openjpeg/libopenjpeg/pi.c
2012-08-16 13:44:02 +00:00

2515 lines
75 KiB
C

/*
* Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2007, Professor Benoit Macq
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2006-2007, Parvatha Elangovan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opj_includes.h"
/** @defgroup PI PI - Implementation of a packet iterator */
/*@{*/
/** @name Local static functions */
/*@{*/
/**
Get next packet in layer-resolution-component-precinct order.
@param pi packet iterator to modify
@return returns false if pi pointed to the last packet or else returns true
*/
static opj_bool pi_next_lrcp(opj_pi_iterator_t * pi);
/**
Get next packet in resolution-layer-component-precinct order.
@param pi packet iterator to modify
@return returns false if pi pointed to the last packet or else returns true
*/
static opj_bool pi_next_rlcp(opj_pi_iterator_t * pi);
/**
Get next packet in resolution-precinct-component-layer order.
@param pi packet iterator to modify
@return returns false if pi pointed to the last packet or else returns true
*/
static opj_bool pi_next_rpcl(opj_pi_iterator_t * pi);
/**
Get next packet in precinct-component-resolution-layer order.
@param pi packet iterator to modify
@return returns false if pi pointed to the last packet or else returns true
*/
static opj_bool pi_next_pcrl(opj_pi_iterator_t * pi);
/**
Get next packet in component-precinct-resolution-layer order.
@param pi packet iterator to modify
@return returns false if pi pointed to the last packet or else returns true
*/
static opj_bool pi_next_cprl(opj_pi_iterator_t * pi);
/**
* Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used).
*
* @param p_cp the coding parameters to modify
* @param p_tileno the tile index being concerned.
* @param p_tx0 X0 parameter for the tile
* @param p_tx1 X1 parameter for the tile
* @param p_ty0 Y0 parameter for the tile
* @param p_ty1 Y1 parameter for the tile
* @param p_max_prec the maximum precision for all the bands of the tile
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
*/
void pi_update_encode_poc_and_final (opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tileno,
OPJ_INT32 p_tx0,
OPJ_INT32 p_tx1,
OPJ_INT32 p_ty0,
OPJ_INT32 p_ty1,
OPJ_UINT32 p_max_prec,
OPJ_UINT32 p_max_res,
OPJ_UINT32 p_dx_min,
OPJ_UINT32 p_dy_min);
/**
* Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used).
*
* @param p_cp the coding parameters to modify
* @param p_tileno the tile index being concerned.
* @param p_tx0 X0 parameter for the tile
* @param p_tx1 X1 parameter for the tile
* @param p_ty0 Y0 parameter for the tile
* @param p_ty1 Y1 parameter for the tile
* @param p_max_prec the maximum precision for all the bands of the tile
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
*/
void pi_update_encode_not_poc ( opj_cp_v2_t *p_cp,
OPJ_UINT32 p_num_comps,
OPJ_UINT32 p_tileno,
OPJ_INT32 p_tx0,
OPJ_INT32 p_tx1,
OPJ_INT32 p_ty0,
OPJ_INT32 p_ty1,
OPJ_UINT32 p_max_prec,
OPJ_UINT32 p_max_res,
OPJ_UINT32 p_dx_min,
OPJ_UINT32 p_dy_min);
/**
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param tileno the tile index of the tile being encoded.
* @param p_tx0 pointer that will hold the X0 parameter for the tile
* @param p_tx1 pointer that will hold the X1 parameter for the tile
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
*/
void get_encoding_parameters( const opj_image_t *p_image,
const opj_cp_v2_t *p_cp,
OPJ_UINT32 tileno,
OPJ_INT32 * p_tx0,
OPJ_INT32 * p_tx1,
OPJ_INT32 * p_ty0,
OPJ_INT32 * p_ty1,
OPJ_UINT32 * p_dx_min,
OPJ_UINT32 * p_dy_min,
OPJ_UINT32 * p_max_prec,
OPJ_UINT32 * p_max_res );
/**
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
* The precinct widths, heights, dx and dy for each component at each resolution will be stored as well.
* the last parameter of the function should be an array of pointers of size nb components, each pointer leading
* to an area of size 4 * max_res. The data is stored inside this area with the following pattern :
* dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ...
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param tileno the tile index of the tile being encoded.
* @param p_tx0 pointer that will hold the X0 parameter for the tile
* @param p_tx1 pointer that will hold the X1 parameter for the tile
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
* @param p_dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
* @param p_dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
* @param p_resolutions pointer to an area corresponding to the one described above.
*/
void get_all_encoding_parameters(
const opj_image_t *p_image,
const opj_cp_v2_t *p_cp,
OPJ_UINT32 tileno,
OPJ_INT32 * p_tx0,
OPJ_INT32 * p_tx1,
OPJ_INT32 * p_ty0,
OPJ_INT32 * p_ty1,
OPJ_UINT32 * p_dx_min,
OPJ_UINT32 * p_dy_min,
OPJ_UINT32 * p_max_prec,
OPJ_UINT32 * p_max_res,
OPJ_UINT32 ** p_resolutions
);
/**
* Allocates memory for a packet iterator. Data and data sizes are set by this operation.
* No other data is set. The include section of the packet iterator is not allocated.
*
* @param image the image used to initialize the packet iterator (only the number of components is relevant).
* @param cp the coding parameters.
* @param tileno the index of the tile from which creating the packet iterator.
*/
opj_pi_iterator_t * pi_create( const opj_image_t *image,
const opj_cp_v2_t *cp,
OPJ_UINT32 tileno );
void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_v2_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res);
void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_v2_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res);
OPJ_INT32 pi_check_next_level( OPJ_INT32 pos,
opj_cp_v2_t *cp,
OPJ_UINT32 tileno,
OPJ_UINT32 pino,
const OPJ_CHAR *prog);
/*@}*/
/*@}*/
/*
==========================================================
local functions
==========================================================
*/
static opj_bool pi_next_lrcp(opj_pi_iterator_t * pi) {
opj_pi_comp_t *comp = NULL;
opj_pi_resolution_t *res = NULL;
long index = 0;
if (!pi->first) {
comp = &pi->comps[pi->compno];
res = &comp->resolutions[pi->resno];
goto LABEL_SKIP;
} else {
pi->first = 0;
}
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1;
pi->resno++) {
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
comp = &pi->comps[pi->compno];
if (pi->resno >= comp->numresolutions) {
continue;
}
res = &comp->resolutions[pi->resno];
if (!pi->tp_on){
pi->poc.precno1 = res->pw * res->ph;
}
for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) {
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
if (!pi->include[index]) {
pi->include[index] = 1;
return OPJ_TRUE;
}
LABEL_SKIP:;
}
}
}
}
return OPJ_FALSE;
}
static opj_bool pi_next_rlcp(opj_pi_iterator_t * pi) {
opj_pi_comp_t *comp = NULL;
opj_pi_resolution_t *res = NULL;
long index = 0;
if (!pi->first) {
comp = &pi->comps[pi->compno];
res = &comp->resolutions[pi->resno];
goto LABEL_SKIP;
} else {
pi->first = 0;
}
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) {
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
comp = &pi->comps[pi->compno];
if (pi->resno >= comp->numresolutions) {
continue;
}
res = &comp->resolutions[pi->resno];
if(!pi->tp_on){
pi->poc.precno1 = res->pw * res->ph;
}
for (pi->precno = pi->poc.precno0; pi->precno < pi->poc.precno1; pi->precno++) {
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
if (!pi->include[index]) {
pi->include[index] = 1;
return OPJ_TRUE;
}
LABEL_SKIP:;
}
}
}
}
return OPJ_FALSE;
}
static opj_bool pi_next_rpcl(opj_pi_iterator_t * pi) {
opj_pi_comp_t *comp = NULL;
