2000-08-30 18:14:28 +00:00
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 2000 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Nuron, a leader in hardware encryption technology, generously
|
|
|
|
* sponsored the development of this demo by Ben Laurie.
|
|
|
|
*
|
|
|
|
* See http://www.nuron.com/.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* the aim of this demo is to provide a fully working state-machine
|
|
|
|
* style SSL implementation, i.e. one where the main loop acquires
|
|
|
|
* some data, then converts it from or to SSL by feeding it into the
|
|
|
|
* SSL state machine. It then does any I/O required by the state machine
|
|
|
|
* and loops.
|
|
|
|
*
|
|
|
|
* In order to keep things as simple as possible, this implementation
|
|
|
|
* listens on a TCP socket, which it expects to get an SSL connection
|
|
|
|
* on (for example, from s_client) and from then on writes decrypted
|
|
|
|
* data to stdout and encrypts anything arriving on stdin. Verbose
|
|
|
|
* commentary is written to stderr.
|
|
|
|
*
|
|
|
|
* This implementation acts as a server, but it can also be done for a client. */
|
|
|
|
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
|
2000-09-05 17:06:45 +00:00
|
|
|
/* die_unless is intended to work like assert, except that it happens
|
|
|
|
always, even if NDEBUG is defined. Use assert as a stopgap. */
|
|
|
|
|
|
|
|
#define die_unless(x) assert(x)
|
|
|
|
|
2000-08-30 18:14:28 +00:00
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
SSL_CTX *pCtx;
|
|
|
|
BIO *pbioRead;
|
|
|
|
BIO *pbioWrite;
|
|
|
|
SSL *pSSL;
|
|
|
|
} SSLStateMachine;
|
|
|
|
|
|
|
|
void SSLStateMachine_print_error(SSLStateMachine *pMachine,const char *szErr)
|
|
|
|
{
|
|
|
|
unsigned long l;
|
|
|
|
|
|
|
|
fprintf(stderr,"%s\n",szErr);
|
|
|
|
while((l=ERR_get_error()))
|
|
|
|
{
|
|
|
|
char buf[1024];
|
|
|
|
|
|
|
|
ERR_error_string_n(l,buf,sizeof buf);
|
|
|
|
fprintf(stderr,"Error %lx: %s\n",l,buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SSLStateMachine *SSLStateMachine_new(const char *szCertificateFile,
|
|
|
|
const char *szKeyFile)
|
|
|
|
{
|
|
|
|
SSLStateMachine *pMachine=malloc(sizeof *pMachine);
|
|
|
|
int n;
|
|
|
|
|
2000-09-05 17:06:45 +00:00
|
|
|
die_unless(pMachine);
|
2000-08-30 18:14:28 +00:00
|
|
|
|
|
|
|
pMachine->pCtx=SSL_CTX_new(SSLv23_server_method());
|
2000-09-05 17:06:45 +00:00
|
|
|
die_unless(pMachine->pCtx);
|
2000-08-30 18:14:28 +00:00
|
|
|
|
|
|
|
n=SSL_CTX_use_certificate_file(pMachine->pCtx,szCertificateFile,
|
|
|
|
SSL_FILETYPE_PEM);
|
2000-09-05 17:06:45 +00:00
|
|
|
die_unless(n > 0);
|
2000-08-30 18:14:28 +00:00
|
|
|
|
|
|
|
n=SSL_CTX_use_PrivateKey_file(pMachine->pCtx,szKeyFile,SSL_FILETYPE_PEM);
|
2000-09-05 17:06:45 +00:00
|
|
|
die_unless(n > 0);
|
2000-08-30 18:14:28 +00:00
|
|
|
|
|
|
|
pMachine->pSSL=SSL_new(pMachine->pCtx);
|
2000-09-05 17:06:45 +00:00
|
|
|
die_unless(pMachine->pSSL);
|
2000-08-30 18:14:28 +00:00
|
|
|
|
|
|
|
pMachine->pbioRead=BIO_new(BIO_s_mem());
|
|
|
|
|
|
|
|
pMachine->pbioWrite=BIO_new(BIO_s_mem());
|
|
|
|
|
|
|
|
SSL_set_bio(pMachine->pSSL,pMachine->pbioRead,pMachine->pbioWrite);
|
|
|
|
|
|
|
|
SSL_set_accept_state(pMachine->pSSL);
|
|
|
|
|
|
|
|
return pMachine;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SSLStateMachine_read_inject(SSLStateMachine *pMachine,
|
|
|
|
const unsigned char *aucBuf,int nBuf)
|
|
|
|
{
|
|
|
|
int n=BIO_write(pMachine->pbioRead,aucBuf,nBuf);
|
|
|
|
/* If it turns out this assert fails, then buffer the data here
|
|
|
|
* and just feed it in in churn instead. Seems to me that it
|
|
|
|
* should be guaranteed to succeed, though.
