Documentation about ephemeral key exchange
This commit is contained in:
parent
c518ade1fd
commit
4db48ec0bd
@ -39,8 +39,9 @@ certificate and key.
|
||||
A RSA cipher can only be chosen, when a RSA certificate is available.
|
||||
RSA export ciphers with a keylength of 512 bits for the RSA key require
|
||||
a temporary 512 bit RSA key, as typically the supplied key has a length
|
||||
of 1024 bit. RSA ciphers using EDH need a certificate and key and
|
||||
additional DH-parameters.
|
||||
of 1024 bit (see
|
||||
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>).
|
||||
RSA ciphers using EDH need a certificate and key and additional DH-parameters.
|
||||
|
||||
A DSA cipher can only be chosen, when a DSA certificate is available.
|
||||
DSA ciphers always use DH key exchange and therefore need DH-parameters.
|
||||
@ -60,6 +61,8 @@ could be selected and 0 on complete failure.
|
||||
|
||||
L<ssl(3)|ssl(3)>, L<SSL_get_ciphers(3)|SSL_get_ciphers(3)>,
|
||||
L<SSL_CTX_use_certificate(3)|SSL_CTX_use_certificate(3)>,
|
||||
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>,
|
||||
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
|
||||
L<ciphers(1)|ciphers(1)>
|
||||
|
||||
=cut
|
||||
|
@ -122,11 +122,13 @@ The following B<modifying> options are available:
|
||||
|
||||
=item SSL_OP_SINGLE_DH_USE
|
||||
|
||||
Always create a new key when using temporary DH parameters.
|
||||
Always create a new key when using temporary DH parameters
|
||||
(see L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>).
|
||||
|
||||
=item SSL_OP_EPHEMERAL_RSA
|
||||
|
||||
Also use the temporary RSA key when doing RSA operations.
|
||||
Also use ephemeral (temporary) RSA key when doing RSA operations
|
||||
(see L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>).
|
||||
|
||||
=item SSL_OP_CIPHER_SERVER_PREFERENCE
|
||||
|
||||
@ -182,7 +184,9 @@ SSL_CTX_get_options() and SSL_get_options() return the current bitmask.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<ssl(3)|ssl(3)>, L<SSL_new(3)|SSL_new(3)>, L<SSL_clear(3)|SSL_clear(3)>
|
||||
L<ssl(3)|ssl(3)>, L<SSL_new(3)|SSL_new(3)>, L<SSL_clear(3)|SSL_clear(3)>,
|
||||
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
|
||||
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>
|
||||
|
||||
=head1 HISTORY
|
||||
|
||||
|
146
doc/ssl/SSL_CTX_set_tmp_dh_callback.pod
Normal file
146
doc/ssl/SSL_CTX_set_tmp_dh_callback.pod
Normal file
@ -0,0 +1,146 @@
|
||||
=pod
|
||||
|
||||
=head1 NAME
|
||||
|
||||
SSL_CTX_set_tmp_dh_callback, SSL_CTX_set_tmp_dh, SSL_set_tmp_dh_callback, SSL_set_tmp_dh - handle DH keys for ephemeral key exchange
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
#include <openssl/ssl.h>
|
||||
|
||||
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
|
||||
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
|
||||
long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);
|
||||
|
||||
void SSL_set_tmp_dh_callback(SSL_CTX *ctx,
|
||||
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
|
||||
long SSL_set_tmp_dh(SSL *ssl, DH *dh)
|
||||
|
||||
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
SSL_CTX_set_tmp_dh_callback() sets the callback function for B<ctx> to be
|
||||
used when a DH parameters are required to B<tmp_dh_callback>.
|
||||
The callback is inherited by all B<ssl> objects created from B<ctx>.
|
||||
|
||||
SSL_CTX_set_tmp_dh() sets DH parameters to be used to be B<dh>.
|
||||
The key is inherited by all B<ssl> objects created from B<ctx>.
|
||||
|
||||
SSL_set_tmp_dh_callback() sets the callback only for B<ssl>.
|
||||
|
||||
SSL_set_tmp_dh() sets the paramters only for B<ssl>.
|
||||
|
||||
These functions apply to SSL/TLS servers only.