opj_pi_resolution_t *res = NULL;
long index = 0;
if (!pi->first) {
goto LABEL_SKIP;
} else {
int compno, resno;
pi->first = 0;
pi->dx = 0;
pi->dy = 0;
for (compno = 0; compno < pi->numcomps; compno++) {
comp = &pi->comps[compno];
for (resno = 0; resno < comp->numresolutions; resno++) {
int dx, dy;
res = &comp->resolutions[resno];
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
}
}
}
if (!pi->tp_on){
pi->poc.ty0 = pi->ty0;
pi->poc.tx0 = pi->tx0;
pi->poc.ty1 = pi->ty1;
pi->poc.tx1 = pi->tx1;
}
for (pi->resno = pi->poc.resno0; pi->resno < pi->poc.resno1; pi->resno++) {
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
int levelno;
int trx0, try0;
int trx1, try1;
int rpx, rpy;
int prci, prcj;
comp = &pi->comps[pi->compno];
if (pi->resno >= comp->numresolutions) {
continue;
}
res = &comp->resolutions[pi->resno];
levelno = comp->numresolutions - 1 - pi->resno;
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
rpx = res->pdx + levelno;
rpy = res->pdy + levelno;
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
continue;
}
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
continue;
}
if ((res->pw==0)||(res->ph==0)) continue;
if ((trx0==trx1)||(try0==try1)) continue;
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
- int_floordivpow2(trx0, res->pdx);
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
- int_floordivpow2(try0, res->pdy);
pi->precno = prci + prcj * res->pw;
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
if (!pi->include[index]) {
pi->include[index] = 1;
return OPJ_TRUE;
}
LABEL_SKIP:;
}
}
}
}
}
return OPJ_FALSE;
}
static opj_bool pi_next_pcrl(opj_pi_iterator_t * pi) {
opj_pi_comp_t *comp = NULL;
opj_pi_resolution_t *res = NULL;
long index = 0;
if (!pi->first) {
comp = &pi->comps[pi->compno];
goto LABEL_SKIP;
} else {
int compno, resno;
pi->first = 0;
pi->dx = 0;
pi->dy = 0;
for (compno = 0; compno < pi->numcomps; compno++) {
comp = &pi->comps[compno];
for (resno = 0; resno < comp->numresolutions; resno++) {
int dx, dy;
res = &comp->resolutions[resno];
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
}
}
}
if (!pi->tp_on){
pi->poc.ty0 = pi->ty0;
pi->poc.tx0 = pi->tx0;
pi->poc.ty1 = pi->ty1;
pi->poc.tx1 = pi->tx1;
}
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
comp = &pi->comps[pi->compno];
for (pi->resno = pi->poc.resno0; pi->resno < int_min(pi->poc.resno1, comp->numresolutions); pi->resno++) {
int levelno;
int trx0, try0;
int trx1, try1;
int rpx, rpy;
int prci, prcj;
res = &comp->resolutions[pi->resno];
levelno = comp->numresolutions - 1 - pi->resno;
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
rpx = res->pdx + levelno;
rpy = res->pdy + levelno;
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
continue;
}
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
continue;
}
if ((res->pw==0)||(res->ph==0)) continue;
if ((trx0==trx1)||(try0==try1)) continue;
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
- int_floordivpow2(trx0, res->pdx);
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
- int_floordivpow2(try0, res->pdy);
pi->precno = prci + prcj * res->pw;
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
if (!pi->include[index]) {
pi->include[index] = 1;
return OPJ_TRUE;
}
LABEL_SKIP:;
}
}
}
}
}
return OPJ_FALSE;
}
static opj_bool pi_next_cprl(opj_pi_iterator_t * pi) {
opj_pi_comp_t *comp = NULL;
opj_pi_resolution_t *res = NULL;
long index = 0;
if (!pi->first) {
comp = &pi->comps[pi->compno];
goto LABEL_SKIP;
} else {
pi->first = 0;
}
for (pi->compno = pi->poc.compno0; pi->compno < pi->poc.compno1; pi->compno++) {
int resno;
comp = &pi->comps[pi->compno];
pi->dx = 0;
pi->dy = 0;
for (resno = 0; resno < comp->numresolutions; resno++) {
int dx, dy;
res = &comp->resolutions[resno];
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
pi->dx = !pi->dx ? dx : int_min(pi->dx, dx);
pi->dy = !pi->dy ? dy : int_min(pi->dy, dy);
}
if (!pi->tp_on){
pi->poc.ty0 = pi->ty0;
pi->poc.tx0 = pi->tx0;
pi->poc.ty1 = pi->ty1;
pi->poc.tx1 = pi->tx1;
}
for (pi->y = pi->poc.ty0; pi->y < pi->poc.ty1; pi->y += pi->dy - (pi->y % pi->dy)) {
for (pi->x = pi->poc.tx0; pi->x < pi->poc.tx1; pi->x += pi->dx - (pi->x % pi->dx)) {
for (pi->resno = pi->poc.resno0; pi->resno < int_min(pi->poc.resno1, comp->numresolutions); pi->resno++) {
int levelno;
int trx0, try0;
int trx1, try1;
int rpx, rpy;
int prci, prcj;
res = &comp->resolutions[pi->resno];
levelno = comp->numresolutions - 1 - pi->resno;
trx0 = int_ceildiv(pi->tx0, comp->dx << levelno);
try0 = int_ceildiv(pi->ty0, comp->dy << levelno);
trx1 = int_ceildiv(pi->tx1, comp->dx << levelno);
try1 = int_ceildiv(pi->ty1, comp->dy << levelno);
rpx = res->pdx + levelno;
rpy = res->pdy + levelno;
if (!((pi->y % (comp->dy << rpy) == 0) || ((pi->y == pi->ty0) && ((try0 << levelno) % (1 << rpy))))){
continue;
}
if (!((pi->x % (comp->dx << rpx) == 0) || ((pi->x == pi->tx0) && ((trx0 << levelno) % (1 << rpx))))){
continue;
}
if ((res->pw==0)||(res->ph==0)) continue;
if ((trx0==trx1)||(try0==try1)) continue;
prci = int_floordivpow2(int_ceildiv(pi->x, comp->dx << levelno), res->pdx)
- int_floordivpow2(trx0, res->pdx);
prcj = int_floordivpow2(int_ceildiv(pi->y, comp->dy << levelno), res->pdy)
- int_floordivpow2(try0, res->pdy);
pi->precno = prci + prcj * res->pw;
for (pi->layno = pi->poc.layno0; pi->layno < pi->poc.layno1; pi->layno++) {
index = pi->layno * pi->step_l + pi->resno * pi->step_r + pi->compno * pi->step_c + pi->precno * pi->step_p;
if (!pi->include[index]) {
pi->include[index] = 1;
return OPJ_TRUE;
}
LABEL_SKIP:;
}
}
}
}
}
return OPJ_FALSE;
}
/*
==========================================================
Packet iterator interface
==========================================================
*/
opj_pi_iterator_t *pi_create_decode(opj_image_t *image, opj_cp_t *cp, int tileno) {
int p, q;
int compno, resno, pino;
opj_pi_iterator_t *pi = NULL;
opj_tcp_t *tcp = NULL;
opj_tccp_t *tccp = NULL;
tcp = &cp->tcps[tileno];
pi = (opj_pi_iterator_t*) opj_calloc((tcp->numpocs + 1), sizeof(opj_pi_iterator_t));
if(!pi) {
/* TODO: throw an error */
return NULL;
}
for (pino = 0; pino < tcp->numpocs + 1; pino++) { /* change */
int maxres = 0;
int maxprec = 0;
p = tileno % cp->tw;
q = tileno / cp->tw;
pi[pino].tx0 = int_max(cp->tx0 + p * cp->tdx, image->x0);
pi[pino].ty0 = int_max(cp->ty0 + q * cp->tdy, image->y0);
pi[pino].tx1 = int_min(cp->tx0 + (p + 1) * cp->tdx, image->x1);
pi[pino].ty1 = int_min(cp->ty0 + (q + 1) * cp->tdy, image->y1);
pi[pino].numcomps = image->numcomps;
pi[pino].comps = (opj_pi_comp_t*) opj_calloc(image->numcomps, sizeof(opj_pi_comp_t));
if(!pi[pino].comps) {
/* TODO: throw an error */
pi_destroy(pi, cp, tileno);
return NULL;
}
for (compno = 0; compno < pi->numcomps; compno++) {
int tcx0, tcy0, tcx1, tcy1;
opj_pi_comp_t *comp = &pi[pino].comps[compno];
tccp = &tcp->tccps[compno];
comp->dx = image->comps[compno].dx;
comp->dy = image->comps[compno].dy;
comp->numresolutions = tccp->numresolutions;
comp->resolutions = (opj_pi_resolution_t*) opj_calloc(comp->numresolutions, sizeof(opj_pi_resolution_t));
if(!comp->resolutions) {
/* TODO: throw an error */
pi_destroy(pi, cp, tileno);
return NULL;
}
tcx0 = int_ceildiv(pi->tx0, comp->dx);
tcy0 = int_ceildiv(pi->ty0, comp->dy);
tcx1 = int_ceildiv(pi->tx1, comp->dx);
tcy1 = int_ceildiv(pi->ty1, comp->dy);
if (comp->numresolutions > maxres) {
maxres = comp->numresolutions;
}
for (resno = 0; resno < comp->numresolutions; resno++) {
int levelno;
int rx0, ry0, rx1, ry1;
int px0, py0, px1, py1;
opj_pi_resolution_t *res = &comp->resolutions[resno];
if (tccp->csty & J2K_CCP_CSTY_PRT) {
res->pdx = tccp->prcw[resno];
