openssl/crypto/ecdsa/ecdsatest.c

497 lines
13 KiB
C
Raw Normal View History

/* crypto/ecdsa/ecdsatest.c */
/*
* Written by Nils Larsch for the OpenSSL project.
*/
/* ====================================================================
* Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
*
*/
This is a first-cut at improving the callback mechanisms used in key-generation and prime-checking functions. Rather than explicitly passing callback functions and caller-defined context data for the callbacks, a new structure BN_GENCB is defined that encapsulates this; a pointer to the structure is passed to all such functions instead. This wrapper structure allows the encapsulation of "old" and "new" style callbacks - "new" callbacks return a boolean result on the understanding that returning FALSE should terminate keygen/primality processing. The BN_GENCB abstraction will allow future callback modifications without needing to break binary compatibility nor change the API function prototypes. The new API functions have been given names ending in "_ex" and the old functions are implemented as wrappers to the new ones. The OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined, declaration of the older functions will be skipped. NB: Some openssl-internal code will stick with the older callbacks for now, so appropriate "#undef" logic will be put in place - this is in case the user is *building* openssl (rather than *including* its headers) with this symbol defined. There is another change in the new _ex functions; the key-generation functions do not return key structures but operate on structures passed by the caller, the return value is a boolean. This will allow for a smoother transition to having key-generation as "virtual function" in the various ***_METHOD tables.
2002-12-08 05:24:31 +00:00
/* Until the key-gen callbacks are modified to use newer prototypes, we allow
* deprecated functions for openssl-internal code */
#ifdef OPENSSL_NO_DEPRECATED
#undef OPENSSL_NO_DEPRECATED
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/opensslconf.h> /* To see if OPENSSL_NO_ECDSA is defined */
#ifdef OPENSSL_NO_ECDSA
int main(int argc, char * argv[])
{
puts("Elliptic curves are disabled.");
return 0;
}
#else
#include <openssl/crypto.h>
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/ecdsa.h>
#include <openssl/engine.h>
#include <openssl/err.h>
#include <openssl/rand.h>
static const char rnd_seed[] = "string to make the random number generator "
"think it has entropy";
/* declaration of the test functions */
int x9_62_tests(BIO *);
int x9_62_test_internal(BIO *out, int nid, const char *r, const char *s);
int test_builtin(BIO *);
/* functions to change the RAND_METHOD */
int change_rand(void);
int restore_rand(void);
int fbytes(unsigned char *buf, int num);
RAND_METHOD fake_rand;
const RAND_METHOD *old_rand;
int change_rand(void)
{
/* save old rand method */
if ((old_rand = RAND_get_rand_method()) == NULL)
return 0;
fake_rand.seed = old_rand->seed;
fake_rand.cleanup = old_rand->cleanup;
fake_rand.add = old_rand->add;
fake_rand.status = old_rand->status;
/* use own random function */
fake_rand.bytes = fbytes;
fake_rand.pseudorand = old_rand->bytes;
/* set new RAND_METHOD */
if (!RAND_set_rand_method(&fake_rand))
return 0;
return 1;
}
int restore_rand(void)
{
if (!RAND_set_rand_method(old_rand))
return 0;
else
return 1;
}
static int fbytes_counter = 0;
static const char *numbers[8] = {
"651056770906015076056810763456358567190100156695615665659",
"6140507067065001063065065565667405560006161556565665656654",
"8763001015071075675010661307616710783570106710677817767166"
"71676178726717",
"7000000175690566466555057817571571075705015757757057795755"
"55657156756655",
"1275552191113212300012030439187146164646146646466749494799",
"1542725565216523985789236956265265265235675811949404040041",
"1456427555219115346513212300075341203043918714616464614664"
"64667494947990",
"1712787255652165239672857892369562652652652356758119494040"
"40041670216363"};
int fbytes(unsigned char *buf, int num)
{
int ret;
BIGNUM *tmp = NULL;
if (fbytes_counter >= 8)
return 0;
tmp = BN_new();
if (!tmp)
return 0;
if (!BN_dec2bn(&tmp, numbers[fbytes_counter]))
{
BN_free(tmp);
return 0;
}
fbytes_counter ++;
ret = BN_bn2bin(tmp, buf);
if (ret == 0 || ret != num)
ret = 0;
else
ret = 1;
if (tmp)
BN_free(tmp);
return ret;
}