|
|
|
|
*/
|
|
|
|
assert(n == nBuf);
|
|
|
|
fprintf(stderr,"%d bytes of encrypted data fed to state machine\n",n);
|
|
|
|
}
|
|
|
|
|
|
|
|
int SSLStateMachine_read_extract(SSLStateMachine *pMachine,
|
|
|
|
unsigned char *aucBuf,int nBuf)
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
|
|
|
|
if(!SSL_is_init_finished(pMachine->pSSL))
|
|
|
|
{
|
|
|
|
fprintf(stderr,"Doing SSL_accept\n");
|
|
|
|
n=SSL_accept(pMachine->pSSL);
|
|
|
|
if(n == 0)
|
|
|
|
fprintf(stderr,"SSL_accept returned zero\n");
|
2000-09-05 18:47:57 +00:00
|
|
|
if(n < 0)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if((err=SSL_get_error(pMachine->pSSL,n)) == SSL_ERROR_WANT_READ)
|
|
|
|
{
|
|
|
|
fprintf(stderr,"SSL_accept wants more data\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
SSLStateMachine_print_error(pMachine,"SSL_accept error");
|
|
|
|
exit(7);
|
|
|
|
}
|
2000-08-30 18:14:28 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
n=SSL_read(pMachine->pSSL,aucBuf,nBuf);
|
2000-09-05 18:47:57 +00:00
|
|
|
if(n < 0)
|
|
|
|
{
|
|
|
|
int err=SSL_get_error(pMachine->pSSL,n);
|
|
|
|
|
|
|
|
if(err == SSL_ERROR_WANT_READ)
|
|
|
|
{
|
|
|
|
fprintf(stderr,"SSL_read wants more data\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2000-08-30 18:14:28 +00:00
|
|
|
fprintf(stderr,"%d bytes of decrypted data read from state machine\n",n);
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SSLStateMachine_write_can_extract(SSLStateMachine *pMachine)
|
|
|
|
{
|
|
|
|
int n=BIO_pending(pMachine->pbioWrite);
|
|
|
|
if(n)
|
|
|
|
fprintf(stderr,"There is encrypted data available to write\n");
|
|
|
|
else
|
|
|
|
fprintf(stderr,"There is no encrypted data available to write\n");
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SSLStateMachine_write_extract(SSLStateMachine *pMachine,
|
|
|
|
unsigned char *aucBuf,int nBuf)
|
|
|
|
{
|
|
|
|
int n;
|
|
|
|
|
|
|
|
n=BIO_read(pMachine->pbioWrite,aucBuf,nBuf);
|
|
|
|
fprintf(stderr,"%d bytes of encrypted data read from state machine\n",n);
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SSLStateMachine_write_inject(SSLStateMachine *pMachine,
|
|
|
|
const unsigned char *aucBuf,int nBuf)
|
|
|
|
{
|
|
|
|
int n=SSL_write(pMachine->pSSL,aucBuf,nBuf);
|
|
|
|
/* If it turns out this assert fails, then buffer the data here
|
|
|
|
* and just feed it in in churn instead. Seems to me that it
|
|
|
|
* should be guaranteed to succeed, though.
|
|
|
|
*/
|
|
|
|
assert(n == nBuf);
|
|
|
|
fprintf(stderr,"%d bytes of unencrypted data fed to state machine\n",n);
|
|
|
|
}
|
|
|
|
|
|
|
|
int OpenSocket(int nPort)
|
|
|
|
{
|
|
|
|
int nSocket;
|
|
|
|
struct sockaddr_in saServer;
|
|
|
|
struct sockaddr_in saClient;
|
|
|
|
int one=1;
|
|
|
|
int nSize;
|
|
|
|
int nFD;
|
|
|
|
int nLen;
|
|
|
|
|
|
|
|
nSocket=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
|
|
|
|
if(nSocket < 0)
|
|
|
|
{
|
|
|
|
perror("socket");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(setsockopt(nSocket,SOL_SOCKET,SO_REUSEADDR,(char *)&one,sizeof one) < 0)
|
|
|
|
{
|
|
|
|
perror("setsockopt");
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(&saServer,0,sizeof saServer);
|
|
|
|
saServer.sin_family=AF_INET;
|
|
|
|
saServer.sin_port=htons(nPort);
|
|
|
|
nSize=sizeof saServer;
|
|
|
|
if(bind(nSocket,(struct sockaddr *)&saServer,nSize) < 0)
|
|
|
|
{
|
|
|
|
perror("bind");
|
|
|
|
exit(3);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(listen(nSocket,512) < 0)
