Documentation about ephemeral key exchange

This commit is contained in:
Lutz Jänicke 2001-07-21 11:02:17 +00:00
parent c518ade1fd
commit 4db48ec0bd
5 changed files with 315 additions and 5 deletions

View File

@ -39,8 +39,9 @@ certificate and key.
A RSA cipher can only be chosen, when a RSA certificate is available.
RSA export ciphers with a keylength of 512 bits for the RSA key require
a temporary 512 bit RSA key, as typically the supplied key has a length
of 1024 bit. RSA ciphers using EDH need a certificate and key and
additional DH-parameters.
of 1024 bit (see
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>).
RSA ciphers using EDH need a certificate and key and additional DH-parameters.
A DSA cipher can only be chosen, when a DSA certificate is available.
DSA ciphers always use DH key exchange and therefore need DH-parameters.
@ -60,6 +61,8 @@ could be selected and 0 on complete failure.
L<ssl(3)|ssl(3)>, L<SSL_get_ciphers(3)|SSL_get_ciphers(3)>,
L<SSL_CTX_use_certificate(3)|SSL_CTX_use_certificate(3)>,
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>,
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
L<ciphers(1)|ciphers(1)>
=cut

View File

@ -122,11 +122,13 @@ The following B<modifying> options are available:
=item SSL_OP_SINGLE_DH_USE
Always create a new key when using temporary DH parameters.
Always create a new key when using temporary DH parameters
(see L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>).
=item SSL_OP_EPHEMERAL_RSA
Also use the temporary RSA key when doing RSA operations.
Also use ephemeral (temporary) RSA key when doing RSA operations
(see L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>).
=item SSL_OP_CIPHER_SERVER_PREFERENCE
@ -182,7 +184,9 @@ SSL_CTX_get_options() and SSL_get_options() return the current bitmask.
=head1 SEE ALSO
L<ssl(3)|ssl(3)>, L<SSL_new(3)|SSL_new(3)>, L<SSL_clear(3)|SSL_clear(3)>
L<ssl(3)|ssl(3)>, L<SSL_new(3)|SSL_new(3)>, L<SSL_clear(3)|SSL_clear(3)>,
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>
=head1 HISTORY