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
When using a cipher with RSA authentication, an ephemeral DH key exchange
|
||||
can take place. Ciphers with DSA keys always use ephemeral DH keys as well
|
||||
as anonymous ciphers. In this case the session data are negotiated using the
|
||||
ephemeral/temporary DH key and the key supplied and certified
|
||||
by the certificate chain is only used for signing.
|
||||
|
||||
Using ephemeral DH key exchange yields forward secrecy, as the connection
|
||||
can only be decrypted, when the DH key is known. By generating a temporary
|
||||
DH key inside the server application that is lost when the application
|
||||
is left, it becomes impossible for an attacker to decrypt past sessions,
|
||||
even if he gets hold of the normal (certified) key, as this key was
|
||||
only used for signing.
|
||||
|
||||
In order to perform a DH key exchange the server must use a DH group
|
||||
(DH parameters) and generate a DH key. The server will automatically
|
||||
generate the DH key when required, as it is computationally cheap
|
||||
(retrieve a random number). The server will reuse the DH key for further
|
||||
connections, unless the SSL_OP_SINGLE_DH_USE option of
|
||||
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)> is set, in which case
|
||||
a new DH key for each negotiation will be generated.
|
||||
|
||||
As generating DH parameters is extremely time consuming, an application
|
||||
should not generate the parameters on the fly but supply the parameters.
|
||||
DH parameters can be reused, as the actual key is newly generated during
|
||||
the negotiation. The risk in reusing DH parameters is that an attacker
|
||||
may specialize on a very often used DH group. Therefore application authors
|
||||
should not copy the DH parameters from other applications or the OpenSSL
|
||||
example application, if they compile in parameters, but generate their
|
||||
own set of parameters using e.g. the openssl L<dhparam(1)|dhparam(1)>
|
||||
application with the B<-C> option. An application may also generate
|
||||
its own set of DH parameters during the installation procedure on a specific
|
||||
host, so that each host uses different parameters.
|
||||
|
||||
An application my either directly specify the DH parameters or
|
||||
can supply the DH parameters via a callback function. The callback approach
|
||||
has the advantage, that the callback may supply DH parameters for different
|
||||
key lengths.
|
||||
|
||||
The B<tmp_dh_callback> is called with the B<keylength> needed and
|
||||
the B<is_export> information. The B<is_export> flag is set, when the
|
||||
ephemeral DH key exchange is performed with an export cipher.
|
||||
|
||||
=head1 EXAMPLES
|
||||
|
||||
Handle DH parameters for key lengths of 512 and 1024 bits. (Error handling
|
||||
partly left out.)
|
||||
|
||||
...
|
||||
/* Set up ephemeral DH stuff */
|
||||
DH *dh_512 = NULL;
|
||||
DH *dh_1024 = NULL;
|
||||
FILE *paramfile;
|
||||
|
||||
...
|
||||
/* "openssl dhparam -out dh_param_512.pem -2 512" */
|
||||
paramfile = fopen("dh_param_512.pem", "r");
|
||||
if (paramfile) {
|
||||
dh_512 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
|
||||
fclose(paramfile);
|
||||
}
|
||||
/* "openssl dhparam -out dh_param_1024.pem -2 1024" */
|
||||
paramfile = fopen("dh_param_1024.pem", "r");
|
||||
if (paramfile) {
|
||||
dh_1024 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
|
||||
fclose(paramfile);
|
||||
}
|
||||
...
|
||||
|
||||
/* "openssl dhparam -C -2 512" etc... */
|
||||
DH *get_dh512() { ... }
|
||||
DH *get_dh1024() { ... }
|
||||
|
||||
DH *tmp_dh_callback(SSL *s, int is_export, int keylength)
|
||||
{
|
||||
DH *dh_tmp=NULL;
|
||||
|
||||
switch (keylength) {
|
||||
case 512:
|
||||
if (!dh_512)
|
||||
dh_512 = get_dh512();
|
||||
dh_tmp = dh_512;
|
||||
break;
|
||||
case 1024:
|
||||
if (!dh_1024)
|
||||
dh_1024 = get_dh1024();
|
||||
dh_tmp = dh_1024;
|
||||
break;
|
||||
default:
|
||||
/* Generating a key on the fly is very costly, so use what is there */
|
||||
setup_dh_parameters_like_above();
|
||||
}
|
||||
return(dh_tmp);
|
||||
}
|
||||
|
||||
=head1 RETURN VALUES
|
||||
|
||||
SSL_CTX_set_tmp_dh_callback() and SSL_set_tmp_dh_callback() do not return
|
||||
diagnostic output.
