246 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
 | 
						|
 * Copyright (c) 2002-2007, Professor Benoit Macq
 | 
						|
 * Copyright (c) 2001-2003, David Janssens
 | 
						|
 * Copyright (c) 2002-2003, Yannick Verschueren
 | 
						|
 * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
 | 
						|
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 * 1. Redistributions of source code must retain the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *    notice, this list of conditions and the following disclaimer in the
 | 
						|
 *    documentation and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
						|
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
						|
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
						|
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
						|
 * POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef __SSE__
 | 
						|
#include <xmmintrin.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opj_includes.h"
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* This table contains the norms of the basis function of the reversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
static const double mct_norms[3] = { 1.732, .8292, .8292 };
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* This table contains the norms of the basis function of the irreversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 };
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Foward reversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
void mct_encode(
 | 
						|
		int* restrict c0,
 | 
						|
		int* restrict c1,
 | 
						|
		int* restrict c2,
 | 
						|
		int n)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for(i = 0; i < n; ++i) {
 | 
						|
		int r = c0[i];
 | 
						|
		int g = c1[i];
 | 
						|
		int b = c2[i];
 | 
						|
		int y = (r + (g * 2) + b) >> 2;
 | 
						|
		int u = b - g;
 | 
						|
		int v = r - g;
 | 
						|
		c0[i] = y;
 | 
						|
		c1[i] = u;
 | 
						|
		c2[i] = v;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Inverse reversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
void mct_decode(
 | 
						|
		int* restrict c0,
 | 
						|
		int* restrict c1, 
 | 
						|
		int* restrict c2, 
 | 
						|
		int n)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 0; i < n; ++i) {
 | 
						|
		int y = c0[i];
 | 
						|
		int u = c1[i];
 | 
						|
		int v = c2[i];
 | 
						|
		int g = y - ((u + v) >> 2);
 | 
						|
		int r = v + g;
 | 
						|
		int b = u + g;
 | 
						|
		c0[i] = r;
 | 
						|
		c1[i] = g;
 | 
						|
		c2[i] = b;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Get norm of basis function of reversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
double mct_getnorm(int compno) {
 | 
						|
	return mct_norms[compno];
 | 
						|
}
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Foward irreversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
void mct_encode_real(
 | 
						|
		int* restrict c0,
 | 
						|
		int* restrict c1,
 | 
						|
		int* restrict c2,
 | 
						|
		int n)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for(i = 0; i < n; ++i) {
 | 
						|
		int r = c0[i];
 | 
						|
		int g = c1[i];
 | 
						|
		int b = c2[i];
 | 
						|
		int y =  fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934);
 | 
						|
		int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096);
 | 
						|
		int v =  fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666);
 | 
						|
		c0[i] = y;
 | 
						|
		c1[i] = u;
 | 
						|
		c2[i] = v;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Inverse irreversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
void mct_decode_real(
 | 
						|
		float* restrict c0,
 | 
						|
		float* restrict c1,
 | 
						|
		float* restrict c2,
