openssl/crypto/aes/asm/bsaes-x86_64.pl

1561 lines
36 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
###################################################################
### AES-128 [originally in CTR mode] ###
### bitsliced implementation for Intel Core 2 processors ###
### requires support of SSE extensions up to SSSE3 ###
2011-09-27 19:34:40 +00:00
### Author: Emilia Käsper and Peter Schwabe ###
### Date: 2009-03-19 ###
### Public domain ###
### ###
### See http://homes.esat.kuleuven.be/~ekasper/#software for ###
### further information. ###
###################################################################
#
# September 2011.
#
# Started as transliteration to "perlasm" the original code has
# undergone following changes:
#
# - code was made position-independent;
# - rounds were folded into a loop resulting in >5x size reduction
# from 12.5KB to 2.2KB;
# - above was possibile thanks to mixcolumns() modification that
# allowed to feed its output back to aesenc[last], this was
# achieved at cost of two additional inter-registers moves;
# - some instruction reordering and interleaving;
# - this module doesn't implement key setup subroutine, instead it
# relies on conversion of "conventional" key schedule as returned
# by AES_set_encrypt_key (see discussion below);
# - first and last round keys are treated differently, which allowed
# to skip one shiftrows(), reduce bit-sliced key schedule and
# speed-up conversion by 22%;
# - support for 192- and 256-bit keys was added;
#
# Resulting performance in CPU cycles spent to encrypt one byte out
# of 4096-byte buffer with 128-bit key is:
#
# Emilia's this(*) difference
#
# Core 2 9.30 8.69 +7%
# Nehalem(**) 7.63 6.98 +9%
# Atom 17.1 17.4 -2%(***)
#
# (*) Comparison is not completely fair, because "this" is ECB,
# i.e. no extra processing such as counter values calculation
# and xor-ing input as in Emilia's CTR implementation is
# performed. However, the CTR calculations stand for not more
# than 1% of total time, so comparison is *rather* fair.
#
# (**) Results were collected on Westmere, which is considered to
# be equivalent to Nehalem for this code.
#
# (***) Slowdown on Atom is rather strange per se, because original
# implementation has a number of 9+-bytes instructions, which
# are bad for Atom front-end, and which I eliminated completely.
# In attempt to address deterioration sbox() was tested in FP
# SIMD "domain" (movaps instead of movdqa, xorps instead of
# pxor, etc.). While it resulted in nominal 4% improvement on
# Atom, it hurted Westmere by more than 2x factor.
#
# As for key schedule conversion subroutine. Interface to OpenSSL
# relies on per-invocation on-the-fly conversion. This naturally
# has impact on performance, especially for short inputs. Conversion
# time in CPU cycles and its ratio to CPU cycles spent in 8x block
# function is:
#
# conversion conversion/8x block
# Core 2 410 0.37
# Nehalem 310 0.35
# Atom 570 0.26
#
# The ratio values mean that 128-byte blocks will be processed
# 21-27% slower, 256-byte blocks - 12-16%, 384-byte blocks - 8-11%,
# etc. Then keep in mind that input sizes not divisible by 128 are
# *effectively* slower, especially shortest ones, e.g. consecutive
# 144-byte blocks are processed 44% slower than one would expect,
# 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings"
# it's still faster than ["hyper-threading-safe" code path in]
# aes-x86_64.pl on all lengths above 64 bytes...
#
# October 2011.
#
# Add decryption procedure.
#
# <appro@openssl.org>
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open STDOUT,"| $^X $xlate $flavour $output";
my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx");
my @XMM=map("%xmm$_",(15,0..14)); # best on Atom, +10% over (0..15)
{
my ($key,$rounds,$const)=("%rax","%r10d","%r11");
sub Sbox {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
&InBasisChange (@b);
&Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s);
&OutBasisChange (@b[7,1,4,2,6,5,0,3]);