res->pdy = tccp->prch[resno];
} else {
res->pdx = 15;
res->pdy = 15;
}
levelno = comp->numresolutions - 1 - resno;
rx0 = int_ceildivpow2(tcx0, levelno);
ry0 = int_ceildivpow2(tcy0, levelno);
rx1 = int_ceildivpow2(tcx1, levelno);
ry1 = int_ceildivpow2(tcy1, levelno);
px0 = int_floordivpow2(rx0, res->pdx) << res->pdx;
py0 = int_floordivpow2(ry0, res->pdy) << res->pdy;
px1 = int_ceildivpow2(rx1, res->pdx) << res->pdx;
py1 = int_ceildivpow2(ry1, res->pdy) << res->pdy;
res->pw = (rx0==rx1)?0:((px1 - px0) >> res->pdx);
res->ph = (ry0==ry1)?0:((py1 - py0) >> res->pdy);
if (res->pw*res->ph > maxprec) {
maxprec = res->pw*res->ph;
}
}
}
tccp = &tcp->tccps[0];
pi[pino].step_p = 1;
pi[pino].step_c = maxprec * pi[pino].step_p;
pi[pino].step_r = image->numcomps * pi[pino].step_c;
pi[pino].step_l = maxres * pi[pino].step_r;
if (pino == 0) {
pi[pino].include = (short int*) opj_calloc(image->numcomps * maxres * tcp->numlayers * maxprec, sizeof(short int));
if(!pi[pino].include) {
/* TODO: throw an error */
pi_destroy(pi, cp, tileno);
return NULL;
}
}
else {
pi[pino].include = pi[pino - 1].include;
}
if (tcp->POC == 0) {
pi[pino].first = 1;
pi[pino].poc.resno0 = 0;
pi[pino].poc.compno0 = 0;
pi[pino].poc.layno1 = tcp->numlayers;
pi[pino].poc.resno1 = maxres;
pi[pino].poc.compno1 = image->numcomps;
pi[pino].poc.prg = tcp->prg;
} else {
pi[pino].first = 1;
pi[pino].poc.resno0 = tcp->pocs[pino].resno0;
pi[pino].poc.compno0 = tcp->pocs[pino].compno0;
pi[pino].poc.layno1 = tcp->pocs[pino].layno1;
pi[pino].poc.resno1 = tcp->pocs[pino].resno1;
pi[pino].poc.compno1 = tcp->pocs[pino].compno1;
pi[pino].poc.prg = tcp->pocs[pino].prg;
}
pi[pino].poc.layno0 = 0;
pi[pino].poc.precno0 = 0;
pi[pino].poc.precno1 = maxprec;
}
return pi;
}
opj_pi_iterator_t *pi_create_decode_v2( opj_image_t *p_image,
opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tile_no
)
{
// loop
OPJ_UINT32 pino;
OPJ_UINT32 compno, resno;
// to store w, h, dx and dy fro all components and resolutions
OPJ_UINT32 * l_tmp_data;
OPJ_UINT32 ** l_tmp_ptr;
// encoding prameters to set
OPJ_UINT32 l_max_res;
OPJ_UINT32 l_max_prec;
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
OPJ_UINT32 l_dx_min,l_dy_min;
OPJ_UINT32 l_bound;
OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ;
OPJ_UINT32 l_data_stride;
// pointers
opj_pi_iterator_t *l_pi = 00;
opj_tcp_v2_t *l_tcp = 00;
const opj_tccp_t *l_tccp = 00;
opj_pi_comp_t *l_current_comp = 00;
opj_image_comp_t * l_img_comp = 00;
opj_pi_iterator_t * l_current_pi = 00;
OPJ_UINT32 * l_encoding_value_ptr = 00;
// preconditions in debug
assert(p_cp != 00);
assert(p_image != 00);
assert(p_tile_no < p_cp->tw * p_cp->th);
// initializations
l_tcp = &p_cp->tcps[p_tile_no];
l_bound = l_tcp->numpocs+1;
l_data_stride = 4 * J2K_MAXRLVLS;
l_tmp_data = (OPJ_UINT32*)opj_malloc(
l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32));
if
(! l_tmp_data)
{
return 00;
}
l_tmp_ptr = (OPJ_UINT32**)opj_malloc(
p_image->numcomps * sizeof(OPJ_UINT32 *));
if
(! l_tmp_ptr)
{
opj_free(l_tmp_data);
return 00;
}
// memory allocation for pi
l_pi = pi_create(p_image, p_cp, p_tile_no);
if (!l_pi) {
opj_free(l_tmp_data);
opj_free(l_tmp_ptr);
return 00;
}
l_encoding_value_ptr = l_tmp_data;
// update pointer array
for
(compno = 0; compno < p_image->numcomps; ++compno)
{
l_tmp_ptr[compno] = l_encoding_value_ptr;
l_encoding_value_ptr += l_data_stride;
}
// get encoding parameters
get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr);
// step calculations
l_step_p = 1;
l_step_c = l_max_prec * l_step_p;
l_step_r = p_image->numcomps * l_step_c;
l_step_l = l_max_res * l_step_r;
// set values for first packet iterator
l_current_pi = l_pi;
// memory allocation for include
l_current_pi->include = (OPJ_INT16*) opj_calloc((l_tcp->numlayers +1) * l_step_l, sizeof(OPJ_INT16));
if
(!l_current_pi->include)
{
opj_free(l_tmp_data);
opj_free(l_tmp_ptr);
pi_destroy_v2(l_pi, l_bound);
return 00;
}
memset(l_current_pi->include,0, (l_tcp->numlayers + 1) * l_step_l* sizeof(OPJ_INT16));
// special treatment for the first packet iterator
l_current_comp = l_current_pi->comps;
l_img_comp = p_image->comps;
l_tccp = l_tcp->tccps;
l_current_pi->tx0 = l_tx0;
l_current_pi->ty0 = l_ty0;
l_current_pi->tx1 = l_tx1;
l_current_pi->ty1 = l_ty1;
//l_current_pi->dx = l_img_comp->dx;
//l_current_pi->dy = l_img_comp->dy;
l_current_pi->step_p = l_step_p;
l_current_pi->step_c = l_step_c;
l_current_pi->step_r = l_step_r;
l_current_pi->step_l = l_step_l;
/* allocation for components and number of components has already been calculated by pi_create */
for
(compno = 0; compno < l_current_pi->numcomps; ++compno)
{
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
l_encoding_value_ptr = l_tmp_ptr[compno];
l_current_comp->dx = l_img_comp->dx;
l_current_comp->dy = l_img_comp->dy;
/* resolutions have already been initialized */
for
(resno = 0; resno < l_current_comp->numresolutions; resno++)
{
l_res->pdx = *(l_encoding_value_ptr++);
l_res->pdy = *(l_encoding_value_ptr++);
l_res->pw = *(l_encoding_value_ptr++);
l_res->ph = *(l_encoding_value_ptr++);
++l_res;
}
++l_current_comp;
++l_img_comp;
++l_tccp;
}
++l_current_pi;
for
(pino = 1 ; pino<l_bound ; ++pino )
{
opj_pi_comp_t *l_current_comp = l_current_pi->comps;
opj_image_comp_t * l_img_comp = p_image->comps;
l_tccp = l_tcp->tccps;
l_current_pi->tx0 = l_tx0;
l_current_pi->ty0 = l_ty0;
l_current_pi->tx1 = l_tx1;
l_current_pi->ty1 = l_ty1;
//l_current_pi->dx = l_dx_min;
//l_current_pi->dy = l_dy_min;
l_current_pi->step_p = l_step_p;
l_current_pi->step_c = l_step_c;
l_current_pi->step_r = l_step_r;
l_current_pi->step_l = l_step_l;
/* allocation for components and number of components has already been calculated by pi_create */
for
(compno = 0; compno < l_current_pi->numcomps; ++compno)
{
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
l_encoding_value_ptr = l_tmp_ptr[compno];
l_current_comp->dx = l_img_comp->dx;
l_current_comp->dy = l_img_comp->dy;
/* resolutions have already been initialized */
for
(resno = 0; resno < l_current_comp->numresolutions; resno++)
{
l_res->pdx = *(l_encoding_value_ptr++);
l_res->pdy = *(l_encoding_value_ptr++);
l_res->pw = *(l_encoding_value_ptr++);
l_res->ph = *(l_encoding_value_ptr++);
++l_res;
}
++l_current_comp;
++l_img_comp;
++l_tccp;
}
// special treatment
l_current_pi->include = (l_current_pi-1)->include;
++l_current_pi;
}
opj_free(l_tmp_data);
l_tmp_data = 00;
opj_free(l_tmp_ptr);
l_tmp_ptr = 00;
if
(l_tcp->POC)
{
pi_update_decode_poc (l_pi,l_tcp,l_max_prec,l_max_res);
}
else
{
pi_update_decode_not_poc(l_pi,l_tcp,l_max_prec,l_max_res);
}
return l_pi;
}
opj_pi_iterator_t *pi_initialise_encode(opj_image_t *image, opj_cp_t *cp, int tileno, J2K_T2_MODE t2_mode){
int p, q, pino;
int compno, resno;
int maxres = 0;
int maxprec = 0;
opj_pi_iterator_t *pi = NULL;
opj_tcp_t *tcp = NULL;
opj_tccp_t *tccp = NULL;
tcp = &cp->tcps[tileno];
pi = (opj_pi_iterator_t*) opj_calloc((tcp->numpocs + 1), sizeof(opj_pi_iterator_t));
if(!pi) { return NULL;}
pi->tp_on = cp->tp_on;
for(pino = 0;pino < tcp->numpocs+1 ; pino ++){
p = tileno % cp->tw;
q = tileno / cp->tw;
pi[pino].tx0 = int_max(cp->tx0 + p * cp->tdx, image->x0);
pi[pino].ty0 = int_max(cp->ty0 + q * cp->tdy, image->y0);
pi[pino].tx1 = int_min(cp->tx0 + (p + 1) * cp->tdx, image->x1);
pi[pino].ty1 = int_min(cp->ty0 + (q + 1) * cp->tdy, image->y1);
pi[pino].numcomps = image->numcomps;
pi[pino].comps = (opj_pi_comp_t*) opj_calloc(image->numcomps, sizeof(opj_pi_comp_t));
if(!pi[pino].comps) {
pi_destroy(pi, cp, tileno);
return NULL;
}
for (compno = 0; compno < pi[pino].numcomps; compno++) {
