openssl/crypto/rsa/rsa_gen.c

243 lines
8.4 KiB
C
Raw Normal View History

/* crypto/rsa/rsa_gen.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/*
* NB: these functions have been "upgraded", the deprecated versions (which
* are compatibility wrappers using these functions) are in rsa_depr.c. -
* Geoff
This is a first-cut at improving the callback mechanisms used in key-generation and prime-checking functions. Rather than explicitly passing callback functions and caller-defined context data for the callbacks, a new structure BN_GENCB is defined that encapsulates this; a pointer to the structure is passed to all such functions instead. This wrapper structure allows the encapsulation of "old" and "new" style callbacks - "new" callbacks return a boolean result on the understanding that returning FALSE should terminate keygen/primality processing. The BN_GENCB abstraction will allow future callback modifications without needing to break binary compatibility nor change the API function prototypes. The new API functions have been given names ending in "_ex" and the old functions are implemented as wrappers to the new ones. The OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined, declaration of the older functions will be skipped. NB: Some openssl-internal code will stick with the older callbacks for now, so appropriate "#undef" logic will be put in place - this is in case the user is *building* openssl (rather than *including* its headers) with this symbol defined. There is another change in the new _ex functions; the key-generation functions do not return key structures but operate on structures passed by the caller, the return value is a boolean. This will allow for a smoother transition to having key-generation as "virtual function" in the various ***_METHOD tables.
2002-12-08 05:24:31 +00:00
*/
#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/rsa.h>
static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value,
BN_GENCB *cb);
/*
* NB: this wrapper would normally be placed in rsa_lib.c and the static
* implementation would probably be in rsa_eay.c. Nonetheless, is kept here
* so that we don't introduce a new linker dependency. Eg. any application
* that wasn't previously linking object code related to key-generation won't
* have to now just because key-generation is part of RSA_METHOD.
*/
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
{
if (rsa->meth->rsa_keygen)
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
return rsa_builtin_keygen(rsa, bits, e_value, cb);
}
static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value,
BN_GENCB *cb)
{
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL, *tmp;
BIGNUM *local_r0, *local_d, *local_p;
BIGNUM *pr0, *d, *p;
int bitsp, bitsq, ok = -1, n = 0;
BN_CTX *ctx = NULL;
local_r0 = BN_new();
local_d = BN_new();
local_p = BN_new();
if (local_r0 == NULL || local_d == NULL || local_p == NULL)
goto err;
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
BN_CTX_start(ctx);
r0 = BN_CTX_get(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
r3 = BN_CTX_get(ctx);
if (r3 == NULL)
goto err;
bitsp = (bits + 1) / 2;
bitsq = bits - bitsp;
/* We need the RSA components non-NULL */
if (!rsa->n && ((rsa->n = BN_new()) == NULL))
goto err;
if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
goto err;
if (!rsa->e && ((rsa->e = BN_new()) == NULL))
goto err;
if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
goto err;
if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
goto err;
if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
goto err;
if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
goto err;
if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
goto err;
BN_copy(rsa->e, e_value);
/* generate p and q */
for (;;) {
if (!BN_generate_prime_ex(rsa->p, bitsp, 0, NULL, NULL, cb))
goto err;
if (!BN_sub(r2, rsa->p, BN_value_one()))
goto err;
if (!BN_gcd(r1, r2, rsa->e, ctx))
goto err;
if (BN_is_one(r1))
break;
if (!BN_GENCB_call(cb, 2, n++))
goto err;
}
if (!BN_GENCB_call(cb, 3, 0))
goto err;
for (;;) {
/*
* When generating ridiculously small keys, we can get stuck
* continually regenerating the same prime values. Check for this and
* bail if it happens 3 times.
*/
unsigned int degenerate = 0;
do {
if (!BN_generate_prime_ex(rsa->q, bitsq, 0, NULL, NULL, cb))
goto err;
} while ((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
if (degenerate == 3) {
ok = 0; /* we set our own err */
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
goto err;
}
if (!BN_sub(r2, rsa->q, BN_value_one()))
goto err;
if (!BN_gcd(r1, r2, rsa->e, ctx))
goto err;
if (BN_is_one(r1))
break;
if (!BN_GENCB_call(cb, 2, n++))
goto err;
}
if (!BN_GENCB_call(cb, 3, 1))
goto err;
if (BN_cmp(rsa->p, rsa->q) < 0) {
tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
/* calculate n */
if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx))
goto err;
/* calculate d */
if (!BN_sub(r1, rsa->p, BN_value_one()))
goto err; /* p-1 */
if (!BN_sub(r2, rsa->q, BN_value_one()))
goto err; /* q-1 */
if (!BN_mul(r0, r1, r2, ctx))
goto err; /* (p-1)(q-1) */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
pr0 = local_r0;
BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
} else
pr0 = r0;
if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx))
goto err; /* d */
/* set up d for correct BN_FLG_CONSTTIME flag */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
d = local_d;
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
} else
d = rsa->d;
/* calculate d mod (p-1) */
if (!BN_mod(rsa->dmp1, d, r1, ctx))
goto err;
/* calculate d mod (q-1) */
if (!BN_mod(rsa->dmq1, d, r2, ctx))
goto err;
/* calculate inverse of q mod p */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
p = local_p;
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
} else
p = rsa->p;
if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx))
goto err;
ok = 1;
err:
BN_free(local_r0);
BN_free(local_d);
BN_free(local_p);
if (ok == -1) {
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
ok = 0;
}
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ok;
}