 | 
						|
		int n)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
#ifdef __SSE__
 | 
						|
	__m128 vrv, vgu, vgv, vbu;
 | 
						|
	vrv = _mm_set1_ps(1.402f);
 | 
						|
	vgu = _mm_set1_ps(0.34413f);
 | 
						|
	vgv = _mm_set1_ps(0.71414f);
 | 
						|
	vbu = _mm_set1_ps(1.772f);
 | 
						|
	for (i = 0; i < (n >> 3); ++i) {
 | 
						|
		__m128 vy, vu, vv;
 | 
						|
		__m128 vr, vg, vb;
 | 
						|
 | 
						|
		vy = _mm_load_ps(c0);
 | 
						|
		vu = _mm_load_ps(c1);
 | 
						|
		vv = _mm_load_ps(c2);
 | 
						|
		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
 | 
						|
		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
 | 
						|
		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
 | 
						|
		_mm_store_ps(c0, vr);
 | 
						|
		_mm_store_ps(c1, vg);
 | 
						|
		_mm_store_ps(c2, vb);
 | 
						|
		c0 += 4;
 | 
						|
		c1 += 4;
 | 
						|
		c2 += 4;
 | 
						|
 | 
						|
		vy = _mm_load_ps(c0);
 | 
						|
		vu = _mm_load_ps(c1);
 | 
						|
		vv = _mm_load_ps(c2);
 | 
						|
		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
 | 
						|
		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
 | 
						|
		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
 | 
						|
		_mm_store_ps(c0, vr);
 | 
						|
		_mm_store_ps(c1, vg);
 | 
						|
		_mm_store_ps(c2, vb);
 | 
						|
		c0 += 4;
 | 
						|
		c1 += 4;
 | 
						|
		c2 += 4;
 | 
						|
	}
 | 
						|
	n &= 7;
 | 
						|
#endif
 | 
						|
	for(i = 0; i < n; ++i) {
 | 
						|
		float y = c0[i];
 | 
						|
		float u = c1[i];
 | 
						|
		float v = c2[i];
 | 
						|
		float r = y + (v * 1.402f);
 | 
						|
		float g = y - (u * 0.34413f) - (v * (0.71414f));
 | 
						|
		float b = y + (u * 1.772f);
 | 
						|
		c0[i] = r;
 | 
						|
		c1[i] = g;
 | 
						|
		c2[i] = b;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* <summary> */
 | 
						|
/* Get norm of basis function of irreversible MCT. */
 | 
						|
/* </summary> */
 | 
						|
double mct_getnorm_real(int compno) {
 | 
						|
	return mct_norms_real[compno];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
opj_bool mct_decode_custom(
 | 
						|
					   // MCT data
 | 
						|
					   OPJ_BYTE * pDecodingData,
 | 
						|
					   // size of components
 | 
						|
					   OPJ_UINT32 n,
 | 
						|
					   // components
 | 
						|
					   OPJ_BYTE ** pData,
 | 
						|
					   // nb of components (i.e. size of pData)
 | 
						|
					   OPJ_UINT32 pNbComp,
 | 
						|
					   // tells if the data is signed
 | 
						|
					   OPJ_UINT32 isSigned)
 | 
						|
{
 | 
						|
	OPJ_FLOAT32 * lMct;
 | 
						|
	OPJ_UINT32 i;
 | 
						|
	OPJ_UINT32 j;
 | 
						|
	OPJ_UINT32 k;
 | 
						|
 | 
						|
	OPJ_FLOAT32 * lCurrentData = 00;
 | 
						|
	OPJ_FLOAT32 * lCurrentResult = 00;
 | 
						|
	OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
 | 
						|
 | 
						|
	lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
 | 
						|
	if
 | 
						|
		(! lCurrentData)
 | 
						|
	{
 | 
						|
		return OPJ_FALSE;
 | 
						|
	}
 | 
						|
	lCurrentResult = lCurrentData + pNbComp;
 | 
						|
 | 
						|
	for
 | 
						|
		(i = 0; i < n; ++i)
 | 
						|
	{
 | 
						|
		lMct = (OPJ_FLOAT32 *) pDecodingData;
 | 
						|
		for
 | 
						|
			(j=0;j<pNbComp;++j)
 | 
						|
		{
 | 
						|
			lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
 | 
						|
		}
 | 
						|
		for
 | 
						|
			(j=0;j<pNbComp;++j)
 | 
						|
		{
 | 
						|
			lCurrentResult[j] = 0;
 | 
						|
			for
 | 
						|
				(k=0;k<pNbComp;++k)
 | 
						|
			{
 | 
						|
				lCurrentResult[j] += *(lMct++) * lCurrentData[k];
 | 
						|
			}
 | 
						|
			*(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	opj_free(lCurrentData);
 | 
						|
	return OPJ_TRUE;
 | 
						|
}
 |