int tcx0, tcy0, tcx1, tcy1;
opj_pi_comp_t *comp = &pi[pino].comps[compno];
tccp = &tcp->tccps[compno];
comp->dx = image->comps[compno].dx;
comp->dy = image->comps[compno].dy;
comp->numresolutions = tccp->numresolutions;
comp->resolutions = (opj_pi_resolution_t*) opj_malloc(comp->numresolutions * sizeof(opj_pi_resolution_t));
if(!comp->resolutions) {
pi_destroy(pi, cp, tileno);
return NULL;
}
tcx0 = int_ceildiv(pi[pino].tx0, comp->dx);
tcy0 = int_ceildiv(pi[pino].ty0, comp->dy);
tcx1 = int_ceildiv(pi[pino].tx1, comp->dx);
tcy1 = int_ceildiv(pi[pino].ty1, comp->dy);
if (comp->numresolutions > maxres) {
maxres = comp->numresolutions;
}
for (resno = 0; resno < comp->numresolutions; resno++) {
int levelno;
int rx0, ry0, rx1, ry1;
int px0, py0, px1, py1;
opj_pi_resolution_t *res = &comp->resolutions[resno];
if (tccp->csty & J2K_CCP_CSTY_PRT) {
res->pdx = tccp->prcw[resno];
res->pdy = tccp->prch[resno];
} else {
res->pdx = 15;
res->pdy = 15;
}
levelno = comp->numresolutions - 1 - resno;
rx0 = int_ceildivpow2(tcx0, levelno);
ry0 = int_ceildivpow2(tcy0, levelno);
rx1 = int_ceildivpow2(tcx1, levelno);
ry1 = int_ceildivpow2(tcy1, levelno);
px0 = int_floordivpow2(rx0, res->pdx) << res->pdx;
py0 = int_floordivpow2(ry0, res->pdy) << res->pdy;
px1 = int_ceildivpow2(rx1, res->pdx) << res->pdx;
py1 = int_ceildivpow2(ry1, res->pdy) << res->pdy;
res->pw = (rx0==rx1)?0:((px1 - px0) >> res->pdx);
res->ph = (ry0==ry1)?0:((py1 - py0) >> res->pdy);
if (res->pw*res->ph > maxprec) {
maxprec = res->pw * res->ph;
}
}
}
tccp = &tcp->tccps[0];
pi[pino].step_p = 1;
pi[pino].step_c = maxprec * pi[pino].step_p;
pi[pino].step_r = image->numcomps * pi[pino].step_c;
pi[pino].step_l = maxres * pi[pino].step_r;
for (compno = 0; compno < pi->numcomps; compno++) {
opj_pi_comp_t *comp = &pi->comps[compno];
for (resno = 0; resno < comp->numresolutions; resno++) {
int dx, dy;
opj_pi_resolution_t *res = &comp->resolutions[resno];
dx = comp->dx * (1 << (res->pdx + comp->numresolutions - 1 - resno));
dy = comp->dy * (1 << (res->pdy + comp->numresolutions - 1 - resno));
pi[pino].dx = !pi->dx ? dx : int_min(pi->dx, dx);
pi[pino].dy = !pi->dy ? dy : int_min(pi->dy, dy);
}
}
if (pino == 0) {
pi[pino].include = (short int*) opj_calloc(tcp->numlayers * pi[pino].step_l, sizeof(short int));
if(!pi[pino].include) {
pi_destroy(pi, cp, tileno);
return NULL;
}
}
else {
pi[pino].include = pi[pino - 1].include;
}
/* Generation of boundaries for each prog flag*/
if(tcp->POC && ( cp->cinema || ((!cp->cinema) && (t2_mode == FINAL_PASS)))){
tcp->pocs[pino].compS= tcp->pocs[pino].compno0;
tcp->pocs[pino].compE= tcp->pocs[pino].compno1;
tcp->pocs[pino].resS = tcp->pocs[pino].resno0;
tcp->pocs[pino].resE = tcp->pocs[pino].resno1;
tcp->pocs[pino].layE = tcp->pocs[pino].layno1;
tcp->pocs[pino].prg = tcp->pocs[pino].prg1;
if (pino > 0)
tcp->pocs[pino].layS = (tcp->pocs[pino].layE > tcp->pocs[pino - 1].layE) ? tcp->pocs[pino - 1].layE : 0;
}else {
tcp->pocs[pino].compS= 0;
tcp->pocs[pino].compE= image->numcomps;
tcp->pocs[pino].resS = 0;
tcp->pocs[pino].resE = maxres;
tcp->pocs[pino].layS = 0;
tcp->pocs[pino].layE = tcp->numlayers;
tcp->pocs[pino].prg = tcp->prg;
}
tcp->pocs[pino].prcS = 0;
tcp->pocs[pino].prcE = maxprec;;
tcp->pocs[pino].txS = pi[pino].tx0;
tcp->pocs[pino].txE = pi[pino].tx1;
tcp->pocs[pino].tyS = pi[pino].ty0;
tcp->pocs[pino].tyE = pi[pino].ty1;
tcp->pocs[pino].dx = pi[pino].dx;
tcp->pocs[pino].dy = pi[pino].dy;
}
return pi;
}
/**
* Creates a packet iterator for encoding.
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param p_tile_no index of the tile being encoded.
* @param p_t2_mode the type of pass for generating the packet iterator
* @return a list of packet iterator that points to the first packet of the tile (not true).
*/
opj_pi_iterator_t *pi_initialise_encode_v2(
const opj_image_t *p_image,
opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tile_no,
J2K_T2_MODE p_t2_mode
)
{
// loop
OPJ_UINT32 pino;
OPJ_UINT32 compno, resno;
// to store w, h, dx and dy fro all components and resolutions
OPJ_UINT32 * l_tmp_data;
OPJ_UINT32 ** l_tmp_ptr;
// encoding prameters to set
OPJ_UINT32 l_max_res;
OPJ_UINT32 l_max_prec;
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
OPJ_UINT32 l_dx_min,l_dy_min;
OPJ_UINT32 l_bound;
OPJ_UINT32 l_step_p , l_step_c , l_step_r , l_step_l ;
OPJ_UINT32 l_data_stride;
// pointers
opj_pi_iterator_t *l_pi = 00;
opj_tcp_v2_t *l_tcp = 00;
const opj_tccp_t *l_tccp = 00;
opj_pi_comp_t *l_current_comp = 00;
opj_image_comp_t * l_img_comp = 00;
opj_pi_iterator_t * l_current_pi = 00;
OPJ_UINT32 * l_encoding_value_ptr = 00;
// preconditions in debug
assert(p_cp != 00);
assert(p_image != 00);
assert(p_tile_no < p_cp->tw * p_cp->th);
// initializations
l_tcp = &p_cp->tcps[p_tile_no];
l_bound = l_tcp->numpocs+1;
l_data_stride = 4 * J2K_MAXRLVLS;
l_tmp_data = (OPJ_UINT32*)opj_malloc(
l_data_stride * p_image->numcomps * sizeof(OPJ_UINT32));
if (! l_tmp_data) {
return 00;
}
l_tmp_ptr = (OPJ_UINT32**)opj_malloc(
p_image->numcomps * sizeof(OPJ_UINT32 *));
if (! l_tmp_ptr) {
opj_free(l_tmp_data);
return 00;
}
// memory allocation for pi
l_pi = pi_create(p_image,p_cp,p_tile_no);
if (!l_pi) {
opj_free(l_tmp_data);
opj_free(l_tmp_ptr);
return 00;
}
l_encoding_value_ptr = l_tmp_data;
// update pointer array
for (compno = 0; compno < p_image->numcomps; ++compno) {
l_tmp_ptr[compno] = l_encoding_value_ptr;
l_encoding_value_ptr += l_data_stride;
}
// get encoding parameters
get_all_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res,l_tmp_ptr);
// step calculations
l_step_p = 1;
l_step_c = l_max_prec * l_step_p;
l_step_r = p_image->numcomps * l_step_c;
l_step_l = l_max_res * l_step_r;
// set values for first packet iterator
l_pi->tp_on = p_cp->m_specific_param.m_enc.m_tp_on;
l_current_pi = l_pi;
// memory allocation for include
l_current_pi->include = (OPJ_INT16*) opj_calloc(l_tcp->numlayers * l_step_l, sizeof(OPJ_INT16));
if (!l_current_pi->include) {
opj_free(l_tmp_data);
opj_free(l_tmp_ptr);
pi_destroy_v2(l_pi, l_bound);
return 00;
}
memset(l_current_pi->include,0,l_tcp->numlayers * l_step_l* sizeof(OPJ_INT16));
// special treatment for the first packet iterator
l_current_comp = l_current_pi->comps;
l_img_comp = p_image->comps;
l_tccp = l_tcp->tccps;
l_current_pi->tx0 = l_tx0;
l_current_pi->ty0 = l_ty0;
l_current_pi->tx1 = l_tx1;
l_current_pi->ty1 = l_ty1;
l_current_pi->dx = l_dx_min;
l_current_pi->dy = l_dy_min;
l_current_pi->step_p = l_step_p;
l_current_pi->step_c = l_step_c;
l_current_pi->step_r = l_step_r;
l_current_pi->step_l = l_step_l;
/* allocation for components and number of components has already been calculated by pi_create */
for (compno = 0; compno < l_current_pi->numcomps; ++compno) {
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
l_encoding_value_ptr = l_tmp_ptr[compno];
l_current_comp->dx = l_img_comp->dx;
l_current_comp->dy = l_img_comp->dy;
/* resolutions have already been initialized */
for (resno = 0; resno < l_current_comp->numresolutions; resno++) {
l_res->pdx = *(l_encoding_value_ptr++);
l_res->pdy = *(l_encoding_value_ptr++);
l_res->pw = *(l_encoding_value_ptr++);
l_res->ph = *(l_encoding_value_ptr++);
++l_res;
}
++l_current_comp;
++l_img_comp;
++l_tccp;
}
++l_current_pi;
for (pino = 1 ; pino<l_bound ; ++pino ) {
opj_pi_comp_t *l_current_comp = l_current_pi->comps;
opj_image_comp_t * l_img_comp = p_image->comps;
l_tccp = l_tcp->tccps;
l_current_pi->tx0 = l_tx0;
l_current_pi->ty0 = l_ty0;
l_current_pi->tx1 = l_tx1;
l_current_pi->ty1 = l_ty1;
l_current_pi->dx = l_dx_min;
l_current_pi->dy = l_dy_min;
