23 lines
502 B
Plaintext
23 lines
502 B
Plaintext
|
Given A1A0 * B1B0 == S3S2S1S0
|
||
|
|
||
|
S0= low(A0*B0)
|
||
|
S1= low( (A1-A0)*(B0-B1)) +low( A1*B1) +high(A0*B0)
|
||
|
S2= high((A1-A0)*(B0-B1)) +high(A1*B1) +low( A1*B1)
|
||
|
S3= high(A1*B1);
|
||
|
|
||
|
Assume we know S1 and S0, and can calulate A1*B1 and high((A1-A0)*(B0-B1))
|
||
|
|
||
|
k0= S0 == low(A0*B0)
|
||
|
k1= S1
|
||
|
k2= low( A1*B1)
|
||
|
k3= high(A1*B1)
|
||
|
k4= high((A1-A0)*(B0-B1))
|
||
|
|
||
|
k1= low((A1-A0)*(B0-B1)) +k2 +high(A0*B0)
|
||
|
S2= k4 +k3 +k2
|
||
|
S3= k3
|
||
|
|
||
|
S1-k2= low((A1-A0)*(B0-B1)) +high(A0*B0)
|
||
|
|
||
|
We potentially have a carry or a borrow from S1
|