openjpeg/libopenjpeg/dwt.c
2011-12-16 10:29:30 +00:00

859 lines
24 KiB
C

/*
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2007, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#include "opj_includes.h"
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/
#define WS(i) v->mem[(i)*2]
#define WD(i) v->mem[(1+(i)*2)]
/** @name Local data structures */
/*@{*/
typedef struct dwt_local {
int* mem;
int dn;
int sn;
int cas;
} dwt_t;
typedef union {
float f[4];
} v4;
typedef struct v4dwt_local {
v4* wavelet ;
int dn ;
int sn ;
int cas ;
} v4dwt_t ;
static const float dwt_alpha = 1.586134342f; /* 12994 */
static const float dwt_beta = 0.052980118f; /* 434 */
static const float dwt_gamma = -0.882911075f; /* -7233 */
static const float dwt_delta = -0.443506852f; /* -3633 */
static const float K = 1.230174105f; /* 10078 */
/* FIXME: What is this constant? */
static const float c13318 = 1.625732422f;
/*@}*/
/**
Virtual function type for wavelet transform in 1-D
*/
typedef void (*DWT1DFN)(dwt_t* v);
/** @name Local static functions */
/*@{*/
/**
Forward lazy transform (horizontal)
*/
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas);
/**
Forward lazy transform (vertical)
*/
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas);
/**
Inverse lazy transform (horizontal)
*/
static void dwt_interleave_h(dwt_t* h, int *a);
/**
Inverse lazy transform (vertical)
*/
static void dwt_interleave_v(dwt_t* v, int *a, int x);
/**
Forward 5-3 wavelet transform in 1-D
*/
static void dwt_encode_1(int *a, int dn, int sn, int cas);
/**
Inverse 5-3 wavelet transform in 1-D
*/
static void dwt_decode_1(dwt_t *v);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void dwt_encode_1_real(int *a, int dn, int sn, int cas);
/**
Explicit calculation of the Quantization Stepsizes
*/
static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static void dwt_decode_tile(opj_tcd_tilecomp_t* tilec, int i, DWT1DFN fn);
/*@}*/
/*@}*/
#define S(i) a[(i)*2]
#define D(i) a[(1+(i)*2)]
#define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i)))
#define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i)))
/* new */
#define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i)))
#define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i)))
/* <summary> */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary> */
static const double dwt_norms[4][10] = {
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};
/* <summary> */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary> */
static const double dwt_norms_real[4][10] = {
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};
/*
==========================================================
local functions
==========================================================
*/
/* <summary> */
/* Forward lazy transform (horizontal). */
/* </summary> */
static void dwt_deinterleave_h(int *a, int *b, int dn, int sn, int cas) {
int i;
for (i=0; i<sn; i++) b[i]=a[2*i+cas];
for (i=0; i<dn; i++) b[sn+i]=a[(2*i+1-cas)];
}
/* <summary> */
/* Forward lazy transform (vertical). */
/* </summary> */
static void dwt_deinterleave_v(int *a, int *b, int dn, int sn, int x, int cas) {
int i;
for (i=0; i<sn; i++) b[i*x]=a[2*i+cas];
for (i=0; i<dn; i++) b[(sn+i)*x]=a[(2*i+1-cas)];
}
/* <summary> */
/* Inverse lazy transform (horizontal). */
/* </summary> */
static void dwt_interleave_h(dwt_t* h, int *a) {
int *ai = a;
int *bi = h->mem + h->cas;
int i = h->sn;
while( i-- ) {
*bi = *(ai++);
bi += 2;
}
ai = a + h->sn;
bi = h->mem + 1 - h->cas;
i = h->dn ;