}
sub InBasisChange {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb
my @b=@_[0..7];
$code.=<<___;
pxor @b[6], @b[5]
pxor @b[1], @b[2]
pxor @b[0], @b[3]
pxor @b[2], @b[6]
pxor @b[0], @b[5]
pxor @b[3], @b[6]
pxor @b[7], @b[3]
pxor @b[5], @b[7]
pxor @b[4], @b[3]
pxor @b[5], @b[4]
pxor @b[1], @b[3]
pxor @b[7], @b[2]
pxor @b[5], @b[1]
___
}
sub OutBasisChange {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb
my @b=@_[0..7];
$code.=<<___;
pxor @b[6], @b[0]
pxor @b[4], @b[1]
pxor @b[0], @b[2]
pxor @b[6], @b[4]
pxor @b[1], @b[6]
pxor @b[5], @b[1]
pxor @b[3], @b[5]
pxor @b[7], @b[3]
pxor @b[5], @b[7]
pxor @b[5], @b[2]
pxor @b[7], @b[4]
___
}
sub InvSbox {
# input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
# output in lsb > [b0, b1, b6, b4, b2, b7, b3, b5] < msb
my @b=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
&InvInBasisChange (@b);
&Inv_GF256 (@b[5,1,2,6,3,7,0,4],@t,@s);
&InvOutBasisChange (@b[3,7,0,4,5,1,2,6]);
}
sub InvInBasisChange { # OutBasisChange in reverse
my @b=@_[5,1,2,6,3,7,0,4];
$code.=<<___
pxor @b[7], @b[4]
pxor @b[5], @b[7]
pxor @b[5], @b[2]
pxor @b[7], @b[3]
pxor @b[3], @b[5]
pxor @b[5], @b[1]
pxor @b[1], @b[6]
pxor @b[0], @b[2]
pxor @b[6], @b[4]
pxor @b[6], @b[0]
pxor @b[4], @b[1]
___
}
sub InvOutBasisChange { # InBasisChange in reverse
my @b=@_[2,5,7,3,6,1,0,4];
$code.=<<___;
pxor @b[5], @b[1]
pxor @b[7], @b[2]
pxor @b[1], @b[3]
pxor @b[5], @b[4]
pxor @b[5], @b[7]
pxor @b[4], @b[3]
pxor @b[0], @b[5]
pxor @b[7], @b[3]
pxor @b[2], @b[6]
pxor @b[1], @b[2]
pxor @b[3], @b[6]
pxor @b[0], @b[3]
pxor @b[6], @b[5]
___
}
sub Mul_GF4 {
#;*************************************************************
#;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
#;*************************************************************
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
movdqa $y0, $t0
pxor $y1, $t0
pand $x0, $t0
pxor $x1, $x0
pand $y0, $x1
pand $y1, $x0
pxor $x1, $x0
pxor $t0, $x1
___
}
sub Mul_GF4_N { # not used, see next subroutine
# multiply and scale by N
my ($x0,$x1,$y0,$y1,$t0)=@_;
$code.=<<___;
movdqa $y0, $t0
pxor $y1, $t0
pand $x0, $t0
pxor $x1, $x0
pand $y0, $x1
pand $y1, $x0
pxor $x0, $x1
pxor $t0, $x0
___
}
sub Mul_GF4_N_GF4 {
# interleaved Mul_GF4_N and Mul_GF4
my ($x0,$x1,$y0,$y1,$t0,
$x2,$x3,$y2,$y3,$t1)=@_;
$code.=<<___;
movdqa $y0, $t0
movdqa $y2, $t1
pxor $y1, $t0
pxor $y3, $t1
pand $x0, $t0
pand $x2, $t1
pxor $x1, $x0
pxor $x3, $x2
pand $y0, $x1
pand $y2, $x3
pand $y1, $x0
pand $y3, $x2
pxor $x0, $x1
pxor $x3, $x2
pxor $t0, $x0
pxor $t1, $x3
___
}
sub Mul_GF16_2 {
my @x=@_[0..7];
my @y=@_[8..11];
my @t=@_[12..15];
$code.=<<___;
movdqa @x[0], @t[0]
movdqa @x[1], @t[1]
___
&Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2]);
$code.=<<___;
pxor @x[2], @t[0]
pxor @x[3], @t[1]
pxor @y[2], @y[0]
pxor @y[3], @y[1]
___
Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
@x[2], @x[3], @y[2], @y[3], @t[2]);
$code.=<<___;
pxor @t[0], @x[0]
pxor @t[0], @x[2]
pxor @t[1], @x[1]
pxor @t[1], @x[3]
movdqa @x[4], @t[0]
movdqa @x[5], @t[1]
pxor @x[6], @t[0]
pxor @x[7], @t[1]
___
&Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
@x[6], @x[7], @y[2], @y[3], @t[2]);
$code.=<<___;
pxor @y[2], @y[0]
pxor @y[3], @y[1]
___
&Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[3]);
$code.=<<___;
pxor @t[0], @x[4]
pxor @t[0], @x[6]
pxor @t[1], @x[5]
pxor @t[1], @x[7]
___
}
sub Inv_GF256 {
#;********************************************************************
#;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) *
#;********************************************************************
my @x=@_[0..7];
my @t=@_[8..11];
my @s=@_[12..15];
# direct optimizations from hardware
$code.=<<___;
movdqa @x[4], @t[3]
movdqa @x[5], @t[2]
movdqa @x[1], @t[1]
movdqa @x[7], @s[1]
movdqa @x[0], @s[0]
pxor @x[6], @t[3]
pxor @x[7], @t[2]
pxor @x[3], @t[1]
movdqa @t[3], @s[2]
pxor @x[6], @s[1]
movdqa @t[2], @t[0]
pxor @x[2], @s[0]
movdqa @t[3], @s[3]
por @t[1], @t[2]
por @s[0], @t[3]