l_current_pi->step_p = l_step_p;
l_current_pi->step_c = l_step_c;
l_current_pi->step_r = l_step_r;
l_current_pi->step_l = l_step_l;
/* allocation for components and number of components has already been calculated by pi_create */
for (compno = 0; compno < l_current_pi->numcomps; ++compno) {
opj_pi_resolution_t *l_res = l_current_comp->resolutions;
l_encoding_value_ptr = l_tmp_ptr[compno];
l_current_comp->dx = l_img_comp->dx;
l_current_comp->dy = l_img_comp->dy;
/* resolutions have already been initialized */
for (resno = 0; resno < l_current_comp->numresolutions; resno++) {
l_res->pdx = *(l_encoding_value_ptr++);
l_res->pdy = *(l_encoding_value_ptr++);
l_res->pw = *(l_encoding_value_ptr++);
l_res->ph = *(l_encoding_value_ptr++);
++l_res;
}
++l_current_comp;
++l_img_comp;
++l_tccp;
}
// special treatment
l_current_pi->include = (l_current_pi-1)->include;
++l_current_pi;
}
opj_free(l_tmp_data);
l_tmp_data = 00;
opj_free(l_tmp_ptr);
l_tmp_ptr = 00;
if (l_tcp->POC && ( p_cp->m_specific_param.m_enc.m_cinema || p_t2_mode == FINAL_PASS)) {
pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
}
else {
pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
}
return l_pi;
}
void pi_destroy(opj_pi_iterator_t *pi, opj_cp_t *cp, int tileno) {
int compno, pino;
opj_tcp_t *tcp = &cp->tcps[tileno];
if(pi) {
for (pino = 0; pino < tcp->numpocs + 1; pino++) {
if(pi[pino].comps) {
for (compno = 0; compno < pi->numcomps; compno++) {
opj_pi_comp_t *comp = &pi[pino].comps[compno];
if(comp->resolutions) {
opj_free(comp->resolutions);
}
}
opj_free(pi[pino].comps);
}
}
if(pi->include) {
opj_free(pi->include);
}
opj_free(pi);
}
}
opj_bool pi_next(opj_pi_iterator_t * pi) {
switch (pi->poc.prg) {
case LRCP:
return pi_next_lrcp(pi);
case RLCP:
return pi_next_rlcp(pi);
case RPCL:
return pi_next_rpcl(pi);
case PCRL:
return pi_next_pcrl(pi);
case CPRL:
return pi_next_cprl(pi);
case PROG_UNKNOWN:
return OPJ_FALSE;
}
return OPJ_FALSE;
}
opj_bool pi_create_encode( opj_pi_iterator_t *pi, opj_cp_t *cp,int tileno, int pino,int tpnum, int tppos, J2K_T2_MODE t2_mode,int cur_totnum_tp){
char prog[4];
int i;
int incr_top=1,resetX=0;
opj_tcp_t *tcps =&cp->tcps[tileno];
opj_poc_t *tcp= &tcps->pocs[pino];
pi[pino].first = 1;
pi[pino].poc.prg = tcp->prg;
switch(tcp->prg){
case CPRL: strncpy(prog, "CPRL",4);
break;
case LRCP: strncpy(prog, "LRCP",4);
break;
case PCRL: strncpy(prog, "PCRL",4);
break;
case RLCP: strncpy(prog, "RLCP",4);
break;
case RPCL: strncpy(prog, "RPCL",4);
break;
case PROG_UNKNOWN:
return OPJ_TRUE;
}
if(!(cp->tp_on && ((!cp->cinema && (t2_mode == FINAL_PASS)) || cp->cinema))){
pi[pino].poc.resno0 = tcp->resS;
pi[pino].poc.resno1 = tcp->resE;
pi[pino].poc.compno0 = tcp->compS;
pi[pino].poc.compno1 = tcp->compE;
pi[pino].poc.layno0 = tcp->layS;
pi[pino].poc.layno1 = tcp->layE;
pi[pino].poc.precno0 = tcp->prcS;
pi[pino].poc.precno1 = tcp->prcE;
pi[pino].poc.tx0 = tcp->txS;
pi[pino].poc.ty0 = tcp->tyS;
pi[pino].poc.tx1 = tcp->txE;
pi[pino].poc.ty1 = tcp->tyE;
}else {
if( tpnum < cur_totnum_tp){
for(i=3;i>=0;i--){
switch(prog[i]){
case 'C':
if (i > tppos){
pi[pino].poc.compno0 = tcp->compS;
pi[pino].poc.compno1 = tcp->compE;
}else{
if (tpnum == 0){
tcp->comp_t = tcp->compS;
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
}else{
if (incr_top == 1){
if(tcp->comp_t ==tcp->compE){
tcp->comp_t = tcp->compS;
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
incr_top=1;
}else{
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
incr_top=0;
}
}else{
pi[pino].poc.compno0 = tcp->comp_t-1;
pi[pino].poc.compno1 = tcp->comp_t;
}
}
}
break;
case 'R':
if (i > tppos){
pi[pino].poc.resno0 = tcp->resS;
pi[pino].poc.resno1 = tcp->resE;
}else{
if (tpnum == 0){
tcp->res_t = tcp->resS;
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
}else{
if (incr_top == 1){
if(tcp->res_t==tcp->resE){
tcp->res_t = tcp->resS;
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
incr_top=1;
}else{
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
incr_top=0;
}
}else{
pi[pino].poc.resno0 = tcp->res_t - 1;
pi[pino].poc.resno1 = tcp->res_t;
}
}
}
break;
case 'L':
if (i > tppos){
pi[pino].poc.layno0 = tcp->layS;
pi[pino].poc.layno1 = tcp->layE;
}else{
if (tpnum == 0){
tcp->lay_t = tcp->layS;
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
}else{
if (incr_top == 1){
if(tcp->lay_t == tcp->layE){
tcp->lay_t = tcp->layS;
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
incr_top=1;
}else{
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
incr_top=0;
}
}else{
pi[pino].poc.layno0 = tcp->lay_t - 1;
pi[pino].poc.layno1 = tcp->lay_t;
}
}
}
break;
case 'P':
switch(tcp->prg){
case LRCP:
case RLCP:
if (i > tppos){
pi[pino].poc.precno0 = tcp->prcS;
pi[pino].poc.precno1 = tcp->prcE;
}else{
if (tpnum == 0){
tcp->prc_t = tcp->prcS;
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
}else{
if (incr_top == 1){
if(tcp->prc_t == tcp->prcE){
tcp->prc_t = tcp->prcS;
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
incr_top=1;
}else{
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
incr_top=0;
}
}else{
pi[pino].poc.precno0 = tcp->prc_t - 1;
pi[pino].poc.precno1 = tcp->prc_t;
}
}
}
break;
default:
if (i > tppos){
pi[pino].poc.tx0 = tcp->txS;
pi[pino].poc.ty0 = tcp->tyS;
pi[pino].poc.tx1 = tcp->txE;
pi[pino].poc.ty1 = tcp->tyE;
}else{
if (tpnum == 0){
tcp->tx0_t = tcp->txS;
tcp->ty0_t = tcp->tyS;
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx - (tcp->tx0_t % tcp->dx);
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->tx0_t = pi[pino].poc.tx1;
tcp->ty0_t = pi[pino].poc.ty1;
}else{
if (incr_top == 1){
if(tcp->tx0_t >= tcp->txE){
if(tcp->ty0_t >= tcp->tyE){
tcp->ty0_t = tcp->tyS;
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->ty0_t = pi[pino].poc.ty1;
incr_top=1;resetX=1;
}else{
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->ty0_t = pi[pino].poc.ty1;
incr_top=0;resetX=1;
}
if(resetX==1){
tcp->tx0_t = tcp->txS;
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
tcp->tx0_t = pi[pino].poc.tx1;
}
}else{
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
tcp->tx0_t = pi[pino].poc.tx1;
pi[pino].poc.ty0 = tcp->ty0_t - tcp->dy - (tcp->ty0_t % tcp->dy);
pi[pino].poc.ty1 = tcp->ty0_t ;
incr_top=0;
}
}else{
pi[pino].poc.tx0 = tcp->tx0_t - tcp->dx - (tcp->tx0_t % tcp->dx);
pi[pino].poc.tx1 = tcp->tx0_t ;
pi[pino].poc.ty0 = tcp->ty0_t - tcp->dy - (tcp->ty0_t % tcp->dy);
pi[pino].poc.ty1 = tcp->ty0_t ;
}
}
}
break;
}
break;
}
}
}
}
return OPJ_FALSE;
}
/**
* Updates the encoding parameters of the codec.
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param p_tile_no index of the tile being encoded.
*/
void pi_update_encoding_parameters( const opj_image_t *p_image,
opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tile_no )
{
/* encoding parameters to set */
OPJ_UINT32 l_max_res;
OPJ_UINT32 l_max_prec;
OPJ_INT32 l_tx0,l_tx1,l_ty0,l_ty1;
OPJ_UINT32 l_dx_min,l_dy_min;
/* pointers */
opj_tcp_v2_t *l_tcp = 00;
/* preconditions */
assert(p_cp != 00);
assert(p_image != 00);
assert(p_tile_no < p_cp->tw * p_cp->th);
l_tcp = &(p_cp->tcps[p_tile_no]);
/* get encoding parameters */
get_encoding_parameters(p_image,p_cp,p_tile_no,&l_tx0,&l_tx1,&l_ty0,&l_ty1,&l_dx_min,&l_dy_min,&l_max_prec,&l_max_res);
if (l_tcp->POC) {
pi_update_encode_poc_and_final(p_cp,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
}
else {
pi_update_encode_not_poc(p_cp,p_image->numcomps,p_tile_no,l_tx0,l_tx1,l_ty0,l_ty1,l_max_prec,l_max_res,l_dx_min,l_dy_min);
}
}
/**
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param p_tileno the tile index of the tile being encoded.