|
|
|
|
{
|
|
|
|
perror("listen");
|
|
|
|
exit(4);
|
|
|
|
}
|
|
|
|
|
|
|
|
nLen=sizeof saClient;
|
|
|
|
nFD=accept(nSocket,(struct sockaddr *)&saClient,&nLen);
|
|
|
|
if(nFD < 0)
|
|
|
|
{
|
|
|
|
perror("accept");
|
|
|
|
exit(5);
|
|
|
|
}
|
|
|
|
|
|
|
|
fprintf(stderr,"Incoming accepted on port %d\n",nPort);
|
|
|
|
|
|
|
|
return nFD;
|
|
|
|
}
|
|
|
|
|
2000-09-04 15:29:06 +00:00
|
|
|
int main(int argc,char **argv)
|
2000-08-30 18:14:28 +00:00
|
|
|
{
|
|
|
|
SSLStateMachine *pMachine;
|
|
|
|
int nPort;
|
|
|
|
int nFD;
|
|
|
|
const char *szCertificateFile;
|
|
|
|
const char *szKeyFile;
|
|
|
|
|
|
|
|
if(argc != 4)
|
|
|
|
{
|
|
|
|
fprintf(stderr,"%s <port> <certificate file> <key file>\n",argv[0]);
|
|
|
|
exit(6);
|
|
|
|
}
|
|
|
|
|
|
|
|
nPort=atoi(argv[1]);
|
|
|
|
szCertificateFile=argv[2];
|
|
|
|
szKeyFile=argv[3];
|
|
|
|
|
|
|
|
SSL_library_init();
|
|
|
|
OpenSSL_add_ssl_algorithms();
|
|
|
|
SSL_load_error_strings();
|
|
|
|
ERR_load_crypto_strings();
|
|
|
|
|
|
|
|
nFD=OpenSocket(nPort);
|
|
|
|
|
|
|
|
pMachine=SSLStateMachine_new(szCertificateFile,szKeyFile);
|
|
|
|
|
|
|
|
for( ; ; )
|
|
|
|
{
|
|
|
|
fd_set rfds,wfds;
|
|
|
|
unsigned char buf[1024];
|
|
|
|
int n;
|
|
|
|
|
|
|
|
FD_ZERO(&rfds);
|
|
|
|
FD_ZERO(&wfds);
|
|
|
|
|
|
|
|
/* Select socket for input */
|
|
|
|
FD_SET(nFD,&rfds);
|
|
|
|
|
|
|
|
/* Select socket for output */
|
|
|
|
if(SSLStateMachine_write_can_extract(pMachine))
|
|
|
|
FD_SET(nFD,&wfds);
|
|
|
|
|
|
|
|
/* Select stdin for input */
|
|
|
|
FD_SET(0,&rfds);
|
|
|
|
|
|
|
|
/* Wait for something to do something */
|
|
|
|
n=select(nFD+1,&rfds,&wfds,NULL,NULL);
|
|
|
|
assert(n > 0);
|
|
|
|
|
|
|
|
/* Socket is ready for input */
|
|
|
|
if(FD_ISSET(nFD,&rfds))
|
|
|
|
{
|
|
|
|
n=read(nFD,buf,sizeof buf);
|
|
|
|
if(n == 0)
|
|
|
|
{
|
|
|
|
fprintf(stderr,"Got EOF on socket\n");
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
assert(n > 0);
|
|
|
|
|
|
|
|
SSLStateMachine_read_inject(pMachine,buf,n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* FIXME: we should only extract if stdout is ready */
|
2000-11-21 21:37:48 +00:00
|
|
|
n=SSLStateMachine_read_extract(pMachine,buf,sizeof buf);
|
2000-08-30 18:14:28 +00:00
|
|
|
if(n < 0)
|
|
|
|
{
|
|
|
|
SSLStateMachine_print_error(pMachine,"read extract failed");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
assert(n >= 0);
|
|
|
|
if(n > 0)
|
|
|
|
{
|
|
|
|
int w;
|
|
|
|
|
|
|
|
w=write(1,buf,n);
|
|
|
|
/* FIXME: we should push back any unwritten data */
|
|
|
|
assert(w == n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Socket is ready for output (and therefore we have output to send) */
|
|
|
|
if(FD_ISSET(nFD,&wfds))
|
|
|
|
{
|
|
|
|
int w;
|
|
|
|
|
|
|
|
n=SSLStateMachine_write_extract(pMachine,buf,sizeof buf);
|
|
|
|
assert(n > 0);
|
|
|
|
|
|
|
|
w=write(nFD,buf,n);
|
|
|
|
/* FIXME: we should push back any unwritten data */
|
|
|
|
assert(w == n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Stdin is ready for input */
|
|
|
|
if(FD_ISSET(0,&rfds))
|
|
|
|
{
|
|
|
|
n=read(0,buf,sizeof buf);
|
|
|
|
if(n == 0)
|
|
|
|
{
|
|
|
|
fprintf(stderr,"Got EOF on stdin\n");
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
assert(n > 0);
|
|
|
|
|
|
|
|
SSLStateMachine_write_inject(pMachine,buf,n);
|
|
|
|
}
|
|
|
|
}
|
2000-09-04 15:29:06 +00:00
|
|
|
/* not reached */
|
|
|
|
return 0;
|
2000-08-30 18:14:28 +00:00
|
|
|
}
|