, p, 3)) goto end;
|
if (!BN_rshift(q, p, 3)) goto end;
|
||||||
@ -205,12 +202,12 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
if (!BN_sub_word(t, 1)) goto end;
|
if (!BN_sub_word(t, 1)) goto end;
|
||||||
|
|
||||||
/* x = a*b*t */
|
/* x = a*b*t */
|
||||||
if (!BN_mod_mul(x, a, b, p, ctx)) goto end;
|
if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
|
||||||
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
||||||
|
|
||||||
if (!BN_copy(ret, x)) goto end;
|
if (!BN_copy(ret, x)) goto end;
|
||||||
err = 0;
|
err = 0;
|
||||||
goto end;
|
goto vrfy;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
|
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
|
||||||
@ -297,7 +294,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
/* x := a^((q-1)/2) */
|
/* x := a^((q-1)/2) */
|
||||||
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
||||||
{
|
{
|
||||||
if (!BN_nnmod(t, a, p, ctx)) goto end;
|
if (!BN_nnmod(t, A, p, ctx)) goto end;
|
||||||
if (BN_is_zero(t))
|
if (BN_is_zero(t))
|
||||||
{
|
{
|
||||||
/* special case: a == 0 (mod p) */
|
/* special case: a == 0 (mod p) */
|
||||||
@ -310,7 +307,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
|
if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
|
||||||
if (BN_is_zero(x))
|
if (BN_is_zero(x))
|
||||||
{
|
{
|
||||||
/* special case: a == 0 (mod p) */
|
/* special case: a == 0 (mod p) */
|
||||||
@ -322,10 +319,10 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
|
|
||||||
/* b := a*x^2 (= a^q) */
|
/* b := a*x^2 (= a^q) */
|
||||||
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
||||||
if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
|
if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
|
||||||
|
|
||||||
/* x := a*x (= a^((q+1)/2)) */
|
/* x := a*x (= a^((q+1)/2)) */
|
||||||
if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
|
if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
|
||||||
|
|
||||||
while (1)
|
while (1)
|
||||||
{
|
{
|
||||||
@ -342,7 +339,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
{
|
{
|
||||||
if (!BN_copy(ret, x)) goto end;
|
if (!BN_copy(ret, x)) goto end;
|
||||||
err = 0;
|
err = 0;
|
||||||
goto end;
|
goto vrfy;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -373,6 +370,22 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||||||
e = i;
|
e = i;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
vrfy:
|
||||||
|
if (!err)
|
||||||
|
{
|
||||||
|
/* verify the result -- the input might have been not a square
|
||||||
|
* (test added in 0.9.8) */
|
||||||
|
|
||||||
|
if (!BN_mod_sqr(x, ret, p, ctx))
|
||||||
|
err = 1;
|
||||||
|
|
||||||
|
if (!err && 0 != BN_cmp(x, A))
|
||||||
|
{
|
||||||
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
||||||
|
err = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
end:
|
end:
|
||||||
if (err)
|
if (err)
|
||||||
{
|
{
|
||||||
|
@ -705,8 +705,6 @@ int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *po
|
|||||||
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB);
|
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB);
|
||||||
goto err;
|
goto err;
|
||||||
}
|
}
|
||||||
/* If tmp1 is not a square (i.e. there is no point on the curve with
|
|
||||||
* our x), then y now is a nonsense value too */
|
|
||||||
|
|
||||||
if (y_bit != BN_is_odd(y))
|
if (y_bit != BN_is_odd(y))
|
||||||
{
|
{
|
||||||
@ -720,6 +718,7 @@ int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *po
|
|||||||
if (kron == 1)
|
if (kron == 1)
|
||||||
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT);
|
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT);
|
||||||
else
|
else
|
||||||
|
/* BN_mod_sqrt() should have cought this error (not a square) */
|
||||||
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT);
|
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT);
|
||||||
goto err;
|
goto err;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user