openssl/doc/crypto/BN_add.pod

96 lines
3.0 KiB
Plaintext
Raw Normal View History

2000-01-23 22:06:24 +00:00
=pod
=head1 NAME
BN_add, BN_sub, BN_mul, BN_div, BN_sqr, BN_mod, BN_mod_mul, BN_exp,
BN_mod_exp, BN_gcd - Arithmetic operations on BIGNUMs
=head1 SYNOPSIS
#include <openssl/bn.h>
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
=head1 DESCRIPTION
BN_add() adds B<a> and B<b> and places the result in B<r> (C<r=a+b>).
B<r> may be the same B<BIGNUM> as B<a> or B<b>.
BN_sub() substracts B<b> from B<a> and places the result in B<r> (C<r=a-b>).
BN_mul() multiplies B<a> and B<b> and places the result in B<r> (C<r=a*b>).
BN_div() divides B<a> by B<d> and places the result in B<dv> and the
remainder in B<rem> (C<dv=a/d, rem=a%d>). Either of B<dv> and B<rem> may
be NULL, in which case the respective value is not returned.
BN_sqr() takes the square of B<a> and places the result in B<r>
(C<r=a^2>). B<r> and B<a> may be the same B<BIGNUM>.
This function is faster than BN_mul(r,a,a).
BN_mod() find the remainder of B<a> divided by B<m> and places it in
B<rem> (C<rem=a%m>).
BN_mod_mul() multiplies B<a> by B<b> and finds the remainder when
divided by B<m> (C<r=(a*b)%m>). B<r> may be the same B<BIGNUM> as B<a>
or B<b>. For a more efficient algorithm, see
L<BN_mod_mul_montgomery(3)>; for repeated computations using the same
modulus, see L<BN_mod_mul_reciprocal(3)>.
BN_exp() raises B<a> to the B<p>-th power and places the result in B<r>
(C<r=a^p>). This function is faster than repeated applications of
BN_mul().
BN_mod_exp() computes B<a> to the B<p>-th power modulo B<m> (C<r=a^p %
m>). This function uses less time and space than BN_exp().
BN_gcd() computes the greatest common divisor of B<a> and B<b> and
places the result in B<r>. B<r> may be the same B<BIGNUM> as B<a> or
B<b>.
For all functions, B<ctx> is a previously allocated B<BN_CTX> used for
temporary variables; see L<BN_CTX_new(3)>.
Unless noted otherwise, the result B<BIGNUM> must be different from
the arguments.
=head1 RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return
value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
The error codes can be obtained by ERR_get_error(3).
=head1 SEE ALSO
bn(3), err(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)
=head1 HISTORY
BN_add(), BN_sub(), BN_div(), BN_sqr(), BN_mod(), BN_mod_mul(),
BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
OpenSSL. The B<ctx> argument to BN_mul() was added in SSLeay
0.9.1b. BN_exp() appeared in SSLeay 0.9.0.
=cut