* @param p_tx0 pointer that will hold the X0 parameter for the tile
* @param p_tx1 pointer that will hold the X1 parameter for the tile
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
* @param dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
*/
void get_encoding_parameters( const opj_image_t *p_image,
const opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tileno,
OPJ_INT32 * p_tx0,
OPJ_INT32 * p_tx1,
OPJ_INT32 * p_ty0,
OPJ_INT32 * p_ty1,
OPJ_UINT32 * p_dx_min,
OPJ_UINT32 * p_dy_min,
OPJ_UINT32 * p_max_prec,
OPJ_UINT32 * p_max_res )
{
/* loop */
OPJ_UINT32 compno, resno;
/* pointers */
const opj_tcp_v2_t *l_tcp = 00;
const opj_tccp_t * l_tccp = 00;
const opj_image_comp_t * l_img_comp = 00;
/* position in x and y of tile */
OPJ_UINT32 p, q;
/* preconditions */
assert(p_cp != 00);
assert(p_image != 00);
assert(p_tileno < p_cp->tw * p_cp->th);
/* initializations */
l_tcp = &p_cp->tcps [p_tileno];
l_img_comp = p_image->comps;
l_tccp = l_tcp->tccps;
/* here calculation of tx0, tx1, ty0, ty1, maxprec, dx and dy */
p = p_tileno % p_cp->tw;
q = p_tileno / p_cp->tw;
/* find extent of tile */
*p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0);
*p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1);
*p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0);
*p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1);
/* max precision is 0 (can only grow) */
*p_max_prec = 0;
*p_max_res = 0;
/* take the largest value for dx_min and dy_min */
*p_dx_min = 0x7fffffff;
*p_dy_min = 0x7fffffff;
for (compno = 0; compno < p_image->numcomps; ++compno) {
/* arithmetic variables to calculate */
OPJ_UINT32 l_level_no;
OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1;
OPJ_INT32 l_px0, l_py0, l_px1, py1;
OPJ_UINT32 l_pdx, l_pdy;
OPJ_UINT32 l_pw, l_ph;
OPJ_UINT32 l_product;
OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1;
l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx);
l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy);
l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx);
l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy);
if (l_tccp->numresolutions > *p_max_res) {
*p_max_res = l_tccp->numresolutions;
}
/* use custom size for precincts */
for (resno = 0; resno < l_tccp->numresolutions; ++resno) {
OPJ_UINT32 l_dx, l_dy;
/* precinct width and height */
l_pdx = l_tccp->prcw[resno];
l_pdy = l_tccp->prch[resno];
l_dx = l_img_comp->dx * (1 << (l_pdx + l_tccp->numresolutions - 1 - resno));
l_dy = l_img_comp->dy * (1 << (l_pdy + l_tccp->numresolutions - 1 - resno));
/* take the minimum size for dx for each comp and resolution */
*p_dx_min = uint_min(*p_dx_min, l_dx);
*p_dy_min = uint_min(*p_dy_min, l_dy);
/* various calculations of extents */
l_level_no = l_tccp->numresolutions - 1 - resno;
l_rx0 = int_ceildivpow2(l_tcx0, l_level_no);
l_ry0 = int_ceildivpow2(l_tcy0, l_level_no);
l_rx1 = int_ceildivpow2(l_tcx1, l_level_no);
l_ry1 = int_ceildivpow2(l_tcy1, l_level_no);
l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx;
l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy;
l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx;
py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy;
l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx);
l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy);
l_product = l_pw * l_ph;
/* update precision */
if (l_product > *p_max_prec) {
*p_max_prec = l_product;
}
}
++l_img_comp;
++l_tccp;
}
}
/**
* Gets the encoding parameters needed to update the coding parameters and all the pocs.
* The precinct widths, heights, dx and dy for each component at each resolution will be stored as well.
* the last parameter of the function should be an array of pointers of size nb components, each pointer leading
* to an area of size 4 * max_res. The data is stored inside this area with the following pattern :
* dx_compi_res0 , dy_compi_res0 , w_compi_res0, h_compi_res0 , dx_compi_res1 , dy_compi_res1 , w_compi_res1, h_compi_res1 , ...
*
* @param p_image the image being encoded.
* @param p_cp the coding parameters.
* @param tileno the tile index of the tile being encoded.
* @param p_tx0 pointer that will hold the X0 parameter for the tile
* @param p_tx1 pointer that will hold the X1 parameter for the tile
* @param p_ty0 pointer that will hold the Y0 parameter for the tile
* @param p_ty1 pointer that will hold the Y1 parameter for the tile
* @param p_max_prec pointer that will hold the the maximum precision for all the bands of the tile
* @param p_max_res pointer that will hold the the maximum number of resolutions for all the poc inside the tile.
* @param p_dx_min pointer that will hold the the minimum dx of all the components of all the resolutions for the tile.
* @param p_dy_min pointer that will hold the the minimum dy of all the components of all the resolutions for the tile.
* @param p_resolutions pointer to an area corresponding to the one described above.
*/
void get_all_encoding_parameters(
const opj_image_t *p_image,
const opj_cp_v2_t *p_cp,
OPJ_UINT32 tileno,
OPJ_INT32 * p_tx0,
OPJ_INT32 * p_tx1,
OPJ_INT32 * p_ty0,
OPJ_INT32 * p_ty1,
OPJ_UINT32 * p_dx_min,
OPJ_UINT32 * p_dy_min,
OPJ_UINT32 * p_max_prec,
OPJ_UINT32 * p_max_res,
OPJ_UINT32 ** p_resolutions
)
{
// loop
OPJ_UINT32 compno, resno;
// pointers
const opj_tcp_v2_t *tcp = 00;
const opj_tccp_t * l_tccp = 00;
const opj_image_comp_t * l_img_comp = 00;
// to store l_dx, l_dy, w and h for each resolution and component.
OPJ_UINT32 * lResolutionPtr;
// position in x and y of tile
OPJ_UINT32 p, q;
// preconditions in debug
assert(p_cp != 00);
assert(p_image != 00);
assert(tileno < p_cp->tw * p_cp->th);
// initializations
tcp = &p_cp->tcps [tileno];
l_tccp = tcp->tccps;
l_img_comp = p_image->comps;
// position in x and y of tile
p = tileno % p_cp->tw;
q = tileno / p_cp->tw;
/* here calculation of tx0, tx1, ty0, ty1, maxprec, l_dx and l_dy */
*p_tx0 = int_max(p_cp->tx0 + p * p_cp->tdx, p_image->x0);
*p_tx1 = int_min(p_cp->tx0 + (p + 1) * p_cp->tdx, p_image->x1);
*p_ty0 = int_max(p_cp->ty0 + q * p_cp->tdy, p_image->y0);
*p_ty1 = int_min(p_cp->ty0 + (q + 1) * p_cp->tdy, p_image->y1);
// max precision and resolution is 0 (can only grow)
*p_max_prec = 0;
*p_max_res = 0;
// take the largest value for dx_min and dy_min
*p_dx_min = 0x7fffffff;
*p_dy_min = 0x7fffffff;
for
(compno = 0; compno < p_image->numcomps; ++compno)
{
// aritmetic variables to calculate
OPJ_UINT32 l_level_no;
OPJ_INT32 l_rx0, l_ry0, l_rx1, l_ry1;
OPJ_INT32 l_px0, l_py0, l_px1, py1;
OPJ_UINT32 l_product;
OPJ_INT32 l_tcx0, l_tcy0, l_tcx1, l_tcy1;
OPJ_UINT32 l_pdx, l_pdy , l_pw , l_ph;
lResolutionPtr = p_resolutions[compno];
l_tcx0 = int_ceildiv(*p_tx0, l_img_comp->dx);
l_tcy0 = int_ceildiv(*p_ty0, l_img_comp->dy);
l_tcx1 = int_ceildiv(*p_tx1, l_img_comp->dx);
l_tcy1 = int_ceildiv(*p_ty1, l_img_comp->dy);
if
(l_tccp->numresolutions > *p_max_res)
{
*p_max_res = l_tccp->numresolutions;
}
// use custom size for precincts
l_level_no = l_tccp->numresolutions - 1;
for
(resno = 0; resno < l_tccp->numresolutions; ++resno)
{
OPJ_UINT32 l_dx, l_dy;
// precinct width and height
l_pdx = l_tccp->prcw[resno];
l_pdy = l_tccp->prch[resno];
*lResolutionPtr++ = l_pdx;
*lResolutionPtr++ = l_pdy;
l_dx = l_img_comp->dx * (1 << (l_pdx + l_level_no));
l_dy = l_img_comp->dy * (1 << (l_pdy + l_level_no));
// take the minimum size for l_dx for each comp and resolution
*p_dx_min = int_min(*p_dx_min, l_dx);
*p_dy_min = int_min(*p_dy_min, l_dy);
// various calculations of extents
l_rx0 = int_ceildivpow2(l_tcx0, l_level_no);
l_ry0 = int_ceildivpow2(l_tcy0, l_level_no);
l_rx1 = int_ceildivpow2(l_tcx1, l_level_no);
l_ry1 = int_ceildivpow2(l_tcy1, l_level_no);
l_px0 = int_floordivpow2(l_rx0, l_pdx) << l_pdx;
l_py0 = int_floordivpow2(l_ry0, l_pdy) << l_pdy;
l_px1 = int_ceildivpow2(l_rx1, l_pdx) << l_pdx;
py1 = int_ceildivpow2(l_ry1, l_pdy) << l_pdy;
l_pw = (l_rx0==l_rx1)?0:((l_px1 - l_px0) >> l_pdx);
l_ph = (l_ry0==l_ry1)?0:((py1 - l_py0) >> l_pdy);
*lResolutionPtr++ = l_pw;
*lResolutionPtr++ = l_ph;
l_product = l_pw * l_ph;
// update precision
if
(l_product > *p_max_prec)
{
*p_max_prec = l_product;
}
--l_level_no;
}
++l_tccp;
++l_img_comp;
}
}
/**
* Allocates memory for a packet iterator. Data and data sizes are set by this operation.
* No other data is set. The include section of the packet iterator is not allocated.
*
* @param image the image used to initialize the packet iterator (only the number of components is relevant.
* @param cp the coding parameters.
* @param tileno the index of the tile from which creating the packet iterator.