while( i-- ) {
*bi = *(ai++);
bi += 2;
}
}
/* <summary> */
/* Inverse lazy transform (vertical). */
/* </summary> */
static void dwt_interleave_v(dwt_t* v, int *a, int x) {
int *ai = a;
int *bi = v->mem + v->cas;
int i = v->sn;
while( i-- ) {
*bi = *ai;
bi += 2;
ai += x;
}
ai = a + (v->sn * x);
bi = v->mem + 1 - v->cas;
i = v->dn ;
while( i-- ) {
*bi = *ai;
bi += 2;
ai += x;
}
}
/* <summary> */
/* Forward 5-3 wavelet transform in 1-D. */
/* </summary> */
static void dwt_encode_1(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++) D(i) -= (S_(i) + S_(i + 1)) >> 1;
for (i = 0; i < sn; i++) S(i) += (D_(i - 1) + D_(i) + 2) >> 2;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
S(0) *= 2;
else {
for (i = 0; i < dn; i++) S(i) -= (DD_(i) + DD_(i - 1)) >> 1;
for (i = 0; i < sn; i++) D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2;
}
}
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void dwt_decode_1_(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < sn; i++) S(i) -= (D_(i - 1) + D_(i) + 2) >> 2;
for (i = 0; i < dn; i++) D(i) += (S_(i) + S_(i + 1)) >> 1;
}
} else {
if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
S(0) /= 2;
else {
for (i = 0; i < sn; i++) D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2;
for (i = 0; i < dn; i++) S(i) += (DD_(i) + DD_(i - 1)) >> 1;
}
}
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary> */
static void dwt_decode_1(dwt_t *v) {
dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
}
/* <summary> */
/* Forward 9-7 wavelet transform in 1-D. */
/* </summary> */
static void dwt_encode_1_real(int *a, int dn, int sn, int cas) {
int i;
if (!cas) {
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
D(i) -= fix_mul(S_(i) + S_(i + 1), 12993);
for (i = 0; i < sn; i++)
S(i) -= fix_mul(D_(i - 1) + D_(i), 434);
for (i = 0; i < dn; i++)
D(i) += fix_mul(S_(i) + S_(i + 1), 7233);
for (i = 0; i < sn; i++)
S(i) += fix_mul(D_(i - 1) + D_(i), 3633);
for (i = 0; i < dn; i++)
D(i) = fix_mul(D(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
S(i) = fix_mul(S(i), 6659); /*6660 */
}
} else {
if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
for (i = 0; i < dn; i++)
S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993);
for (i = 0; i < sn; i++)
D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434);
for (i = 0; i < dn; i++)
S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233);
for (i = 0; i < sn; i++)
D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633);
for (i = 0; i < dn; i++)
S(i) = fix_mul(S(i), 5038); /*5038 */
for (i = 0; i < sn; i++)
D(i) = fix_mul(D(i), 6659); /*6660 */
}
}
}
static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t *bandno_stepsize) {
int p, n;
p = int_floorlog2(stepsize) - 13;
n = 11 - int_floorlog2(stepsize);
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
bandno_stepsize->expn = numbps - p;
}
/*
==========================================================
DWT interface
==========================================================
*/
/* <summary> */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary> */
void dwt_encode(opj_tcd_tilecomp_t * tilec) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = 0; i < l; i++) {
int rw; /* width of the resolution level computed */
int rh; /* height of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_row = tilec->resolutions[l - i].x0 % 2;
cas_col = tilec->resolutions[l - i].y0 % 2;
sn = rh1;
dn = rh - rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
for (k = 0; k < rh; k++) bj[k] = aj[k*w];
