ghash-sparcv9.pl: add VIS3 code path.

This commit is contained in:
Andy Polyakov 2012-10-24 08:21:10 +00:00
parent 30765fed55
commit 23328d4b27
2 changed files with 233 additions and 3 deletions

View File

@ -36,6 +36,13 @@
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
#
# October 2012
#
# Add VIS3 lookup-table-free implementation using polynomial
# multiplication xmulx[hi] and extended addition addxc[cc]
# instructions. 3.96/6.26x improvement on T3/T4 or in absolute
# terms 9.02/2.61 cycles per byte.
$bits=32;
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
@ -66,6 +73,10 @@ $Htbl="%i1";
$inp="%i2";
$len="%i3";
$code.=<<___ if ($bits==64);
.register %g2,#scratch
.register %g3,#scratch
___
$code.=<<___;
.section ".text",#alloc,#execinstr
@ -321,10 +332,213 @@ gcm_gmult_4bit:
restore
.type gcm_gmult_4bit,#function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
.asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
___
{{{
# Straightforward 64-bits-at-a-time approach with pair of 128x64-bit
# multiplications followed by 64-bit reductions. While it might be
# suboptimal with regard to sheer amount of multiplications, other
# methods would require larger amount of 64-bit registers, which we
# don't have in 32-bit application. Also, they [alternative methods
# such as aggregated reduction] kind of thrive on fast 128-bit SIMD
# instructions and these are not option on SPARC...
($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
($xE1,$Hhi,$Hlo,$Rhi,$Rlo,$M0hi,$M0lo,$M1hi,$M1lo,$Zhi,$Zlo,$X)=
(map("%g$_",(1..5)),map("%o$_",(0..5,7)));
($shl,$shr)=map("%l$_",(0..7));
$code.=<<___;
.globl gcm_gmult_vis3
.align 32
gcm_gmult_vis3:
save %sp,-$frame,%sp
ldx [$Xip+8],$X ! load X.lo
ldx [$Htable-8], $Hlo ! load H
ldx [$Htable-16],$Hhi
mov 0xE1,$xE1
sllx $xE1,57,$xE1
xmulx $X,$Hlo,$M0lo ! H·X.lo
xmulxhi $X,$Hlo,$M0hi
xmulx $X,$Hhi,$M1lo
xmulxhi $X,$Hhi,$M1hi
ldx [$Xip+0],$X ! load X.hi
addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
xor $M0hi,$M1lo,$M1lo
xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
xmulxhi $xE1,$M0lo,$Rhi
addxccc $M1lo,$M1lo,$Zlo ! Z=((H·X.lo)<<1)>>64
addxc $M1hi,$M1hi,$Zhi
xor $M0lo,$Zhi,$Zhi ! overflow bit from 0xE1<<57
xmulx $X,$Hlo,$M0lo ! H·X.hi
xmulxhi $X,$Hlo,$M0hi
xmulx $X,$Hhi,$M1lo
xmulxhi $X,$Hhi,$M1hi
xor $Rlo,$Zlo,$Zlo ! Z^=res
xor $Rhi,$Zhi,$Zhi
addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
xor $Zlo, $M0lo,$M0lo
xor $M0hi,$M1lo,$M1lo
xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
xmulxhi $xE1,$M0lo,$Rhi
addxccc $M1lo,$M1lo,$M1lo
addxc $M1hi,$M1hi,$M1hi
xor $M1lo,$Zhi,$Zlo ! Z=(Z^(H·X.hi)<<1)>>64
xor $M0lo,$M1hi,$Zhi ! overflow bit from 0xE1<<57
xor $Rlo,$Zlo,$Zlo ! Z^=res
xor $Rhi,$Zhi,$Zhi
stx $Zlo,[$Xip+8] ! save Xi
stx $Zhi,[$Xip+0]
ret
restore
.type gcm_gmult_vis3,#function
.size gcm_gmult_vis3,.-gcm_gmult_vis3
.globl gcm_ghash_vis3
.align 32
gcm_ghash_vis3:
save %sp,-$frame,%sp