*/
opj_pi_iterator_t * pi_create( const opj_image_t *image,
const opj_cp_v2_t *cp,
OPJ_UINT32 tileno )
{
// loop
OPJ_UINT32 pino, compno;
// number of poc in the p_pi
OPJ_UINT32 l_poc_bound;
// pointers to tile coding parameters and components.
opj_pi_iterator_t *l_pi = 00;
opj_tcp_v2_t *tcp = 00;
const opj_tccp_t *tccp = 00;
// current packet iterator being allocated
opj_pi_iterator_t *l_current_pi = 00;
// preconditions in debug
assert(cp != 00);
assert(image != 00);
assert(tileno < cp->tw * cp->th);
// initializations
tcp = &cp->tcps[tileno];
l_poc_bound = tcp->numpocs+1;
// memory allocations
l_pi = (opj_pi_iterator_t*) opj_calloc((l_poc_bound), sizeof(opj_pi_iterator_t));
if (!l_pi) {
return NULL;
}
memset(l_pi,0,l_poc_bound * sizeof(opj_pi_iterator_t));
l_current_pi = l_pi;
for (pino = 0; pino < l_poc_bound ; ++pino) {
l_current_pi->comps = (opj_pi_comp_t*) opj_calloc(image->numcomps, sizeof(opj_pi_comp_t));
if (! l_current_pi->comps) {
pi_destroy_v2(l_pi, l_poc_bound);
return NULL;
}
l_current_pi->numcomps = image->numcomps;
memset(l_current_pi->comps,0,image->numcomps * sizeof(opj_pi_comp_t));
for (compno = 0; compno < image->numcomps; ++compno) {
opj_pi_comp_t *comp = &l_current_pi->comps[compno];
tccp = &tcp->tccps[compno];
comp->resolutions = (opj_pi_resolution_t*) opj_malloc(tccp->numresolutions * sizeof(opj_pi_resolution_t));
if (!comp->resolutions) {
pi_destroy_v2(l_pi, l_poc_bound);
return 00;
}
comp->numresolutions = tccp->numresolutions;
memset(comp->resolutions,0,tccp->numresolutions * sizeof(opj_pi_resolution_t));
}
++l_current_pi;
}
return l_pi;
}
/**
* Updates the coding parameters if the encoding is used with Progression order changes and final (or cinema parameters are used).
*
* @param p_cp the coding parameters to modify
* @param p_tileno the tile index being concerned.
* @param p_tx0 X0 parameter for the tile
* @param p_tx1 X1 parameter for the tile
* @param p_ty0 Y0 parameter for the tile
* @param p_ty1 Y1 parameter for the tile
* @param p_max_prec the maximum precision for all the bands of the tile
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
*/
void pi_update_encode_poc_and_final (opj_cp_v2_t *p_cp,
OPJ_UINT32 p_tileno,
OPJ_INT32 p_tx0,
OPJ_INT32 p_tx1,
OPJ_INT32 p_ty0,
OPJ_INT32 p_ty1,
OPJ_UINT32 p_max_prec,
OPJ_UINT32 p_max_res,
OPJ_UINT32 p_dx_min,
OPJ_UINT32 p_dy_min)
{
// loop
OPJ_UINT32 pino;
// tile coding parameter
opj_tcp_v2_t *l_tcp = 00;
// current poc being updated
opj_poc_t * l_current_poc = 00;
// number of pocs
OPJ_UINT32 l_poc_bound;
// preconditions in debug
assert(p_cp != 00);
assert(p_tileno < p_cp->tw * p_cp->th);
// initializations
l_tcp = &p_cp->tcps [p_tileno];
/* number of iterations in the loop */
l_poc_bound = l_tcp->numpocs+1;
// start at first element, and to make sure the compiler will not make a calculation each time in the loop
// store a pointer to the current element to modify rather than l_tcp->pocs[i]
l_current_poc = l_tcp->pocs;
l_current_poc->compS = l_current_poc->compno0;
l_current_poc->compE = l_current_poc->compno1;
l_current_poc->resS = l_current_poc->resno0;
l_current_poc->resE = l_current_poc->resno1;
l_current_poc->layE = l_current_poc->layno1;
// special treatment for the first element
l_current_poc->layS = 0;
l_current_poc->prg = l_current_poc->prg1;
l_current_poc->prcS = 0;
l_current_poc->prcE = p_max_prec;
l_current_poc->txS = p_tx0;
l_current_poc->txE = p_tx1;
l_current_poc->tyS = p_ty0;
l_current_poc->tyE = p_ty1;
l_current_poc->dx = p_dx_min;
l_current_poc->dy = p_dy_min;
++ l_current_poc;
for (pino = 1;pino < l_poc_bound ; ++pino) {
l_current_poc->compS = l_current_poc->compno0;
l_current_poc->compE= l_current_poc->compno1;
l_current_poc->resS = l_current_poc->resno0;
l_current_poc->resE = l_current_poc->resno1;
l_current_poc->layE = l_current_poc->layno1;
l_current_poc->prg = l_current_poc->prg1;
l_current_poc->prcS = 0;
// special treatment here different from the first element
l_current_poc->layS = (l_current_poc->layE > (l_current_poc-1)->layE) ? l_current_poc->layE : 0;
l_current_poc->prcE = p_max_prec;
l_current_poc->txS = p_tx0;
l_current_poc->txE = p_tx1;
l_current_poc->tyS = p_ty0;
l_current_poc->tyE = p_ty1;
l_current_poc->dx = p_dx_min;
l_current_poc->dy = p_dy_min;
++ l_current_poc;
}
}
/**
* Updates the coding parameters if the encoding is not used with Progression order changes and final (and cinema parameters are used).
*
* @param p_cp the coding parameters to modify
* @param p_tileno the tile index being concerned.
* @param p_tx0 X0 parameter for the tile
* @param p_tx1 X1 parameter for the tile
* @param p_ty0 Y0 parameter for the tile
* @param p_ty1 Y1 parameter for the tile
* @param p_max_prec the maximum precision for all the bands of the tile
* @param p_max_res the maximum number of resolutions for all the poc inside the tile.
* @param dx_min the minimum dx of all the components of all the resolutions for the tile.
* @param dy_min the minimum dy of all the components of all the resolutions for the tile.
*/
void pi_update_encode_not_poc ( opj_cp_v2_t *p_cp,
OPJ_UINT32 p_num_comps,
OPJ_UINT32 p_tileno,
OPJ_INT32 p_tx0,
OPJ_INT32 p_tx1,
OPJ_INT32 p_ty0,
OPJ_INT32 p_ty1,
OPJ_UINT32 p_max_prec,
OPJ_UINT32 p_max_res,
OPJ_UINT32 p_dx_min,
OPJ_UINT32 p_dy_min)
{
// loop
OPJ_UINT32 pino;
// tile coding parameter
opj_tcp_v2_t *l_tcp = 00;
// current poc being updated
opj_poc_t * l_current_poc = 00;
// number of pocs
OPJ_UINT32 l_poc_bound;
// preconditions in debug
assert(p_cp != 00);
assert(p_tileno < p_cp->tw * p_cp->th);
// initializations
l_tcp = &p_cp->tcps [p_tileno];
/* number of iterations in the loop */
l_poc_bound = l_tcp->numpocs+1;
// start at first element, and to make sure the compiler will not make a calculation each time in the loop
// store a pointer to the current element to modify rather than l_tcp->pocs[i]
l_current_poc = l_tcp->pocs;
for (pino = 0; pino < l_poc_bound ; ++pino) {
l_current_poc->compS = 0;
l_current_poc->compE = p_num_comps;/*p_image->numcomps;*/
l_current_poc->resS = 0;
l_current_poc->resE = p_max_res;
l_current_poc->layS = 0;
l_current_poc->layE = l_tcp->numlayers;
l_current_poc->prg = l_tcp->prg;
l_current_poc->prcS = 0;
l_current_poc->prcE = p_max_prec;
l_current_poc->txS = p_tx0;
l_current_poc->txE = p_tx1;
l_current_poc->tyS = p_ty0;
l_current_poc->tyE = p_ty1;
l_current_poc->dx = p_dx_min;
l_current_poc->dy = p_dy_min;
++ l_current_poc;
}
}
/**
* Destroys a packet iterator array.
*
* @param p_pi the packet iterator array to destroy.
* @param p_nb_elements the number of elements in the array.