dwt_encode_1(bj, dn, sn, cas_col);
dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
}
opj_free(bj);
sn = rw1;
dn = rw - rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j * w;
for (k = 0; k < rw; k++) bj[k] = aj[k];
dwt_encode_1(bj, dn, sn, cas_row);
dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
}
opj_free(bj);
}
}
/* <summary> */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary> */
void dwt_decode(opj_tcd_tilecomp_t* tilec, int numres) {
dwt_decode_tile(tilec, numres, &dwt_decode_1);
}
/* <summary> */
/* Get gain of 5-3 wavelet transform. */
/* </summary> */
int dwt_getgain(int orient) {
if (orient == 0)
return 0;
if (orient == 1 || orient == 2)
return 1;
return 2;
}
/* <summary> */
/* Get norm of 5-3 wavelet. */
/* </summary> */
double dwt_getnorm(int level, int orient) {
return dwt_norms[orient][level];
}
/* <summary> */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary> */
void dwt_encode_real(opj_tcd_tilecomp_t * tilec) {
int i, j, k;
int *a = NULL;
int *aj = NULL;
int *bj = NULL;
int w, l;
w = tilec->x1-tilec->x0;
l = tilec->numresolutions-1;
a = tilec->data;
for (i = 0; i < l; i++) {
int rw; /* width of the resolution level computed */
int rh; /* height of the resolution level computed */
int rw1; /* width of the resolution level once lower than computed one */
int rh1; /* height of the resolution level once lower than computed one */
int cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
int cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
int dn, sn;
rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0;
rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0;
rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0;
rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0;
cas_row = tilec->resolutions[l - i].x0 % 2;
cas_col = tilec->resolutions[l - i].y0 % 2;
sn = rh1;
dn = rh - rh1;
bj = (int*)opj_malloc(rh * sizeof(int));
for (j = 0; j < rw; j++) {
aj = a + j;
for (k = 0; k < rh; k++) bj[k] = aj[k*w];
dwt_encode_1_real(bj, dn, sn, cas_col);
dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
}
opj_free(bj);
sn = rw1;
dn = rw - rw1;
bj = (int*)opj_malloc(rw * sizeof(int));
for (j = 0; j < rh; j++) {
aj = a + j * w;
for (k = 0; k < rw; k++) bj[k] = aj[k];
dwt_encode_1_real(bj, dn, sn, cas_row);
dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
}
opj_free(bj);
}
}
/* <summary> */
/* Get gain of 9-7 wavelet transform. */
/* </summary> */
int dwt_getgain_real(int orient) {
(void)orient;
return 0;
}
/* <summary> */
/* Get norm of 9-7 wavelet. */
/* </summary> */
double dwt_getnorm_real(int level, int orient) {
return dwt_norms_real[orient][level];
}
void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec) {
int numbands, bandno;
numbands = 3 * tccp->numresolutions - 2;
for (bandno = 0; bandno < numbands; bandno++) {
double stepsize;
int resno, level, orient, gain;
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
level = tccp->numresolutions - 1 - resno;
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
stepsize = 1.0;
} else {
double norm = dwt_norms_real[orient][level];
stepsize = (1 << (gain)) / norm;
}
dwt_encode_stepsize((int) floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]);
}
}
/* <summary> */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary> */
static int dwt_decode_max_resolution(opj_tcd_resolution_t* restrict r, int i) {
int mr = 1;
int w;
while( --i ) {
r++;
if( mr < ( w = r->x1 - r->x0 ) )
mr = w ;
if( mr < ( w = r->y1 - r->y0 ) )
mr = w ;
}
return mr ;
}
/* <summary> */