|
||||
|
||||
SSL_CTX_set_tmp_dh() and SSL_set_tmp_dh() do return 1 on success and 0
|
||||
on failure. Check the error queue to find out the reason of failure.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<ssl(3)|ssl(3)>, L<SSL_CTX_set_cipher_list(3)|SSL_CTX_set_cipher_list(3)>,
|
||||
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>,
|
||||
L<ciphers(1)|ciphers(1)>, L<dhparam(1)|dhparam(1)>
|
||||
|
||||
=cut
|
155
doc/ssl/SSL_CTX_set_tmp_rsa_callback.pod
Normal file
155
doc/ssl/SSL_CTX_set_tmp_rsa_callback.pod
Normal file
@ -0,0 +1,155 @@
|
||||
=pod
|
||||
|
||||
=head1 NAME
|
||||
|
||||
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa, SSL_set_tmp_rsa_callback, SSL_set_tmp_rsa, SSL_need_tmp_rsa - handle RSA keys for ephemeral key exchange
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
#include <openssl/ssl.h>
|
||||
|
||||
void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
|
||||
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
||||
long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
|
||||
long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);
|
||||
|
||||
void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
|
||||
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
||||
long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
|
||||
long SSL_need_tmp_rsa(SSL *ssl)
|
||||
|
||||
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
SSL_CTX_set_tmp_rsa_callback() sets the callback function for B<ctx> to be
|
||||
used when a temporary/ephemeral RSA key is required to B<tmp_rsa_callback>.
|
||||
The callback is inherited by all B<ssl> objects created from B<ctx>.
|
||||
|
||||
SSL_CTX_set_tmp_rsa() sets the temporary/ephemeral RSA key to be used to be
|
||||
B<rsa>. The key is inherited by all B<ssl> objects created from B<ctx>.
|
||||
|
||||
SSL_CTX_need_tmp_rsa() returns 1, if a temporay/ephemeral RSA key is needed,
|
||||
because a RSA key with a keysize larger than 512 bits is installed.
|
||||
|
||||
SSL_set_tmp_rsa_callback() sets the callback only for B<ssl>.
|
||||
|
||||
SSL_set_tmp_rsa() sets the key only for B<ssl>.
|
||||
|
||||
SSL_need_tmp_rsa() returns 1, if a temporay/ephemeral RSA key is needed,
|
||||
because a RSA key with a keysize larger than 512 bits is installed.
|
||||
|
||||
These functions apply to SSL/TLS servers only.
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
When using a cipher with RSA authentication, an ephemeral RSA key exchange
|
||||
can take place. In this case the session data are negotiated using the
|
||||
ephemeral/temporary RSA key and the RSA key supplied and certified
|
||||
by the certificate chain is only used for signing.
|
||||
|
||||
Using ephemeral RSA key exchange yields forward secrecy, as the connection
|
||||
can only be decrypted, when the RSA key is known. By generating a temporary
|
||||
RSA key inside the server application that is lost when the application
|
||||
is left, it becomes impossible for an attacker to decrypt past sessions,
|
||||
even if he gets hold of the normal (certified) RSA key, as this key was
|
||||
only used for signing. The downside is that creating a RSA key is
|
||||
computationally expensive. On OpenSSL servers ephemeral RSA key exchange
|
||||
is therefore disabled by default and must be explicitly enabled using the
|
||||
SSL_OP_EPHEMERAL_RSA option of
|
||||
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>, except for certain
|
||||
export ciphers.
|
||||
|
||||
Under previous export restrictions, ciphers with RSA keys shorter (512 bits)
|
||||
than the usual key length of 1024 bits were created. To use these ciphers
|
||||
with RSA keys of usual length, an ephemeral key exchange must be performed,
|
||||
as the normal (certified) key cannot be used.
|
||||
|
||||
An application my either directly specify the key or
|
||||
can supply the key via a callback function. The callback approach has
|
||||
the advantage, that the callback may generate the key only in case it is
|
||||
actually needed. As the generation of a RSA key is however costly, it
|
||||
will lead to a significant delay in the handshake procedure.
|
||||
Another advantage of the callback function is that it can supply keys
|
||||
of different size (e.g. for SSL_OP_EPHEMERAL_RSA usage) while the
|
||||
explicit setting of the key is only useful for key size of 512 bits
|
||||
to satisfy the export restricted ciphers and does give away key length
|
||||
if a longer key would be allowed.