pxor @t[0], @s[3]
pand @s[0], @s[2]
pxor @t[1], @s[0]
pand @t[1], @t[0]
pand @s[0], @s[3]
movdqa @x[3], @s[0]
pxor @x[2], @s[0]
pand @s[0], @s[1]
pxor @s[1], @t[3]
pxor @s[1], @t[2]
movdqa @x[4], @s[1]
movdqa @x[1], @s[0]
pxor @x[5], @s[1]
pxor @x[0], @s[0]
movdqa @s[1], @t[1]
pand @s[0], @s[1]
por @s[0], @t[1]
pxor @s[1], @t[0]
pxor @s[3], @t[3]
pxor @s[2], @t[2]
pxor @s[3], @t[1]
movdqa @x[7], @s[0]
pxor @s[2], @t[0]
movdqa @x[6], @s[1]
pxor @s[2], @t[1]
movdqa @x[5], @s[2]
pand @x[3], @s[0]
movdqa @x[4], @s[3]
pand @x[2], @s[1]
pand @x[1], @s[2]
por @x[0], @s[3]
pxor @s[0], @t[3]
pxor @s[1], @t[2]
pxor @s[2], @t[1]
pxor @s[3], @t[0]
#Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3
# new smaller inversion
movdqa @t[3], @s[0]
pand @t[1], @t[3]
pxor @t[2], @s[0]
movdqa @t[0], @s[2]
movdqa @s[0], @s[3]
pxor @t[3], @s[2]
pand @s[2], @s[3]
movdqa @t[1], @s[1]
pxor @t[2], @s[3]
pxor @t[0], @s[1]
pxor @t[2], @t[3]
pand @t[3], @s[1]
movdqa @s[2], @t[2]
pxor @t[0], @s[1]
pxor @s[1], @t[2]
pxor @s[1], @t[1]
pand @t[0], @t[2]
pxor @t[2], @s[2]
pxor @t[2], @t[1]
pand @s[3], @s[2]
pxor @s[0], @s[2]
___
# output in s3, s2, s1, t1
# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s1, \s2, \s3
# Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t0, \t2, \t3
&Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]);
### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb
}
# AES linear components
sub ShiftRows {
my @x=@_[0..7];
my $mask=pop;
$code.=<<___;
pxor 0x00($key),@x[0]
pxor 0x10($key),@x[1]
pshufb $mask,@x[0]
pxor 0x20($key),@x[2]
pshufb $mask,@x[1]
pxor 0x30($key),@x[3]
pshufb $mask,@x[2]
pxor 0x40($key),@x[4]
pshufb $mask,@x[3]
pxor 0x50($key),@x[5]
pshufb $mask,@x[4]
pxor 0x60($key),@x[6]
pshufb $mask,@x[5]
pxor 0x70($key),@x[7]
pshufb $mask,@x[6]
lea 0x80($key),$key
pshufb $mask,@x[7]
___
}
sub MixColumns {
# modified to emit output in order suitable for feeding back to aesenc[last]
my @x=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
pshufd \$0x93, @x[0], @t[0] # x0 <<< 32
pshufd \$0x93, @x[1], @t[1]
pxor @t[0], @x[0] # x0 ^ (x0 <<< 32)
pshufd \$0x93, @x[2], @t[2]
pxor @t[1], @x[1]
pshufd \$0x93, @x[3], @t[3]
pxor @t[2], @x[2]
pshufd \$0x93, @x[4], @t[4]
pxor @t[3], @x[3]
pshufd \$0x93, @x[5], @t[5]
pxor @t[4], @x[4]
pshufd \$0x93, @x[6], @t[6]
pxor @t[5], @x[5]
pshufd \$0x93, @x[7], @t[7]
pxor @t[6], @x[6]
pxor @t[7], @x[7]
pxor @x[0], @t[1]
pxor @x[7], @t[0]
pxor @x[7], @t[1]
pshufd \$0x4E, @x[0], @x[0] # (x0 ^ (x0 <<< 32)) <<< 64)
pxor @x[1], @t[2]
pshufd \$0x4E, @x[1], @x[1]
pxor @x[4], @t[5]
pxor @t[0], @x[0]
pxor @x[5], @t[6]
pxor @t[1], @x[1]
pxor @x[3], @t[4]
pshufd \$0x4E, @x[4], @t[0]
pxor @x[6], @t[7]
pshufd \$0x4E, @x[5], @t[1]
pxor @x[2], @t[3]
pshufd \$0x4E, @x[3], @x[4]
pxor @x[7], @t[3]
pshufd \$0x4E, @x[7], @x[5]
pxor @x[7], @t[4]
pshufd \$0x4E, @x[6], @x[3]
pxor @t[4], @t[0]
pshufd \$0x4E, @x[2], @x[6]
pxor @t[5], @t[1]
pxor @t[3], @x[4]
pxor @t[7], @x[5]
pxor @t[6], @x[3]
movdqa @t[0], @x[2]
pxor @t[2], @x[6]
movdqa @t[1], @x[7]
___
}
sub InvMixColumns {
my @x=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
pshufd \$0x93, @x[0], @t[0]
pshufd \$0x93, @x[1], @t[1]
movdqa @x[2], @t[2]
pshufd \$0x93, @x[3], @t[3]
movdqa @x[4], @t[4]
movdqa @x[5], @t[5]
pshufd \$0x93, @x[6], @t[6]
pshufd \$0x93, @x[7], @t[7]
# multiplication by 0x0e
pxor @x[5], @x[7] # 7 5
pxor @x[5], @x[2] # 2 5
pxor @x[0], @x[5] # 5 0 [1]
pxor @x[1], @x[0] # 0 1
pxor @x[2], @x[1] # 1 25
pxor @x[6], @x[0] # 01 6 [2]
pxor @x[3], @x[1] # 125 3 [4]
pxor @x[0], @x[2] # 25 016 [3]
pxor @x[7], @x[3] # 3 75
pxor @x[6], @x[7] # 75 6 [0]
pxor @x[4], @x[6] # 6 4
pxor @x[3], @x[4] # 4 375 [6]
pxor @x[7], @x[3] # 375 756=36
pxor @t[5], @x[6] # 64 5 [7]
pshufd \$0x93, @t[5], @t[5]
pxor @t[2], @x[3] # 36 2
pshufd \$0x93, @t[2], @t[2]
pxor @t[4], @x[3] # 362 4 [5]
pshufd \$0x93, @t[4], @t[4]
___
my @y = @x[7,5,0,2,1,3,4,6];
$code.=<<___;
# multiplication by 0x0b
pxor @y[0], @y[1]
pxor @t[0], @y[0]
pxor @t[5], @y[0]