/* Inverse wavelet transform in 2-D. */
/* </summary> */
static void dwt_decode_tile(opj_tcd_tilecomp_t* tilec, int numres, DWT1DFN dwt_1D) {
dwt_t h;
dwt_t v;
opj_tcd_resolution_t* tr = tilec->resolutions;
int rw = tr->x1 - tr->x0; /* width of the resolution level computed */
int rh = tr->y1 - tr->y0; /* height of the resolution level computed */
int w = tilec->x1 - tilec->x0;
h.mem = (int*)opj_aligned_malloc(dwt_decode_max_resolution(tr, numres) * sizeof(int));
v.mem = h.mem;
while( --numres) {
int * restrict tiledp = tilec->data;
int j;
++tr;
h.sn = rw;
v.sn = rh;
rw = tr->x1 - tr->x0;
rh = tr->y1 - tr->y0;
h.dn = rw - h.sn;
h.cas = tr->x0 % 2;
for(j = 0; j < rh; ++j) {
dwt_interleave_h(&h, &tiledp[j*w]);
(dwt_1D)(&h);
memcpy(&tiledp[j*w], h.mem, rw * sizeof(int));
}
v.dn = rh - v.sn;
v.cas = tr->y0 % 2;
for(j = 0; j < rw; ++j){
int k;
dwt_interleave_v(&v, &tiledp[j], w);
(dwt_1D)(&v);
for(k = 0; k < rh; ++k) {
tiledp[k * w + j] = v.mem[k];
}
}
}
opj_aligned_free(h.mem);
}
static void v4dwt_interleave_h(v4dwt_t* restrict w, float* restrict a, int x, int size){
float* restrict bi = (float*) (w->wavelet + w->cas);
int count = w->sn;
int i, k;
for(k = 0; k < 2; ++k){
if (count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0) {
/* Fast code path */
for(i = 0; i < count; ++i){
int j = i;
bi[i*8 ] = a[j];
j += x;
bi[i*8 + 1] = a[j];
j += x;
bi[i*8 + 2] = a[j];
j += x;
bi[i*8 + 3] = a[j];
}
} else {
/* Slow code path */
for(i = 0; i < count; ++i){
int j = i;
bi[i*8 ] = a[j];
j += x;
if(j > size) continue;
bi[i*8 + 1] = a[j];
j += x;
if(j > size) continue;
bi[i*8 + 2] = a[j];
j += x;
if(j > size) continue;
bi[i*8 + 3] = a[j];
}
}
bi = (float*) (w->wavelet + 1 - w->cas);
a += w->sn;
size -= w->sn;
count = w->dn;
}
}
static void v4dwt_interleave_v(v4dwt_t* restrict v , float* restrict a , int x){
v4* restrict bi = v->wavelet + v->cas;
int i;
for(i = 0; i < v->sn; ++i){
memcpy(&bi[i*2], &a[i*x], 4 * sizeof(float));
}
a += v->sn * x;
bi = v->wavelet + 1 - v->cas;
for(i = 0; i < v->dn; ++i){
memcpy(&bi[i*2], &a[i*x], 4 * sizeof(float));
}
}
#ifdef __SSE__
static void v4dwt_decode_step1_sse(v4* w, int count, const __m128 c){
__m128* restrict vw = (__m128*) w;
int i;
/* 4x unrolled loop */
for(i = 0; i < count >> 2; ++i){
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
*vw = _mm_mul_ps(*vw, c);
vw += 2;
}
count &= 3;
for(i = 0; i < count; ++i){
*vw = _mm_mul_ps(*vw, c);
vw += 2;
}
}
static void v4dwt_decode_step2_sse(v4* l, v4* w, int k, int m, __m128 c){
__m128* restrict vl = (__m128*) l;
__m128* restrict vw = (__m128*) w;
int i;
__m128 tmp1, tmp2, tmp3;
tmp1 = vl[0];
for(i = 0; i < m; ++i){
tmp2 = vw[-1];
tmp3 = vw[ 0];
vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
tmp1 = tmp3;
vw += 2;
}
vl = vw - 2;
if(m >= k){
return;
}
c = _mm_add_ps(c, c);
c = _mm_mul_ps(c, vl[0]);
for(; m < k; ++m){
__m128 tmp = vw[-1];
vw[-1] = _mm_add_ps(tmp, c);
vw += 2;
}
}
#else
static void v4dwt_decode_step1(v4* w, int count, const float c){
float* restrict fw = (float*) w;
int i;
for(i = 0; i < count; ++i){
float tmp1 = fw[i*8 ];
float tmp2 = fw[i*8 + 1];
float tmp3 = fw[i*8 + 2];
float tmp4 = fw[i*8 + 3];
fw[i*8 ] = tmp1 * c;
fw[i*8 + 1] = tmp2 * c;
fw[i*8 + 2] = tmp3 * c;
fw[i*8 + 3] = tmp4 * c;
}
}
static void v4dwt_decode_step2(v4* l, v4* w, int k, int m, float c){
float* restrict fl = (float*) l;
float* restrict fw = (float*) w;
int i;
for(i = 0; i < m; ++i){
float tmp1_1 = fl[0];
float tmp1_2 = fl[1];
float tmp1_3 = fl[2];
float tmp1_4 = fl[3];
float tmp2_1 = fw[-4];