/* some tests from the X9.62 draft */
int x9_62_test_internal(BIO *out, int nid, const char *r_in, const char *s_in)
{
int ret = 0;
const char message[] = "abc";
unsigned char digest[20];
unsigned int dgst_len = 0;
EVP_MD_CTX md_ctx;
EC_KEY *key = NULL;
ECDSA_SIG *signature = NULL;
BIGNUM *r = NULL, *s = NULL;
EVP_MD_CTX_init(&md_ctx);
/* get the message digest */
EVP_DigestInit(&md_ctx, EVP_ecdsa());
EVP_DigestUpdate(&md_ctx, (const void*)message, 3);
EVP_DigestFinal(&md_ctx, digest, &dgst_len);
BIO_printf(out, "testing %s: ", OBJ_nid2sn(nid));
/* create the key */
if ((key = EC_KEY_new()) == NULL)
goto x962_int_err;
if ((key->group = EC_GROUP_new_by_nid(nid)) == NULL)
goto x962_int_err;
if (!EC_KEY_generate_key(key))
goto x962_int_err;
BIO_printf(out, ".");
BIO_flush(out);
/* create the signature */
signature = ECDSA_do_sign(digest, 20, key);
if (signature == NULL)
goto x962_int_err;
BIO_printf(out, ".");
BIO_flush(out);
/* compare the created signature with the expected signature */
if ((r = BN_new()) == NULL || (s = BN_new()) == NULL)
goto x962_int_err;
if (!BN_dec2bn(&r, r_in) ||
!BN_dec2bn(&s, s_in))
goto x962_int_err;
if (BN_cmp(signature->r ,r) || BN_cmp(signature->s, s))
goto x962_int_err;
BIO_printf(out, ".");
BIO_flush(out);
/* verify the signature */
if (ECDSA_do_verify(digest, 20, signature, key) != 1)
goto x962_int_err;
BIO_printf(out, ".");
BIO_flush(out);
BIO_printf(out, " ok\n");
ret = 1;
x962_int_err:
if (!ret)
BIO_printf(out, " failed\n");
if (key)
EC_KEY_free(key);
if (signature)
ECDSA_SIG_free(signature);
if (r)
BN_free(r);
if (s)
BN_free(s);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
int x9_62_tests(BIO *out)
{
int ret = 0;
BIO_printf(out, "some tests from X9.62:\n");
/* set own rand method */
if (!change_rand())
goto x962_err;
if (!x9_62_test_internal(out, NID_X9_62_prime192v1,
"3342403536405981729393488334694600415596881826869351677613",
"5735822328888155254683894997897571951568553642892029982342"))
goto x962_err;
if (!x9_62_test_internal(out, NID_X9_62_prime239v1,
"3086361431751678114926225473006680188549593787585317781474"
"62058306432176",
"3238135532097973577080787768312505059318910517550078427819"
"78505179448783"))
goto x962_err;
if (!x9_62_test_internal(out, NID_X9_62_c2tnb191v1,
"87194383164871543355722284926904419997237591535066528048",
"308992691965804947361541664549085895292153777025772063598"))
goto x962_err;
if (!x9_62_test_internal(out, NID_X9_62_c2tnb239v1,
"2159633321041961198501834003903461262881815148684178964245"
"5876922391552",
"1970303740007316867383349976549972270528498040721988191026"
"49413465737174"))
goto x962_err;
ret = 1;
x962_err:
if (!restore_rand())
ret = 0;
return ret;
}
int test_builtin(BIO *out)
{
EC_builtin_curve *curves = NULL;
size_t crv_len = 0, n = 0;
EC_KEY *eckey = NULL, *wrong_eckey = NULL;
unsigned char digest[20], wrong_digest[20];
This is a first-cut at improving the callback mechanisms used in key-generation and prime-checking functions. Rather than explicitly passing callback functions and caller-defined context data for the callbacks, a new structure BN_GENCB is defined that encapsulates this; a pointer to the structure is passed to all such functions instead. This wrapper structure allows the encapsulation of "old" and "new" style callbacks - "new" callbacks return a boolean result on the understanding that returning FALSE should terminate keygen/primality processing. The BN_GENCB abstraction will allow future callback modifications without needing to break binary compatibility nor change the API function prototypes. The new API functions have been given names ending in "_ex" and the old functions are implemented as wrappers to the new ones. The OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined, declaration of the older functions will be skipped. NB: Some openssl-internal code will stick with the older callbacks for now, so appropriate "#undef" logic will be put in place - this is in case the user is *building* openssl (rather than *including* its headers) with this symbol defined. There is another change in the new _ex functions; the key-generation functions do not return key structures but operate on structures passed by the caller, the return value is a boolean. This will allow for a smoother transition to having key-generation as "virtual function" in the various ***_METHOD tables.