pxor @t[7], @y[0] # 0^=057
pxor @y[0], @y[1] # 1^=057
pxor @t[1], @y[1]
pxor @t[6], @y[1] # 1^=057 16
pxor @t[6], @t[7] # clobber t[7]
pxor @t[1], @y[2]
pxor @t[2], @y[2]
pxor @t[7], @y[2] # 2^=12 67
pxor @t[0], @y[3]
pxor @t[2], @y[3]
pxor @t[3], @y[3]
pxor @t[5], @y[3] # 3^=0235
pxor @t[7], @y[7]
pxor @t[4], @y[7] # 7^=4 67
pxor @t[5], @t[7] # clobber t[7] even more
pxor @t[3], @y[6]
pxor @t[7], @y[6] # 6^=3 567
pxor @t[7], @y[5] # 5^=567
pxor @t[7], @y[4] # 4^=567
pxor @t[5], @t[7]
pxor @t[6], @t[7] # restore t[7]
pxor @t[2], @y[5]
pxor @t[4], @y[5] # 5^=24 567
pxor @t[1], @y[4]
pxor @t[3], @y[4]
pxor @t[4], @y[4] # 4^=134 567
pshufd \$0x93, @t[0], @t[0]
pshufd \$0x93, @t[1], @t[1]
pshufd \$0x93, @t[2], @t[2]
pshufd \$0x93, @t[3], @t[3]
pshufd \$0x93, @t[4], @t[4]
pshufd \$0x93, @t[5], @t[5]
pshufd \$0x93, @t[6], @t[6]
pshufd \$0x93, @t[7], @t[7]
# multiplication by 0x0d
pxor @t[0], @y[0]
pxor @t[5], @y[0]
pxor @t[6], @y[0] # 0^=056
pxor @y[1], @y[3]
pxor @t[1], @y[1]
pxor @t[5], @y[1]
pxor @t[7], @y[1] # 1^=157
pxor @y[1], @y[3] # 3^=157
pxor @t[0], @y[2]
pxor @t[2], @y[2]
pxor @t[6], @y[2] # 2^=026
pxor @t[3], @t[6] # clobber t[6]
pxor @t[0], @y[3]
pxor @t[6], @y[3] # 3^=0 36 157
pxor @y[7], @y[4]
pxor @t[4], @y[7]
pxor @t[5], @y[7]
pxor @t[7], @y[7] # 7^=457
pxor @y[7], @y[4] # 4^=457
pxor @t[1], @y[4]
pxor @t[2], @y[4] # 4^=12 457
pxor @t[2], @y[5]
pxor @t[5], @y[5]
pxor @t[6], @y[5] # 5^=25 36
pxor @t[6], @y[6]
pxor @t[4], @y[6]
pxor @t[7], @y[6] # 6^=47 36
pxor @t[3], @t[6] # restore t[6]
pshufd \$0x93, @t[0], @t[0]
pshufd \$0x93, @t[1], @t[1]
pshufd \$0x93, @t[2], @t[2]
pshufd \$0x93, @t[3], @t[3]
pshufd \$0x93, @t[4], @t[4]
pshufd \$0x93, @t[5], @t[5]
pshufd \$0x93, @t[6], @t[6]
pshufd \$0x93, @t[7], @t[7]
# multiplication by 0x09
pxor @y[1], @y[4]
pxor @t[1], @y[1]
pxor @t[5], @y[1]
pxor @t[6], @y[1] # 1^=156
pxor @y[1], @y[4] # 4^=156
pxor @t[4], @y[4] # 4^=4 156
pxor @t[7], @t[6] # clobber t[6]
pxor @t[5], @t[0] # clobber t[0]
pxor @t[0], @y[0] # 0^=05
pxor @t[0], @y[3]
pxor @t[3], @y[3]
pxor @t[7], @y[3] # 3^=05 37
pxor @t[2], @y[2]
pxor @t[6], @y[2] # 2^=2 67
pxor @t[2], @y[5]
pxor @t[5], @y[5]
pxor @t[6], @y[5] # 5^=25 67
pxor @t[3], @y[6]
pxor @t[6], @y[6] # 6^=3 67
pxor @t[4], @y[7]
pxor @t[7], @y[7] # 7^=47
movdqa @y[0], @t[0]
movdqa @y[1], @t[1]
movdqa @y[2], @t[2]
movdqa @y[3], @t[3]
movdqa @y[4], @t[4]
movdqa @y[5], @t[5]
movdqa @y[6], @t[6]
movdqa @y[7], @t[7]
movdqa @t[0],@XMM[0]
movdqa @t[1],@XMM[1]
movdqa @t[2],@XMM[2]
movdqa @t[3],@XMM[3]
movdqa @t[4],@XMM[4]
movdqa @t[5],@XMM[5]
movdqa @t[6],@XMM[6]
movdqa @t[7],@XMM[7]
___
}
sub aesenc { # not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
movdqa 0x30($const),@t[0] # .LSR
___
&ShiftRows (@b,@t[0]);
&Sbox (@b,@t);
&MixColumns (@b[0,1,4,6,3,7,2,5],@t);
}
sub aesenclast { # not used
my @b=@_[0..7];
my @t=@_[8..15];
$code.=<<___;
movdqa 0x40($const),@t[0] # .LSRM0
___
&ShiftRows (@b,@t[0]);
&Sbox (@b,@t);
$code.=<<___
pxor 0x00($key),@b[0]
pxor 0x10($key),@b[1]
pxor 0x20($key),@b[4]
pxor 0x30($key),@b[6]
pxor 0x40($key),@b[3]
pxor 0x50($key),@b[7]
pxor 0x60($key),@b[2]
pxor 0x70($key),@b[5]
___
}
sub swapmove {
my ($a,$b,$n,$mask,$t)=@_;
$code.=<<___;
movdqa $b,$t
psrlq \$$n,$b
pxor $a,$b
pand $mask,$b
pxor $b,$a
psllq \$$n,$b
pxor $t,$b
___
}
sub swapmove2x {
my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_;
$code.=<<___;
movdqa $b0,$t0
psrlq \$$n,$b0
movdqa $b1,$t1
psrlq \$$n,$b1
pxor $a0,$b0
pxor $a1,$b1
pand $mask,$b0
pand $mask,$b1
pxor $b0,$a0
psllq \$$n,$b0
pxor $b1,$a1
psllq \$$n,$b1
pxor $t0,$b0
pxor $t1,$b1
___
}
sub bitslice {
my @x=reverse(@_[0..7]);
my ($t0,$t1,$t2,$t3)=@_[8..11];
$code.=<<___;
movdqa 0x00($const),$t0 # .LBS0
movdqa 0x10($const),$t1 # .LBS1
___
&swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3);
&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
$code.=<<___;
movdqa 0x20($const),$t0 # .LBS2
___
&swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3);
&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
&swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3);
&swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3);
}
$code.=<<___;
.text
.extern AES_encrypt
.extern AES_decrypt
.type _bsaes_encrypt8,\@abi-omnipotent
.align 64
_bsaes_encrypt8:
lea .LBS0(%rip), $const # constants table
movdqa ($key), @XMM[9] # round 0 key
lea 0x10($key), $key
movdqa 0x60($const), @XMM[8] # .LM0SR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
pshufb @XMM[8], @XMM[7]
_bsaes_encrypt8_bitslice:
___
&bitslice (@XMM[0..7, 8..11]);
$code.=<<___;
dec $rounds
jmp .Lenc_sbox
.align 16
.Lenc_loop:
___
&ShiftRows (@XMM[0..7, 8]);
$code.=".Lenc_sbox:\n";
&Sbox (@XMM[0..7, 8..15]);
$code.=<<___;
dec $rounds
jl .Lenc_done
___
&MixColumns (@XMM[0,1,4,6,3,7,2,5, 8..15]);
$code.=<<___;
movdqa 0x30($const), @XMM[8] # .LSR
jnz .Lenc_loop
movdqa 0x40($const), @XMM[8] # .LSRM0
jmp .Lenc_loop
.align 16
.Lenc_done:
___
# output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb
&bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]);
$code.=<<___;
movdqa ($key), @XMM[8] # last round key
pxor @XMM[8], @XMM[4]
pxor @XMM[8], @XMM[6]
pxor @XMM[8], @XMM[3]
pxor @XMM[8], @XMM[7]
pxor @XMM[8], @XMM[2]
pxor @XMM[8], @XMM[5]
pxor @XMM[8], @XMM[0]
pxor @XMM[8], @XMM[1]
ret
.size _bsaes_encrypt8,.-_bsaes_encrypt8
.type _bsaes_decrypt8,\@abi-omnipotent
.align 64
_bsaes_decrypt8:
lea .LBS0(%rip), $const # constants table
movdqa ($key), @XMM[9] # round 0 key
lea 0x10($key), $key
movdqa -0x30($const), @XMM[8] # .LM0ISR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
pshufb @XMM[8], @XMM[7]
___
&bitslice (@XMM[0..7, 8..11]);
$code.=<<___;
dec $rounds
jmp .Ldec_sbox
.align 16
.Ldec_loop:
___
&ShiftRows (@XMM[0..7, 8]);
$code.=".Ldec_sbox:\n";
&InvSbox (@XMM[0..7, 8..15]);
$code.=<<___;
dec $rounds
jl .Ldec_done
___
&InvMixColumns (@XMM[0,1,6,4,2,7,3,5, 8..15]);
$code.=<<___;
movdqa -0x10($const), @XMM[8] # .LISR
jnz .Ldec_loop
movdqa -0x20($const), @XMM[8] # .LISRM0
jmp .Ldec_loop
.align 16
.Ldec_done:
___
&bitslice (@XMM[0,1,6,4,2,7,3,5, 8..11]);
$code.=<<___;
movdqa ($key), @XMM[8] # last round key
pxor @XMM[8], @XMM[6]
pxor @XMM[8], @XMM[4]
pxor @XMM[8], @XMM[2]
pxor @XMM[8], @XMM[7]
pxor @XMM[8], @XMM[3]
pxor @XMM[8], @XMM[5]
pxor @XMM[8], @XMM[0]
pxor @XMM[8], @XMM[1]
ret
.size _bsaes_decrypt8,.-_bsaes_decrypt8
___
}
{
my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11");
sub bitslice_key {
my @x=reverse(@_[0..7]);
my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12];
&swapmove (@x[0,1],1,$bs0,$t2,$t3);
$code.=<<___;
#&swapmove(@x[2,3],1,$t0,$t2,$t3);
movdqa @x[0], @x[2]
movdqa @x[1], @x[3]
___
#&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
&swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3);
$code.=<<___;
#&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
movdqa @x[0], @x[4]
movdqa @x[2], @x[6]
movdqa @x[1], @x[5]
movdqa @x[3], @x[7]
___
&swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3);
&swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3);
}
$code.=<<___;
.type _bsaes_key_convert,\@abi-omnipotent
.align 16
_bsaes_key_convert:
lea .LBS1(%rip), $const
movdqu ($inp), %xmm7 # load round 0 key
movdqa -0x10($const), %xmm8 # .LBS0
movdqa 0x00($const), %xmm9 # .LBS1
movdqa 0x10($const), %xmm10 # .LBS2
movdqa 0x40($const), %xmm13 # .LM0
movdqa 0x60($const), %xmm14 # .LNOT
movdqu 0x10($inp), %xmm6 # load round 1 key
lea 0x10($inp), $inp
movdqa %xmm7, ($out) # save round 0 key
lea 0x10($out), $out
dec $rounds
jmp .Lkey_loop
.align 16
.Lkey_loop:
pshufb %xmm13, %xmm6 # .LM0
movdqa %xmm6, %xmm7
___
&bitslice_key (map("%xmm$_",(0..7, 8..12)));
$code.=<<___;
pxor %xmm14, %xmm5 # "pnot"
pxor %xmm14, %xmm6
pxor %xmm14, %xmm0
pxor %xmm14, %xmm1
lea 0x10($inp), $inp
movdqa %xmm0, 0x00($out) # write bit-sliced round key
movdqa %xmm1, 0x10($out)
movdqa %xmm2, 0x20($out)
movdqa %xmm3, 0x30($out)
movdqa %xmm4, 0x40($out)
movdqa %xmm5, 0x50($out)
movdqa %xmm6, 0x60($out)
movdqa %xmm7, 0x70($out)