|
||||
|
||||
The B<tmp_rsa_callback> is called with the B<keylength> needed and
|
||||
the B<is_export> information. The B<is_export> flag is set, when the
|
||||
ephemeral RSA key exchange is performed with an export cipher.
|
||||
|
||||
=head1 EXAMPLES
|
||||
|
||||
Generate temporary RSA keys to prepare ephemeral RSA key exchange. As the
|
||||
generation of a RSA key costs a lot of computer time, it is saved for later
|
||||
reuse. For demonstration purposes, two keys for 512 bits and 1024 bits
|
||||
respectively are generated.
|
||||
|
||||
...
|
||||
/* Set up ephemeral RSA stuff */
|
||||
RSA *rsa_512 = NULL;
|
||||
RSA *rsa_1024 = NULL;
|
||||
if (prepare_export_in_advance || always_use_ephemeral_rsa) {
|
||||
rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
|
||||
if (rsa_512 == NULL)
|
||||
evaluate_error_queue();
|
||||
}
|
||||
if (always_use_ephemeral_rsa) {
|
||||
/* Only spend the time to generate the key, if it will actually be
|
||||
needed */
|
||||
rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
|
||||
if (rsa_1024 == NULL)
|
||||
evaluate_error_queue();
|
||||
SSL_CTX_set_options(SSL_OP_EPHEMERAL_RSA);
|
||||
}
|
||||
...
|
||||
|
||||
RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
|
||||
{
|
||||
RSA *rsa_tmp=NULL;
|
||||
|
||||
switch (keylength) {
|
||||
case 512:
|
||||
if (rsa_512)
|
||||
rsa_tmp = rsa_512;
|
||||
else { /* generate on the fly */
|
||||
rsa_tmp = RSA_generate_key(512,RSA_F4,NULL,NULL);
|
||||
rsa_512 = rsa_tmp; /* Remember for later reuse */
|
||||
}
|
||||
break;
|
||||
case 1024:
|
||||
if (rsa_1024)
|
||||
rsa_tmp=rsa_1024;
|
||||
else
|
||||
this_should_never_happen_as_we_are_prepared();
|
||||
break;
|
||||
default:
|
||||
/* Generating a key on the fly is very costly, so use what is there */
|
||||
if (rsa_1024)
|
||||
rsa_tmp=rsa_1024;
|
||||
else
|
||||
rsa_tmp=rsa_512; /* Use at least a shorter key */
|
||||
}
|
||||
return(rsa_tmp);
|
||||
}
|
||||
|
||||
=head1 RETURN VALUES
|
||||
|
||||
SSL_CTX_set_tmp_rsa_callback() and SSL_set_tmp_rsa_callback() do not return
|
||||
diagnostic output.
|
||||
|
||||
SSL_CTX_set_tmp_rsa() and SSL_set_tmp_rsa() do return 1 on success and 0
|
||||
on failure. Check the error queue to find out the reason of failure.
|
||||
|
||||
SSL_CTX_need_tmp_rsa() and SSL_need_tmp_rsa() return 1 if a temporary
|
||||
RSA key is needed and 0 otherwise.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<ssl(3)|ssl(3)>, L<SSL_CTX_set_cipher_list(3)|SSL_CTX_set_cipher_list(3)>,
|
||||
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>,
|
||||
L<ciphers(1)|ciphers(1)>
|
||||
|
||||
=cut
|
@ -670,6 +670,8 @@ L<SSL_CTX_set_session_cache_mode(3)|SSL_CTX_set_session_cache_mode(3)>,
|
||||
L<SSL_CTX_set_session_id_context(3)|SSL_CTX_set_session_id_context(3)>,
|
||||
L<SSL_CTX_set_ssl_version(3)|SSL_CTX_set_ssl_version(3)>,
|
||||
L<SSL_CTX_set_timeout(3)|SSL_CTX_set_timeout(3)>,
|
||||
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>,
|
||||
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
|
||||
L<SSL_CTX_set_verify(3)|SSL_CTX_set_verify(3)>,
|
||||
L<SSL_CTX_use_certificate(3)|SSL_CTX_use_certificate(3)>,
|
||||
L<SSL_get_ciphers(3)|SSL_get_ciphers(3)>,
|
||||
|
Loading…
Reference in New Issue
Block a user