2010-05-03 18:23:29 +00:00
|
|
|
#!/usr/bin/env perl
|
|
|
|
#
|
|
|
|
# ====================================================================
|
|
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
|
|
# ====================================================================
|
|
|
|
#
|
|
|
|
# April 2010
|
|
|
|
#
|
|
|
|
# The module implements "4-bit" GCM GHASH function and underlying
|
|
|
|
# single multiplication operation in GF(2^128). "4-bit" means that it
|
|
|
|
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
|
|
|
|
# experimental performance data available yet. The only approximation
|
|
|
|
# that can be made at this point is based on code size. Inner loop is
|
|
|
|
# 32 instructions long and on single-issue core should execute in <40
|
|
|
|
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
|
|
|
|
# loop, this assembler loop body was found to be ~3x smaller than
|
|
|
|
# compiler-generated one...
|
|
|
|
#
|
2010-07-02 08:14:12 +00:00
|
|
|
# Note about "528B" variant. In ARM case it makes lesser sense to
|
|
|
|
# implement it for following reasons:
|
|
|
|
#
|
|
|
|
# - performance improvement won't be anywhere near 50%, because 128-
|
|
|
|
# bit shift operation is neatly fused with 128-bit xor here, and
|
|
|
|
# "538B" variant would eliminate only 4-5 instructions out of 32
|
|
|
|
# in the inner loop (meaning that estimated improvement is ~15%);
|
|
|
|
# - ARM-based systems are often embedded ones and extra memory
|
|
|
|
# consumption might be unappreciated (for so little improvement);
|
|
|
|
#
|
2010-05-03 18:23:29 +00:00
|
|
|
# Byte order [in]dependence. =========================================
|
|
|
|
#
|
|
|
|
# Caller is expected to maintain specific *dword* order in Htable,
|
|
|
|
# namely with *least* significant dword of 128-bit value at *lower*
|
|
|
|
# address. This differs completely from C code and has everything to
|
|
|
|
# do with ldm instruction and order in which dwords are "consumed" by
|
|
|
|
# algorithm. *Byte* order within these dwords in turn is whatever
|
|
|
|
# *native* byte order on current platform. See gcm128.c for working
|
|
|
|
# example...
|
|
|
|
|
2010-07-08 15:03:42 +00:00
|
|
|
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
|
|
|
open STDOUT,">$output";
|
|
|
|
|
2010-05-03 18:23:29 +00:00
|
|
|
$Xi="r0"; # argument block
|
|
|
|
$Htbl="r1";
|
|
|
|
$inp="r2";
|
|
|
|
$len="r3";
|
|
|
|
$Zll="r4"; # variables
|
|
|
|
$Zlh="r5";
|
|
|
|
$Zhl="r6";
|
|
|
|
$Zhh="r7";
|
|
|
|
$Tll="r8";
|
|
|
|
$Tlh="r9";
|
|
|
|
$Thl="r10";
|
|
|
|
$Thh="r11";
|
|
|
|
$nlo="r12";
|
|
|
|
################# r13 is stack pointer
|
|
|
|
$nhi="r14";
|
|
|
|
################# r15 is program counter
|
|
|
|
|
|
|
|
$rem_4bit=$inp; # used in gcm_gmult_4bit
|
|
|
|
$cnt=$len;
|
|
|
|
|
|
|
|
sub Zsmash() {
|
|
|
|
my $i=12;
|
|
|
|
my @args=@_;
|
|
|
|
for ($Zll,$Zlh,$Zhl,$Zhh) {
|
|
|
|
# can be reduced to single "str $_,[$Xi,$i]" on big-endian platforms
|
|
|
|
$code.=<<___;
|
|
|
|
mov $Tlh,$_,lsr#8
|
|
|
|
strb $_,[$Xi,#$i+3]
|
|
|
|
mov $Thl,$_,lsr#16
|
|
|
|
strb $Tlh,[$Xi,#$i+2]
|
|
|
|
mov $Thh,$_,lsr#24
|
|
|
|
strb $Thl,[$Xi,#$i+1]
|
|
|
|
strb $Thh,[$Xi,#$i]
|
|
|
|
___
|
|
|
|
$code.="\t".shift(@args)."\n";
|
|
|
|
$i-=4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$code=<<___;
|
|
|
|
.text
|
|
|
|
.code 32
|
|
|
|
|
|
|
|
.type rem_4bit,%object
|
|
|
|
.align 5
|
|
|
|
rem_4bit:
|
|
|
|
.short 0x0000,0x1C20,0x3840,0x2460
|
|
|
|
.short 0x7080,0x6CA0,0x48C0,0x54E0
|
|
|
|
.short 0xE100,0xFD20,0xD940,0xC560
|
|
|
|
.short 0x9180,0x8DA0,0xA9C0,0xB5E0
|
|
|
|
.size rem_4bit,.-rem_4bit
|
|
|
|
|
|
|
|
.type rem_4bit_get,%function
|
|
|
|
rem_4bit_get:
|
|
|
|
sub $rem_4bit,pc,#8
|
|
|
|
sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
|
|
|
|
b .Lrem_4bit_got
|
|
|
|
nop
|
|
|
|
.size rem_4bit_get,.-rem_4bit_get
|
|
|
|
|
|
|
|
.global gcm_ghash_4bit
|
|
|
|
.type gcm_ghash_4bit,%function
|
|
|
|
gcm_ghash_4bit:
|
|
|
|
sub r12,pc,#8
|
|
|
|
add $len,$inp,$len @ $len to point at the end
|
|
|
|
stmdb sp!,{r3-r11,lr} @ save $len/end too
|
|
|
|
sub r12,r12,#48 @ &rem_4bit
|
|
|
|
|
|
|
|
ldmia r12,{r4-r11} @ copy rem_4bit ...