ldx [$Xip+0],$Zhi ! load X.hi
ldx [$Xip+8],$Zlo ! load X.lo
and $inp,7,$shl
andn $inp,7,$inp
ldx [$Htable-8], $Hlo ! load H
ldx [$Htable-16],$Hhi
sll $shl,3,$shl
prefetch [$inp+63], 20
mov 0xE1,$xE1
sub %g0,$shl,$shr
sllx $xE1,57,$xE1
.Loop:
ldx [$inp+8],$Rlo ! load *inp
brz,pt $shl,1f
ldx [$inp+0],$Rhi
ldx [$inp+16],$X ! align data
srlx $Rlo,$shr,$M0lo
sllx $Rlo,$shl,$Rlo
sllx $Rhi,$shl,$Rhi
srlx $X,$shr,$X
or $M0lo,$Rhi,$Rhi
or $X,$Rlo,$Rlo
1:
add $inp,16,$inp
sub $len,16,$len
xor $Rlo,$Zlo,$X
prefetch [$inp+63], 20
xmulx $X,$Hlo,$M0lo ! H·X.lo
xmulxhi $X,$Hlo,$M0hi
xmulx $X,$Hhi,$M1lo
xmulxhi $X,$Hhi,$M1hi
xor $Rhi,$Zhi,$X
addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
xor $M0hi,$M1lo,$M1lo
xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
xmulxhi $xE1,$M0lo,$Rhi
addxccc $M1lo,$M1lo,$Zlo ! Z=((H·X.lo)<<1)>>64
addxc $M1hi,$M1hi,$Zhi
xor $M0lo,$Zhi,$Zhi ! overflow bit from 0xE1<<57
xmulx $X,$Hlo,$M0lo ! H·X.hi
xmulxhi $X,$Hlo,$M0hi
xmulx $X,$Hhi,$M1lo
xmulxhi $X,$Hhi,$M1hi
xor $Rlo,$Zlo,$Zlo ! Z^=res
xor $Rhi,$Zhi,$Zhi
addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
xor $Zlo, $M0lo,$M0lo
xor $M0hi,$M1lo,$M1lo
xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
xmulxhi $xE1,$M0lo,$Rhi
addxccc $M1lo,$M1lo,$M1lo
addxc $M1hi,$M1hi,$M1hi
xor $M1lo,$Zhi,$Zlo ! Z=(Z^(H·X.hi)<<1)>>64
xor $M0lo,$M1hi,$Zhi ! overflow bit from 0xE1<<57
xor $Rlo,$Zlo,$Zlo ! Z^=res
brnz,pt $len,.Loop
xor $Rhi,$Zhi,$Zhi
stx $Zlo,[$Xip+8] ! save Xi
stx $Zhi,[$Xip+0]
ret
restore
.type gcm_ghash_vis3,#function
.size gcm_ghash_vis3,.-gcm_ghash_vis3
___
}}}
$code.=<<___;
.asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = ( "addxc" => 0x011,
"addxccc" => 0x013,
"xmulx" => 0x115,
"xmulxhi" => 0x116 );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%([goli])([0-9])/);
$_=$bias{$1}+$2;
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unvis3($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT;

View File

@ -674,6 +674,13 @@ void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len
void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]);
void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
# endif
# elif defined(__sparc__) || defined(__sparc)
# include "sparc_arch.h"
# define GHASH_ASM_SPARC
# define GCM_FUNCREF_4BIT
extern unsigned int OPENSSL_sparcv9cap_P[];
void gcm_gmult_vis3(u64 Xi[2],const u128 Htable[16]);
void gcm_ghash_vis3(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
# endif
#endif
@ -750,6 +757,15 @@ void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
ctx->gmult = gcm_gmult_4bit;
ctx->ghash = gcm_ghash_4bit;
}
# elif defined(GHASH_ASM_SPARC)
if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {
ctx->gmult = gcm_gmult_vis3;
ctx->ghash = gcm_ghash_vis3;
} else {
gcm_init_4bit(ctx->Htable,ctx->H.u);
ctx->gmult = gcm_gmult_4bit;
ctx->ghash = gcm_ghash_4bit;
}
# else
gcm_init_4bit(ctx->Htable,ctx->H.u);
# endif