2002-12-08 05:24:31 +00:00
unsigned char *signature = NULL;
unsigned int sig_len;
int nid, ret = 0;
/* fill digest values with some random data */
if (!RAND_pseudo_bytes(digest, 20) ||
!RAND_pseudo_bytes(wrong_digest, 20))
{
BIO_printf(out, "ERROR: unable to get random data\n");
goto builtin_err;
}
/* create and verify a ecdsa signature with every availble curve
* (with ) */
BIO_printf(out, "\ntesting ECDSA_sign() and ECDSA_verify() "
"with some internal curves:\n");
/* get a list of all internal curves */
crv_len = EC_get_builtin_curves(NULL, 0);
curves = OPENSSL_malloc(sizeof(EC_builtin_curve) * crv_len);
if (curves == NULL)
{
BIO_printf(out, "malloc error\n");
goto builtin_err;
}
if (!EC_get_builtin_curves(curves, crv_len))
{
BIO_printf(out, "unable to get internal curves\n");
goto builtin_err;
}
/* now create and verify a signature for every curve */
for (n = 0; n < crv_len; n++)
{
unsigned char dirt, offset;
nid = curves[n].nid;
if (nid == NID_ipsec4)
continue;
/* create new ecdsa key (== EC_KEY) */
if ((eckey = EC_KEY_new()) == NULL)
goto builtin_err;
if ((eckey->group = EC_GROUP_new_by_nid(nid)) == NULL)
goto builtin_err;
if (EC_GROUP_get_degree(eckey->group) < 160)
/* drop the curve */
{
EC_KEY_free(eckey);
eckey = NULL;
continue;
}
BIO_printf(out, "%s: ", OBJ_nid2sn(nid));
/* create key */
if (!EC_KEY_generate_key(eckey))
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
/* create second key */
if ((wrong_eckey = EC_KEY_new()) == NULL)
goto builtin_err;
if ((wrong_eckey->group = EC_GROUP_new_by_nid(nid)) == NULL)
goto builtin_err;
if (!EC_KEY_generate_key(wrong_eckey))
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* check key */
if (!EC_KEY_check_key(eckey))
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* create signature */
sig_len = ECDSA_size(eckey);
if ((signature = OPENSSL_malloc(sig_len)) == NULL)
goto builtin_err;
if (!ECDSA_sign(0, digest, 20, signature, &sig_len, eckey))
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* verify signature */
if (ECDSA_verify(0, digest, 20, signature, sig_len, eckey) != 1)
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* verify signature with the wrong key */
if (ECDSA_verify(0, digest, 20, signature, sig_len,
wrong_eckey) == 1)
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* wrong digest */
if (ECDSA_verify(0, wrong_digest, 20, signature, sig_len,
eckey) == 1)
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
/* modify a single byte of the signature */
offset = signature[10] % sig_len;
dirt = signature[11];
signature[offset] ^= dirt ? dirt : 1;
if (ECDSA_verify(0, digest, 20, signature, sig_len, eckey) == 1)
{
BIO_printf(out, " failed\n");
goto builtin_err;
}
BIO_printf(out, ".");
BIO_flush(out);
BIO_printf(out, " ok\n");
/* cleanup */
OPENSSL_free(signature);
signature = NULL;
EC_KEY_free(eckey);
eckey = NULL;
EC_KEY_free(wrong_eckey);
wrong_eckey = NULL;
}
ret = 1;
builtin_err:
if (eckey)
EC_KEY_free(eckey);
if (wrong_eckey)
EC_KEY_free(wrong_eckey);
if (signature);
OPENSSL_free(signature);
if (curves)
OPENSSL_free(curves);
return ret;
}
int main(void)
{
int ret = 0;
BIO *out;
out = BIO_new_fp(stdout, BIO_NOCLOSE);
/* enable memory leak checking unless explicitly disabled */
if (!((getenv("OPENSSL_DEBUG_MEMORY") != NULL) &&
(0 == strcmp(getenv("OPENSSL_DEBUG_MEMORY"), "off"))))
{
CRYPTO_malloc_debug_init();
CRYPTO_set_mem_debug_options(V_CRYPTO_MDEBUG_ALL);
}
else
{
/* OPENSSL_DEBUG_MEMORY=off */
CRYPTO_set_mem_debug_functions(0, 0, 0, 0, 0);
}
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
ERR_load_crypto_strings();
/* initialize the prng */
RAND_seed(rnd_seed, sizeof(rnd_seed));
/* the tests */
if (!x9_62_tests(out)) goto err;
if (!test_builtin(out)) goto err;
ret = 1;
err:
if (!ret)
BIO_printf(out, "\nECDSA test failed\n");
else
BIO_printf(out, "\nECDSA test passed\n");
if (!ret)
ERR_print_errors(out);
CRYPTO_cleanup_all_ex_data();
ERR_remove_state(0);
ERR_free_strings();
CRYPTO_mem_leaks(out);
if (out != NULL)
BIO_free(out);
return(0);
}
#endif