float tmp2_2 = fw[-3];
float tmp2_3 = fw[-2];
float tmp2_4 = fw[-1];
float tmp3_1 = fw[0];
float tmp3_2 = fw[1];
float tmp3_3 = fw[2];
float tmp3_4 = fw[3];
fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
fl = fw;
fw += 8;
}
if(m < k){
float c1;
float c2;
float c3;
float c4;
c += c;
c1 = fl[0] * c;
c2 = fl[1] * c;
c3 = fl[2] * c;
c4 = fl[3] * c;
for(; m < k; ++m){
float tmp1 = fw[-4];
float tmp2 = fw[-3];
float tmp3 = fw[-2];
float tmp4 = fw[-1];
fw[-4] = tmp1 + c1;
fw[-3] = tmp2 + c2;
fw[-2] = tmp3 + c3;
fw[-1] = tmp4 + c4;
fw += 8;
}
}
}
#endif
/* <summary> */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary> */
static void v4dwt_decode(v4dwt_t* restrict dwt){
int a, b;
if(dwt->cas == 0) {
if(!((dwt->dn > 0) || (dwt->sn > 1))){
return;
}
a = 0;
b = 1;
}else{
if(!((dwt->sn > 0) || (dwt->dn > 1))) {
return;
}
a = 1;
b = 0;
}
#ifdef __SSE__
v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(K));
v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(c13318));
v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(dwt_delta));
v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_gamma));
v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(dwt_beta));
v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_alpha));
#else
v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, K);
v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, c13318);
v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), dwt_delta);
v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_gamma);
v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, int_min(dwt->sn, dwt->dn-a), dwt_beta);
v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_alpha);
#endif
}
/* <summary> */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary> */
void dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, int numres){
v4dwt_t h;
v4dwt_t v;
opj_tcd_resolution_t* res = tilec->resolutions;
int rw = res->x1 - res->x0; /* width of the resolution level computed */
int rh = res->y1 - res->y0; /* height of the resolution level computed */
int w = tilec->x1 - tilec->x0;
h.wavelet = (v4*) opj_aligned_malloc((dwt_decode_max_resolution(res, numres)+5) * sizeof(v4));
v.wavelet = h.wavelet;
while( --numres) {
float * restrict aj = (float*) tilec->data;
int bufsize = (tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0);
int j;
h.sn = rw;
v.sn = rh;
++res;
rw = res->x1 - res->x0; /* width of the resolution level computed */
rh = res->y1 - res->y0; /* height of the resolution level computed */
h.dn = rw - h.sn;
h.cas = res->x0 % 2;
for(j = rh; j > 3; j -= 4){
int k;
v4dwt_interleave_h(&h, aj, w, bufsize);
v4dwt_decode(&h);
for(k = rw; --k >= 0;){
aj[k ] = h.wavelet[k].f[0];
aj[k+w ] = h.wavelet[k].f[1];
aj[k+w*2] = h.wavelet[k].f[2];
aj[k+w*3] = h.wavelet[k].f[3];
}
aj += w*4;
bufsize -= w*4;
}
if (rh & 0x03) {
int k;
j = rh & 0x03;
v4dwt_interleave_h(&h, aj, w, bufsize);
v4dwt_decode(&h);
for(k = rw; --k >= 0;){
switch(j) {
case 3: aj[k+w*2] = h.wavelet[k].f[2];
case 2: aj[k+w ] = h.wavelet[k].f[1];
case 1: aj[k ] = h.wavelet[k].f[0];
}
}
}
v.dn = rh - v.sn;
v.cas = res->y0 % 2;
aj = (float*) tilec->data;
for(j = rw; j > 3; j -= 4){
int k;
v4dwt_interleave_v(&v, aj, w);
v4dwt_decode(&v);
for(k = 0; k < rh; ++k){
memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(float));
}
aj += 4;
}
if (rw & 0x03){
int k;
j = rw & 0x03;
v4dwt_interleave_v(&v, aj, w);
v4dwt_decode(&v);
for(k = 0; k < rh; ++k){
memcpy(&aj[k*w], &v.wavelet[k], j * sizeof(float));
}
}
}
opj_aligned_free(h.wavelet);
}