View File

@ -0,0 +1,146 @@
=pod
=head1 NAME
SSL_CTX_set_tmp_dh_callback, SSL_CTX_set_tmp_dh, SSL_set_tmp_dh_callback, SSL_set_tmp_dh - handle DH keys for ephemeral key exchange
=head1 SYNOPSIS
#include <openssl/ssl.h>
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);
void SSL_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_dh(SSL *ssl, DH *dh)
DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
=head1 DESCRIPTION
SSL_CTX_set_tmp_dh_callback() sets the callback function for B<ctx> to be
used when a DH parameters are required to B<tmp_dh_callback>.
The callback is inherited by all B<ssl> objects created from B<ctx>.
SSL_CTX_set_tmp_dh() sets DH parameters to be used to be B<dh>.
The key is inherited by all B<ssl> objects created from B<ctx>.
SSL_set_tmp_dh_callback() sets the callback only for B<ssl>.
SSL_set_tmp_dh() sets the paramters only for B<ssl>.
These functions apply to SSL/TLS servers only.
=head1 NOTES
When using a cipher with RSA authentication, an ephemeral DH key exchange
can take place. Ciphers with DSA keys always use ephemeral DH keys as well
as anonymous ciphers. In this case the session data are negotiated using the
ephemeral/temporary DH key and the key supplied and certified
by the certificate chain is only used for signing.
Using ephemeral DH key exchange yields forward secrecy, as the connection
can only be decrypted, when the DH key is known. By generating a temporary
DH key inside the server application that is lost when the application
is left, it becomes impossible for an attacker to decrypt past sessions,
even if he gets hold of the normal (certified) key, as this key was
only used for signing.
In order to perform a DH key exchange the server must use a DH group
(DH parameters) and generate a DH key. The server will automatically
generate the DH key when required, as it is computationally cheap
(retrieve a random number). The server will reuse the DH key for further
connections, unless the SSL_OP_SINGLE_DH_USE option of
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)> is set, in which case
a new DH key for each negotiation will be generated.
As generating DH parameters is extremely time consuming, an application
should not generate the parameters on the fly but supply the parameters.
DH parameters can be reused, as the actual key is newly generated during
the negotiation. The risk in reusing DH parameters is that an attacker
may specialize on a very often used DH group. Therefore application authors
should not copy the DH parameters from other applications or the OpenSSL
example application, if they compile in parameters, but generate their
own set of parameters using e.g. the openssl L<dhparam(1)|dhparam(1)>
application with the B<-C> option. An application may also generate
its own set of DH parameters during the installation procedure on a specific
host, so that each host uses different parameters.
An application my either directly specify the DH parameters or
can supply the DH parameters via a callback function. The callback approach
has the advantage, that the callback may supply DH parameters for different
key lengths.
The B<tmp_dh_callback> is called with the B<keylength> needed and
the B<is_export> information. The B<is_export> flag is set, when the
ephemeral DH key exchange is performed with an export cipher.
=head1 EXAMPLES
Handle DH parameters for key lengths of 512 and 1024 bits. (Error handling
partly left out.)
...
/* Set up ephemeral DH stuff */
DH *dh_512 = NULL;
DH *dh_1024 = NULL;
FILE *paramfile;
...
/* "openssl dhparam -out dh_param_512.pem -2 512" */
paramfile = fopen("dh_param_512.pem", "r");
if (paramfile) {
dh_512 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);
}
/* "openssl dhparam -out dh_param_1024.pem -2 1024" */
paramfile = fopen("dh_param_1024.pem", "r");
if (paramfile) {
dh_1024 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
fclose(paramfile);
}
...
/* "openssl dhparam -C -2 512" etc... */
DH *get_dh512() { ... }
DH *get_dh1024() { ... }
DH *tmp_dh_callback(SSL *s, int is_export, int keylength)
{
DH *dh_tmp=NULL;
switch (keylength) {
case 512:
if (!dh_512)
dh_512 = get_dh512();
dh_tmp = dh_512;
break;
case 1024:
if (!dh_1024)
dh_1024 = get_dh1024();
dh_tmp = dh_1024;
break;
default:
/* Generating a key on the fly is very costly, so use what is there */
setup_dh_parameters_like_above();
}
return(dh_tmp);
}
=head1 RETURN VALUES
SSL_CTX_set_tmp_dh_callback() and SSL_set_tmp_dh_callback() do not return
diagnostic output.
SSL_CTX_set_tmp_dh() and SSL_set_tmp_dh() do return 1 on success and 0
on failure. Check the error queue to find out the reason of failure.
=head1 SEE ALSO
L<ssl(3)|ssl(3)>, L<SSL_CTX_set_cipher_list(3)|SSL_CTX_set_cipher_list(3)>,
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>,
L<ciphers(1)|ciphers(1)>, L<dhparam(1)|dhparam(1)>
=cut