lea 0x80($out),$out
movdqu ($inp), %xmm6 # load next round key
dec $rounds
jnz .Lkey_loop
movdqa 0x70($const), %xmm7 # .L63
#movdqa %xmm6, ($out) # don't save last round key
ret
.size _bsaes_key_convert,.-_bsaes_key_convert
___
}
if (1 && !$win64) { # following four functions are unsupported interface
2011-09-27 19:34:40 +00:00
# used for benchmarking...
$code.=<<___;
.globl bsaes_enc_key_convert
.type bsaes_enc_key_convert,\@function,2
.align 16
bsaes_enc_key_convert:
mov 240($inp),%r10d # pass rounds
mov $inp,%rcx # pass key
mov $out,%rax # pass key schedule
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
ret
.size bsaes_enc_key_convert,.-bsaes_enc_key_convert
.globl bsaes_encrypt_128
.type bsaes_encrypt_128,\@function,4
.align 16
bsaes_encrypt_128:
.Lenc128_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
movdqu 0x60($inp), @XMM[6]
movdqu 0x70($inp), @XMM[7]
mov $key, %rax # pass the $key
lea 0x80($inp), $inp
mov \$10,%r10d
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$0x80,$len
ja .Lenc128_loop
ret
.size bsaes_encrypt_128,.-bsaes_encrypt_128
.globl bsaes_dec_key_convert
.type bsaes_dec_key_convert,\@function,2
.align 16
bsaes_dec_key_convert:
mov 240($inp),%r10d # pass rounds
mov $inp,%rcx # pass key
mov $out,%rax # pass key schedule
call _bsaes_key_convert
pxor ($out),%xmm7 # fix up round 0 key
movdqa %xmm6,(%rax) # save last round key
movdqa %xmm7,($out)
ret
.size bsaes_dec_key_convert,.-bsaes_dec_key_convert
.globl bsaes_decrypt_128
.type bsaes_decrypt_128,\@function,4
.align 16
bsaes_decrypt_128:
.Ldec128_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
movdqu 0x60($inp), @XMM[6]
movdqu 0x70($inp), @XMM[7]
mov $key, %rax # pass the $key
lea 0x80($inp), $inp
mov \$10,%r10d
call _bsaes_decrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[6], 0x20($out)
movdqu @XMM[4], 0x30($out)
movdqu @XMM[2], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[3], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$0x80,$len
ja .Ldec128_loop
ret
.size bsaes_decrypt_128,.-bsaes_decrypt_128
___
}
{
######################################################################
#
# OpenSSL interface
#
my ($arg1,$arg2,$arg3,$arg4,$arg5) = $win64 ? ("%rcx","%rdx","%r8","%r9","%r10")
: ("%rdi","%rsi","%rdx","%rcx","%r8");
my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15");
$code.=<<___;
.globl bsaes_ecb_encrypt_blocks
.type bsaes_ecb_encrypt_blocks,\@abi-omnipotent
.align 16
bsaes_ecb_encrypt_blocks:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp),%rsp
___
$code.=<<___ if ($win64);
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lecb_enc_body:
___
$code.=<<___;
mov %rsp,%rbp # backup %rsp
mov 240($arg4),%eax # rounds
mov $arg1,$inp # backup arguments
mov $arg2,$out
mov $arg3,$len
mov $arg4,$key
cmp \$8,$arg3
jb .Lecb_enc_short
mov %eax,%ebx # backup rounds
shl \$7,%rax # 128 bytes per inner round key
sub \$`128-32`,%rax # size of bit-sliced key schedule
sub %rax,%rsp
mov %rsp,%rax # pass key schedule
mov $key,%rcx # pass key
mov %ebx,%r10d # pass rounds
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
sub \$8,$len
.Lecb_enc_loop:
movdqu 0x00($inp), @XMM[0] # load input
movdqu 0x10($inp), @XMM[1]
movdqu 0x20($inp), @XMM[2]
movdqu 0x30($inp), @XMM[3]
movdqu 0x40($inp), @XMM[4]
movdqu 0x50($inp), @XMM[5]
mov %rsp, %rax # pass key schedule
movdqu 0x60($inp), @XMM[6]
mov %ebx,%r10d # pass rounds
movdqu 0x70($inp), @XMM[7]
lea 0x80($inp), $inp
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
sub \$8,$len
jnc .Lecb_enc_loop
add \$8,$len
jz .Lecb_enc_done
movdqu 0x00($inp), @XMM[0] # load input
mov %rsp, %rax # pass key schedule
mov %ebx,%r10d # pass rounds
cmp \$2,$len
jb .Lecb_enc_one
movdqu 0x10($inp), @XMM[1]
je .Lecb_enc_two
movdqu 0x20($inp), @XMM[2]
cmp \$4,$len
jb .Lecb_enc_three
movdqu 0x30($inp), @XMM[3]
je .Lecb_enc_four
movdqu 0x40($inp), @XMM[4]
cmp \$6,$len
jb .Lecb_enc_five
movdqu 0x50($inp), @XMM[5]
je .Lecb_enc_six
movdqu 0x60($inp), @XMM[6]
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
movdqu @XMM[2], 0x60($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_six:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