|
|
|
|
stmdb sp!,{r4-r11} @ ... to stack
|
|
|
|
|
|
|
|
ldrb $nlo,[$inp,#15]
|
|
|
|
ldrb $nhi,[$Xi,#15]
|
|
|
|
.Louter:
|
|
|
|
eor $nlo,$nlo,$nhi
|
|
|
|
and $nhi,$nlo,#0xf0
|
|
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
mov $cnt,#14
|
|
|
|
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
|
|
ldrb $nlo,[$inp,#14]
|
|
|
|
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
|
|
mov $nhi,$nhi,lsl#1
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
ldrb $nhi,[$Xi,#14]
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
eor $nlo,$nlo,$nhi
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
|
|
and $nhi,$nlo,#0xf0
|
|
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
|
|
|
|
.Loop:
|
|
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
|
|
subs $cnt,$cnt,#1
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
|
|
and $nlo,$Zll,#0xf @ rem
|
|
|
|
add $nlo,$nlo,$nlo
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
ldrplb $nlo,[$inp,$cnt]
|
|
|
|
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
|
|
add $nhi,$nhi,$nhi
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
ldrplb $nhi,[$Xi,$cnt]
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
eorpl $nlo,$nlo,$nhi
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
|
|
andpl $nhi,$nlo,#0xf0
|
|
|
|
andpl $nlo,$nlo,#0x0f
|
|
|
|
bpl .Loop
|
|
|
|
|
|
|
|
ldr $len,[sp,#32] @ re-load $len/end
|
|
|
|
add $inp,$inp,#16
|
|
|
|
mov $nhi,$Zll
|
|
|
|
___
|
|
|
|
&Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
|
|
|
|
$code.=<<___;
|
|
|
|
bne .Louter
|
|
|
|
|
|
|
|
add sp,sp,#36
|
|
|
|
ldmia sp!,{r4-r11,lr}
|
|
|
|
tst lr,#1
|
|
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
|
|
.size gcm_ghash_4bit,.-gcm_ghash_4bit
|
|
|
|
|
|
|
|
.global gcm_gmult_4bit
|
|
|
|
.type gcm_gmult_4bit,%function
|
|
|
|
gcm_gmult_4bit:
|
|
|
|
stmdb sp!,{r4-r11,lr}
|
|
|
|
ldrb $nlo,[$Xi,#15]
|
|
|
|
b rem_4bit_get
|
|
|
|
.Lrem_4bit_got:
|
|
|
|
and $nhi,$nlo,#0xf0
|
|
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
mov $cnt,#14
|
|
|
|
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
|
|
ldrb $nlo,[$Xi,#14]
|
|
|
|
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
|
|
mov $nhi,$nhi,lsl#1
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
and $nhi,$nlo,#0xf0
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
|
|
|
|
.Loop2:
|
|
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
|
|
subs $cnt,$cnt,#1
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
|
|
and $nlo,$Zll,#0xf @ rem
|
|
|
|
add $nlo,$nlo,$nlo
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
ldrplb $nlo,[$Xi,$cnt]
|
|
|
|
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
|
|
add $nhi,$nhi,$nhi
|
|
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
andpl $nhi,$nlo,#0xf0
|
|
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
|
|
andpl $nlo,$nlo,#0x0f
|
|
|
|
bpl .Loop2
|
|
|
|
___
|
|
|
|
&Zsmash();
|
|
|
|
$code.=<<___;
|
|
|
|
ldmia sp!,{r4-r11,lr}
|
|
|
|
tst lr,#1
|
|
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
|
|
.size gcm_gmult_4bit,.-gcm_gmult_4bit
|
|
|
|
.asciz "GHASH for ARMv4, CRYPTOGAMS by <appro\@openssl.org>"
|
|
|
|
.align 2
|
|
|
|
___
|
|
|
|
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
|
|
$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
|
|
|
|
print $code;
|
|
|
|
close STDOUT; # enforce flush
|