View File

@ -0,0 +1,155 @@
=pod
=head1 NAME
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa, SSL_set_tmp_rsa_callback, SSL_set_tmp_rsa, SSL_need_tmp_rsa - handle RSA keys for ephemeral key exchange
=head1 SYNOPSIS
#include <openssl/ssl.h>
void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);
void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
long SSL_need_tmp_rsa(SSL *ssl)
RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
=head1 DESCRIPTION
SSL_CTX_set_tmp_rsa_callback() sets the callback function for B<ctx> to be
used when a temporary/ephemeral RSA key is required to B<tmp_rsa_callback>.
The callback is inherited by all B<ssl> objects created from B<ctx>.
SSL_CTX_set_tmp_rsa() sets the temporary/ephemeral RSA key to be used to be
B<rsa>. The key is inherited by all B<ssl> objects created from B<ctx>.
SSL_CTX_need_tmp_rsa() returns 1, if a temporay/ephemeral RSA key is needed,
because a RSA key with a keysize larger than 512 bits is installed.
SSL_set_tmp_rsa_callback() sets the callback only for B<ssl>.
SSL_set_tmp_rsa() sets the key only for B<ssl>.
SSL_need_tmp_rsa() returns 1, if a temporay/ephemeral RSA key is needed,
because a RSA key with a keysize larger than 512 bits is installed.
These functions apply to SSL/TLS servers only.
=head1 NOTES
When using a cipher with RSA authentication, an ephemeral RSA key exchange
can take place. In this case the session data are negotiated using the
ephemeral/temporary RSA key and the RSA key supplied and certified
by the certificate chain is only used for signing.
Using ephemeral RSA key exchange yields forward secrecy, as the connection
can only be decrypted, when the RSA key is known. By generating a temporary
RSA key inside the server application that is lost when the application
is left, it becomes impossible for an attacker to decrypt past sessions,
even if he gets hold of the normal (certified) RSA key, as this key was
only used for signing. The downside is that creating a RSA key is
computationally expensive. On OpenSSL servers ephemeral RSA key exchange
is therefore disabled by default and must be explicitly enabled using the
SSL_OP_EPHEMERAL_RSA option of
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>, except for certain
export ciphers.
Under previous export restrictions, ciphers with RSA keys shorter (512 bits)
than the usual key length of 1024 bits were created. To use these ciphers
with RSA keys of usual length, an ephemeral key exchange must be performed,
as the normal (certified) key cannot be used.
An application my either directly specify the key or
can supply the key via a callback function. The callback approach has
the advantage, that the callback may generate the key only in case it is
actually needed. As the generation of a RSA key is however costly, it
will lead to a significant delay in the handshake procedure.
Another advantage of the callback function is that it can supply keys
of different size (e.g. for SSL_OP_EPHEMERAL_RSA usage) while the
explicit setting of the key is only useful for key size of 512 bits
to satisfy the export restricted ciphers and does give away key length
if a longer key would be allowed.
The B<tmp_rsa_callback> is called with the B<keylength> needed and
the B<is_export> information. The B<is_export> flag is set, when the
ephemeral RSA key exchange is performed with an export cipher.
=head1 EXAMPLES
Generate temporary RSA keys to prepare ephemeral RSA key exchange. As the
generation of a RSA key costs a lot of computer time, it is saved for later
reuse. For demonstration purposes, two keys for 512 bits and 1024 bits
respectively are generated.
...
/* Set up ephemeral RSA stuff */
RSA *rsa_512 = NULL;
RSA *rsa_1024 = NULL;
if (prepare_export_in_advance || always_use_ephemeral_rsa) {
rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
if (rsa_512 == NULL)
evaluate_error_queue();
}
if (always_use_ephemeral_rsa) {
/* Only spend the time to generate the key, if it will actually be
needed */
rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
if (rsa_1024 == NULL)
evaluate_error_queue();
SSL_CTX_set_options(SSL_OP_EPHEMERAL_RSA);
}
...
RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
{
RSA *rsa_tmp=NULL;
switch (keylength) {
case 512:
if (rsa_512)
rsa_tmp = rsa_512;
else { /* generate on the fly */
rsa_tmp = RSA_generate_key(512,RSA_F4,NULL,NULL);
rsa_512 = rsa_tmp; /* Remember for later reuse */
}
break;
case 1024:
if (rsa_1024)
rsa_tmp=rsa_1024;
else
this_should_never_happen_as_we_are_prepared();
break;
default:
/* Generating a key on the fly is very costly, so use what is there */
if (rsa_1024)
rsa_tmp=rsa_1024;
else
rsa_tmp=rsa_512; /* Use at least a shorter key */
}
return(rsa_tmp);
}
=head1 RETURN VALUES
SSL_CTX_set_tmp_rsa_callback() and SSL_set_tmp_rsa_callback() do not return
diagnostic output.
SSL_CTX_set_tmp_rsa() and SSL_set_tmp_rsa() do return 1 on success and 0
on failure. Check the error queue to find out the reason of failure.
SSL_CTX_need_tmp_rsa() and SSL_need_tmp_rsa() return 1 if a temporary
RSA key is needed and 0 otherwise.
=head1 SEE ALSO
L<ssl(3)|ssl(3)>, L<SSL_CTX_set_cipher_list(3)|SSL_CTX_set_cipher_list(3)>,
L<SSL_CTX_set_options(3)|SSL_CTX_set_options(3)>,
L<ciphers(1)|ciphers(1)>
=cut

View File

@ -670,6 +670,8 @@ L<SSL_CTX_set_session_cache_mode(3)|SSL_CTX_set_session_cache_mode(3)>,
L<SSL_CTX_set_session_id_context(3)|SSL_CTX_set_session_id_context(3)>,
L<SSL_CTX_set_ssl_version(3)|SSL_CTX_set_ssl_version(3)>,
L<SSL_CTX_set_timeout(3)|SSL_CTX_set_timeout(3)>,
L<SSL_CTX_set_tmp_rsa_callback(3)|SSL_CTX_set_tmp_rsa_callback(3)>,
L<SSL_CTX_set_tmp_dh_callback(3)|SSL_CTX_set_tmp_dh_callback(3)>,
L<SSL_CTX_set_verify(3)|SSL_CTX_set_verify(3)>,
L<SSL_CTX_use_certificate(3)|SSL_CTX_use_certificate(3)>,
L<SSL_get_ciphers(3)|SSL_get_ciphers(3)>,