movdqu @XMM[7], 0x50($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_five:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
movdqu @XMM[3], 0x40($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_four:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
movdqu @XMM[6], 0x30($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_three:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
movdqu @XMM[4], 0x20($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_two:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
movdqu @XMM[1], 0x10($out)
jmp .Lecb_enc_done
.align 16
.Lecb_enc_one:
call _bsaes_encrypt8
movdqu @XMM[0], 0x00($out) # write output
jmp .Lecb_enc_done
.align 16
.Lecb_enc_short:
lea ($inp), $arg1
lea ($out), $arg2
lea ($key), $arg3
call AES_encrypt
lea 16($inp), $inp
lea 16($out), $out
dec $len
jnz .Lecb_enc_short
.Lecb_enc_done:
lea (%rsp),%rax
pxor %xmm0, %xmm0
.Lecb_enc_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
jb .Lecb_enc_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rbp
lea 0x78(%rsp), %rsp
.Lecb_enc_epilogue:
ret
.size bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks
.globl bsaes_ctr32_encrypt_blocks
.type bsaes_ctr32_encrypt_blocks,\@abi-omnipotent
.align 16
bsaes_ctr32_encrypt_blocks:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
lea -0x48(%rsp), %rsp
___
$code.=<<___ if ($win64);
mov 0xa0(%rsp),$arg5 # pull ivp
lea -0xa0(%rsp), %rsp
movaps %xmm6, 0x40(%rsp)
movaps %xmm7, 0x50(%rsp)
movaps %xmm8, 0x60(%rsp)
movaps %xmm9, 0x70(%rsp)
movaps %xmm10, 0x80(%rsp)
movaps %xmm11, 0x90(%rsp)
movaps %xmm12, 0xa0(%rsp)
movaps %xmm13, 0xb0(%rsp)
movaps %xmm14, 0xc0(%rsp)
movaps %xmm15, 0xd0(%rsp)
.Lctr_enc_body:
___
$code.=<<___;
mov %rsp, %rbp # backup %rsp
movdqu ($arg5), %xmm0 # load counter
mov 240($arg4), %eax # rounds
mov $arg1, $inp # backup arguments
mov $arg2, $out
mov $arg3, $len
mov $arg4, $key
movdqa %xmm0, 0x20(%rbp) # copy counter
cmp \$8, $arg3
jb .Lctr_enc_short
mov %eax, %ebx # rounds
shl \$7, %rax # 128 bytes per inner round key
sub \$`128-32`, %rax # size of bit-sliced key schedule
sub %rax, %rsp
mov %rsp, %rax # pass key schedule
mov $key, %rcx # pass key
mov %ebx, %r10d # pass rounds
call _bsaes_key_convert
pxor %xmm6,%xmm7 # fix up last round key
movdqa %xmm7,(%rax) # save last round key
movdqa (%rsp), @XMM[9] # load round0 key
lea .LADD1(%rip), %r11
movdqa 0x20(%rbp), @XMM[0] # counter copy
movdqa -0x20(%r11), @XMM[8] # .LSWPUP
pshufb @XMM[8], @XMM[9] # byte swap upper part
pshufb @XMM[8], @XMM[0]
movdqa @XMM[9], (%rsp) # save adjusted round0 key
jmp .Lctr_enc_loop
.align 16
.Lctr_enc_loop:
movdqa @XMM[0], 0x20(%rbp) # save counter
movdqa @XMM[0], @XMM[1] # prepare 8 counter values
movdqa @XMM[0], @XMM[2]
paddd 0x00(%r11), @XMM[1] # .LADD1
movdqa @XMM[0], @XMM[3]
paddd 0x10(%r11), @XMM[2] # .LADD2
movdqa @XMM[0], @XMM[4]
paddd 0x20(%r11), @XMM[3] # .LADD3
movdqa @XMM[0], @XMM[5]
paddd 0x30(%r11), @XMM[4] # .LADD4
movdqa @XMM[0], @XMM[6]
paddd 0x40(%r11), @XMM[5] # .LADD5
movdqa @XMM[0], @XMM[7]
paddd 0x50(%r11), @XMM[6] # .LADD6
paddd 0x60(%r11), @XMM[7] # .LADD7
# Borrow prologue from _bsaes_encrypt8 to use the opportunity
# to flip byte order in 32-bit counter
movdqa (%rsp), @XMM[9] # round 0 key
lea 0x10(%rsp), %rax # pass key schedule
movdqa -0x10(%r11), @XMM[8] # .LSWPUPM0SR
pxor @XMM[9], @XMM[0] # xor with round0 key
pxor @XMM[9], @XMM[1]
pshufb @XMM[8], @XMM[0]
pxor @XMM[9], @XMM[2]
pshufb @XMM[8], @XMM[1]
pxor @XMM[9], @XMM[3]
pshufb @XMM[8], @XMM[2]
pxor @XMM[9], @XMM[4]
pshufb @XMM[8], @XMM[3]
pxor @XMM[9], @XMM[5]
pshufb @XMM[8], @XMM[4]
pxor @XMM[9], @XMM[6]
pshufb @XMM[8], @XMM[5]
pxor @XMM[9], @XMM[7]
pshufb @XMM[8], @XMM[6]
lea .LBS0(%rip), %r11 # constants table
pshufb @XMM[8], @XMM[7]
mov %ebx,%r10d # pass rounds
call _bsaes_encrypt8_bitslice
sub \$8,$len
jc .Lctr_enc_loop_done
movdqu 0x00($inp), @XMM[8] # load input
movdqu 0x10($inp), @XMM[9]
movdqu 0x20($inp), @XMM[10]
movdqu 0x30($inp), @XMM[11]
movdqu 0x40($inp), @XMM[12]
movdqu 0x50($inp), @XMM[13]