*/
void pi_destroy_v2(
opj_pi_iterator_t *p_pi,
OPJ_UINT32 p_nb_elements)
{
OPJ_UINT32 compno, pino;
opj_pi_iterator_t *l_current_pi = p_pi;
if
(p_pi)
{
if
(p_pi->include)
{
opj_free(p_pi->include);
p_pi->include = 00;
}
// TODO
for
(pino = 0; pino < p_nb_elements; ++pino)
{
if
(l_current_pi->comps)
{
opj_pi_comp_t *l_current_component = l_current_pi->comps;
for
(compno = 0; compno < l_current_pi->numcomps; compno++)
{
if
(l_current_component->resolutions)
{
opj_free(l_current_component->resolutions);
l_current_component->resolutions = 00;
}
++l_current_component;
}
opj_free(l_current_pi->comps);
l_current_pi->comps = 0;
}
++l_current_pi;
}
opj_free(p_pi);
}
}
void pi_update_decode_poc (opj_pi_iterator_t * p_pi,opj_tcp_v2_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res)
{
// loop
OPJ_UINT32 pino;
// encoding prameters to set
OPJ_UINT32 l_bound;
opj_pi_iterator_t * l_current_pi = 00;
opj_poc_t* l_current_poc = 0;
// preconditions in debug
assert(p_pi != 00);
assert(p_tcp != 00);
// initializations
l_bound = p_tcp->numpocs+1;
l_current_pi = p_pi;
l_current_poc = p_tcp->pocs;
for
(pino = 0;pino<l_bound;++pino)
{
l_current_pi->poc.prg = l_current_poc->prg;
l_current_pi->first = 1;
l_current_pi->poc.resno0 = l_current_poc->resno0;
l_current_pi->poc.compno0 = l_current_poc->compno0;
l_current_pi->poc.layno0 = 0;
l_current_pi->poc.precno0 = 0;
l_current_pi->poc.resno1 = l_current_poc->resno1;
l_current_pi->poc.compno1 = l_current_poc->compno1;
l_current_pi->poc.layno1 = l_current_poc->layno1;
l_current_pi->poc.precno1 = p_max_precision;
++l_current_pi;
++l_current_poc;
}
}
void pi_update_decode_not_poc (opj_pi_iterator_t * p_pi,opj_tcp_v2_t * p_tcp,OPJ_UINT32 p_max_precision,OPJ_UINT32 p_max_res)
{
// loop
OPJ_UINT32 pino;
// encoding prameters to set
OPJ_UINT32 l_bound;
opj_pi_iterator_t * l_current_pi = 00;
// preconditions in debug
assert(p_tcp != 00);
assert(p_pi != 00);
// initializations
l_bound = p_tcp->numpocs+1;
l_current_pi = p_pi;
for
(pino = 0;pino<l_bound;++pino)
{
l_current_pi->poc.prg = p_tcp->prg;
l_current_pi->first = 1;
l_current_pi->poc.resno0 = 0;
l_current_pi->poc.compno0 = 0;
l_current_pi->poc.layno0 = 0;
l_current_pi->poc.precno0 = 0;
l_current_pi->poc.resno1 = p_max_res;
l_current_pi->poc.compno1 = l_current_pi->numcomps;
l_current_pi->poc.layno1 = p_tcp->numlayers;
l_current_pi->poc.precno1 = p_max_precision;
++l_current_pi;
}
}
void pi_create_encode_v2( opj_pi_iterator_t *pi,
opj_cp_v2_t *cp,
OPJ_UINT32 tileno,
OPJ_UINT32 pino,
OPJ_UINT32 tpnum,
OPJ_INT32 tppos,
J2K_T2_MODE t2_mode)
{
const OPJ_CHAR *prog;
OPJ_INT32 i,l;
OPJ_UINT32 incr_top=1,resetX=0;
opj_tcp_v2_t *tcps =&cp->tcps[tileno];
opj_poc_t *tcp= &tcps->pocs[pino];
prog = opj_j2k_convert_progression_order(tcp->prg);
pi[pino].first = 1;
pi[pino].poc.prg = tcp->prg;
if(!(cp->m_specific_param.m_enc.m_tp_on&& ((!cp->m_specific_param.m_enc.m_cinema && (t2_mode == FINAL_PASS)) || cp->m_specific_param.m_enc.m_cinema))){
pi[pino].poc.resno0 = tcp->resS;
pi[pino].poc.resno1 = tcp->resE;
pi[pino].poc.compno0 = tcp->compS;
pi[pino].poc.compno1 = tcp->compE;
pi[pino].poc.layno0 = tcp->layS;
pi[pino].poc.layno1 = tcp->layE;
pi[pino].poc.precno0 = tcp->prcS;
pi[pino].poc.precno1 = tcp->prcE;
pi[pino].poc.tx0 = tcp->txS;
pi[pino].poc.ty0 = tcp->tyS;
pi[pino].poc.tx1 = tcp->txE;
pi[pino].poc.ty1 = tcp->tyE;
}else {
for(i=tppos+1;i<4;i++){
switch(prog[i]){
case 'R':
pi[pino].poc.resno0 = tcp->resS;
pi[pino].poc.resno1 = tcp->resE;
break;
case 'C':
pi[pino].poc.compno0 = tcp->compS;
pi[pino].poc.compno1 = tcp->compE;
break;
case 'L':
pi[pino].poc.layno0 = tcp->layS;
pi[pino].poc.layno1 = tcp->layE;
break;
case 'P':
switch(tcp->prg){
case LRCP:
case RLCP:
pi[pino].poc.precno0 = tcp->prcS;
pi[pino].poc.precno1 = tcp->prcE;
break;
default:
pi[pino].poc.tx0 = tcp->txS;
pi[pino].poc.ty0 = tcp->tyS;
pi[pino].poc.tx1 = tcp->txE;
pi[pino].poc.ty1 = tcp->tyE;
break;
}
break;
}
}
if(tpnum==0){
for(i=tppos;i>=0;i--){
switch(prog[i]){
case 'C':
tcp->comp_t = tcp->compS;
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
break;
case 'R':
tcp->res_t = tcp->resS;
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
break;
case 'L':
tcp->lay_t = tcp->layS;
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
break;
case 'P':
switch(tcp->prg){
case LRCP:
case RLCP:
tcp->prc_t = tcp->prcS;
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
break;
default:
tcp->tx0_t = tcp->txS;
tcp->ty0_t = tcp->tyS;
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx - (tcp->tx0_t % tcp->dx);
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->tx0_t = pi[pino].poc.tx1;
tcp->ty0_t = pi[pino].poc.ty1;
break;
}
break;
}
}
incr_top=1;
}else{
for(i=tppos;i>=0;i--){
switch(prog[i]){
case 'C':
pi[pino].poc.compno0 = tcp->comp_t-1;
pi[pino].poc.compno1 = tcp->comp_t;
break;
case 'R':
pi[pino].poc.resno0 = tcp->res_t-1;
pi[pino].poc.resno1 = tcp->res_t;
break;
case 'L':
pi[pino].poc.layno0 = tcp->lay_t-1;
pi[pino].poc.layno1 = tcp->lay_t;
break;
case 'P':
switch(tcp->prg){
case LRCP:
case RLCP:
pi[pino].poc.precno0 = tcp->prc_t-1;
pi[pino].poc.precno1 = tcp->prc_t;
break;
default:
pi[pino].poc.tx0 = tcp->tx0_t - tcp->dx - (tcp->tx0_t % tcp->dx);
pi[pino].poc.tx1 = tcp->tx0_t ;
pi[pino].poc.ty0 = tcp->ty0_t - tcp->dy - (tcp->ty0_t % tcp->dy);
pi[pino].poc.ty1 = tcp->ty0_t ;
break;
}
break;
}
if(incr_top==1){
switch(prog[i]){
case 'R':
if(tcp->res_t==tcp->resE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
tcp->res_t = tcp->resS;
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
incr_top=1;
}else{
incr_top=0;
}
}else{
pi[pino].poc.resno0 = tcp->res_t;
pi[pino].poc.resno1 = tcp->res_t+1;
tcp->res_t+=1;
incr_top=0;
}
break;
case 'C':
if(tcp->comp_t ==tcp->compE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
tcp->comp_t = tcp->compS;
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
incr_top=1;
}else{
incr_top=0;
}
}else{
pi[pino].poc.compno0 = tcp->comp_t;
pi[pino].poc.compno1 = tcp->comp_t+1;
tcp->comp_t+=1;
incr_top=0;
}
break;
case 'L':
if(tcp->lay_t == tcp->layE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
tcp->lay_t = tcp->layS;
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
incr_top=1;
}else{
incr_top=0;
}
}else{
pi[pino].poc.layno0 = tcp->lay_t;
pi[pino].poc.layno1 = tcp->lay_t+1;
tcp->lay_t+=1;
incr_top=0;
}
break;
case 'P':
switch(tcp->prg){
case LRCP:
case RLCP:
if(tcp->prc_t == tcp->prcE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
tcp->prc_t = tcp->prcS;
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
incr_top=1;
}else{
incr_top=0;
}
}else{
pi[pino].poc.precno0 = tcp->prc_t;
pi[pino].poc.precno1 = tcp->prc_t+1;
tcp->prc_t+=1;
incr_top=0;
}
break;
default:
if(tcp->tx0_t >= tcp->txE){
if(tcp->ty0_t >= tcp->tyE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
tcp->ty0_t = tcp->tyS;
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->ty0_t = pi[pino].poc.ty1;
incr_top=1;resetX=1;
}else{
incr_top=0;resetX=0;
}
}else{
pi[pino].poc.ty0 = tcp->ty0_t;
pi[pino].poc.ty1 = tcp->ty0_t + tcp->dy - (tcp->ty0_t % tcp->dy);
tcp->ty0_t = pi[pino].poc.ty1;
incr_top=0;resetX=1;
}
if(resetX==1){
tcp->tx0_t = tcp->txS;
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
tcp->tx0_t = pi[pino].poc.tx1;
}
}else{
pi[pino].poc.tx0 = tcp->tx0_t;
pi[pino].poc.tx1 = tcp->tx0_t + tcp->dx- (tcp->tx0_t % tcp->dx);
tcp->tx0_t = pi[pino].poc.tx1;
incr_top=0;
}
break;
}
break;
}
}
}
}
}
}
OPJ_INT32 pi_check_next_level( OPJ_INT32 pos,
opj_cp_v2_t *cp,
OPJ_UINT32 tileno,
OPJ_UINT32 pino,
const OPJ_CHAR *prog)
{
OPJ_INT32 i,l;
opj_tcp_v2_t *tcps =&cp->tcps[tileno];
opj_poc_t *tcp = &tcps->pocs[pino];
if(pos>=0){
for(i=pos;pos>=0;i--){
switch(prog[i]){
case 'R':
if(tcp->res_t==tcp->resE){
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
if(l==1){
return 1;
}else{
return 0;
}
}else{
return 1;
}
break;
case 'C':
if(tcp->comp_t==tcp->compE){
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
if(l==1){
return 1;
}else{
return 0;
}
}else{
return 1;
}
break;
case 'L':
if(tcp->lay_t==tcp->layE){
l=pi_check_next_level(pos-1,cp,tileno,pino,prog);
if(l==1){
return 1;
}else{
return 0;
}
}else{
return 1;
}
break;
case 'P':
switch(tcp->prg){
case LRCP||RLCP:
if(tcp->prc_t == tcp->prcE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
return 1;
}else{
return 0;
}
}else{
return 1;
}
break;
default:
if(tcp->tx0_t == tcp->txE){
//TY
if(tcp->ty0_t == tcp->tyE){
l=pi_check_next_level(i-1,cp,tileno,pino,prog);
if(l==1){
return 1;
}else{
return 0;
}
}else{
return 1;
}//TY
}else{
return 1;
}
break;
}//end case P
}//end switch
}//end for
}//end if
return 0;
}