movdqu 0x60($inp), @XMM[14]
movdqu 0x70($inp), @XMM[15]
lea 0x80($inp),$inp
pxor @XMM[0], @XMM[8]
movdqa 0x20(%rbp), @XMM[0] # load counter
pxor @XMM[9], @XMM[1]
movdqu @XMM[8], 0x00($out) # write output
pxor @XMM[10], @XMM[4]
movdqu @XMM[1], 0x10($out)
pxor @XMM[11], @XMM[6]
movdqu @XMM[4], 0x20($out)
pxor @XMM[12], @XMM[3]
movdqu @XMM[6], 0x30($out)
pxor @XMM[13], @XMM[7]
movdqu @XMM[3], 0x40($out)
pxor @XMM[14], @XMM[2]
movdqu @XMM[7], 0x50($out)
pxor @XMM[15], @XMM[5]
movdqu @XMM[2], 0x60($out)
lea .LADD1(%rip), %r11
movdqu @XMM[5], 0x70($out)
lea 0x80($out), $out
paddd 0x70(%r11), @XMM[0] # .LADD8
jnz .Lctr_enc_loop
jmp .Lctr_enc_done
.align 16
.Lctr_enc_loop_done:
movdqu 0x00($inp), @XMM[8] # load input
pxor @XMM[8], @XMM[0]
movdqu @XMM[0], 0x00($out) # write output
cmp \$2,$len
jb .Lctr_enc_done
movdqu 0x10($inp), @XMM[9]
pxor @XMM[9], @XMM[1]
movdqu @XMM[1], 0x10($out)
je .Lctr_enc_done
movdqu 0x20($inp), @XMM[10]
pxor @XMM[10], @XMM[4]
movdqu @XMM[4], 0x20($out)
cmp \$4,$len
jb .Lctr_enc_done
movdqu 0x30($inp), @XMM[11]
pxor @XMM[11], @XMM[6]
movdqu @XMM[6], 0x30($out)
je .Lctr_enc_done
movdqu 0x40($inp), @XMM[12]
pxor @XMM[12], @XMM[3]
movdqu @XMM[3], 0x40($out)
cmp \$6,$len
jb .Lctr_enc_done
movdqu 0x50($inp), @XMM[13]
pxor @XMM[13], @XMM[7]
movdqu @XMM[7], 0x50($out)
je .Lctr_enc_done
movdqu 0x60($inp), @XMM[14]
pxor @XMM[14], @XMM[2]
movdqu @XMM[2], 0x60($out)
jmp .Lctr_enc_done
.align 16
.Lctr_enc_short:
lea 0x20(%rbp), $arg1
lea 0x30(%rbp), $arg2
lea ($key), $arg3
call AES_encrypt
movdqu ($inp), @XMM[1]
lea 16($inp), $inp
mov 0x2c(%rbp), %eax # load 32-bit counter
bswap %eax
pxor 0x30(%rbp), @XMM[1]
inc %eax # increment
movdqu @XMM[1], ($out)
bswap %eax
lea 16($out), $out
mov %eax, 0x2c(%rsp) # save 32-bit counter
dec $len
jnz .Lctr_enc_short
.Lctr_enc_done:
lea (%rsp), %rax
pxor %xmm0, %xmm0
.Lctr_enc_bzero: # wipe key schedule [if any]
movdqa %xmm0, 0x00(%rax)
movdqa %xmm0, 0x10(%rax)
lea 0x20(%rax), %rax
cmp %rax, %rbp
ja .Lctr_enc_bzero
lea (%rbp),%rsp # restore %rsp
___
$code.=<<___ if ($win64);
movaps 0x40(%rbp), %xmm6
movaps 0x50(%rbp), %xmm7
movaps 0x60(%rbp), %xmm8
movaps 0x70(%rbp), %xmm9
movaps 0x80(%rbp), %xmm10
movaps 0x90(%rbp), %xmm11
movaps 0xa0(%rbp), %xmm12
movaps 0xb0(%rbp), %xmm13
movaps 0xc0(%rbp), %xmm14
movaps 0xd0(%rbp), %xmm15
lea 0xa0(%rbp), %rsp
___
$code.=<<___;
mov 0x48(%rsp), %r15
mov 0x50(%rsp), %r14
mov 0x58(%rsp), %r13
mov 0x60(%rsp), %r12
mov 0x68(%rsp), %rbx
mov 0x70(%rsp), %rbp
lea 0x78(%rsp), %rsp
.Lctr_enc_epilogue:
ret
.size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks
___
}
$code.=<<___;
.align 64
.LM0ISR: # InvShiftRows constants
.quad 0x0a0e0206070b0f03, 0x0004080c0d010509
.LISRM0:
.quad 0x01040b0e0205080f, 0x0306090c00070a0d
.LISR:
.quad 0x0504070602010003, 0x0f0e0d0c080b0a09
.LBS0: # bit-slice constants
.quad 0x5555555555555555, 0x5555555555555555
.LBS1:
.quad 0x3333333333333333, 0x3333333333333333
.LBS2:
.quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f
.LSR: # shiftrows constants
.quad 0x0504070600030201, 0x0f0e0d0c0a09080b
.LSRM0:
.quad 0x0304090e00050a0f, 0x01060b0c0207080d
.LM0:
.quad 0x02060a0e03070b0f, 0x0004080c0105090d
.LM0SR:
.quad 0x0a0e02060f03070b, 0x0004080c05090d01
.LNOT: # magic constants
.quad 0xffffffffffffffff, 0xffffffffffffffff
.L63:
.quad 0x6363636363636363, 0x6363636363636363
.LSWPUP: # byte-swap upper dword
.quad 0x0706050403020100, 0x0c0d0e0f0b0a0908
.LSWPUPM0SR:
.quad 0x0a0d02060c03070b, 0x0004080f05090e01
.LADD1: # counter increment constants
.quad 0x0000000000000000, 0x0000000100000000
.LADD2:
.quad 0x0000000000000000, 0x0000000200000000
.LADD3:
.quad 0x0000000000000000, 0x0000000300000000
.LADD4:
.quad 0x0000000000000000, 0x0000000400000000
.LADD5:
.quad 0x0000000000000000, 0x0000000500000000
.LADD6:
.quad 0x0000000000000000, 0x0000000600000000
.LADD7:
.quad 0x0000000000000000, 0x0000000700000000
.LADD8:
.quad 0x0000000000000000, 0x0000000800000000
2011-09-27 19:34:40 +00:00
.asciz "Bit-sliced AES for x86_64/SSSE3, Emilia Käsper and Peter Schwabe"
.align 64
___
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;