Removed the libs directory containing win32 compiled versions of libpng, libtiff and liblcms. Added a thirdparty directory to include main source files of libtiff, libpng, libz and liblcms to enable support of these formats in the codec executables. CMake will try to statically build these libraries if they are not found on the system. Note that these third party libraries are not required to build libopenjpeg (which has no dependencies).
This commit is contained in:
176
thirdparty/liblcms2/src/cmsmtrx.c
vendored
Normal file
176
thirdparty/liblcms2/src/cmsmtrx.c
vendored
Normal file
@@ -0,0 +1,176 @@
|
||||
//---------------------------------------------------------------------------------
|
||||
//
|
||||
// Little Color Management System
|
||||
// Copyright (c) 1998-2010 Marti Maria Saguer
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining
|
||||
// a copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the Software
|
||||
// is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
||||
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
//---------------------------------------------------------------------------------
|
||||
//
|
||||
|
||||
#include "lcms2_internal.h"
|
||||
|
||||
|
||||
#define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}
|
||||
|
||||
|
||||
// Initiate a vector
|
||||
void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
|
||||
{
|
||||
r -> n[VX] = x;
|
||||
r -> n[VY] = y;
|
||||
r -> n[VZ] = z;
|
||||
}
|
||||
|
||||
// Vector substraction
|
||||
void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
|
||||
{
|
||||
r -> n[VX] = a -> n[VX] - b -> n[VX];
|
||||
r -> n[VY] = a -> n[VY] - b -> n[VY];
|
||||
r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
|
||||
}
|
||||
|
||||
// Vector cross product
|
||||
void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
|
||||
{
|
||||
r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
|
||||
r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
|
||||
r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
|
||||
}
|
||||
|
||||
// Vector dot product
|
||||
cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
|
||||
{
|
||||
return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
|
||||
}
|
||||
|
||||
// Euclidean length
|
||||
cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
|
||||
{
|
||||
return sqrt(a ->n[VX] * a ->n[VX] +
|
||||
a ->n[VY] * a ->n[VY] +
|
||||
a ->n[VZ] * a ->n[VZ]);
|
||||
}
|
||||
|
||||
// Euclidean distance
|
||||
cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
|
||||
{
|
||||
cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
|
||||
cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
|
||||
cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];
|
||||
|
||||
return sqrt(d1*d1 + d2*d2 + d3*d3);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// 3x3 Identity
|
||||
void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
|
||||
{
|
||||
_cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
|
||||
_cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
|
||||
_cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
static
|
||||
cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
|
||||
{
|
||||
return fabs(b - a) < (1.0 / 65535.0);
|
||||
}
|
||||
|
||||
|
||||
cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
|
||||
{
|
||||
cmsMAT3 Identity;
|
||||
int i, j;
|
||||
|
||||
_cmsMAT3identity(&Identity);
|
||||
|
||||
for (i=0; i < 3; i++)
|
||||
for (j=0; j < 3; j++)
|
||||
if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
// Multiply two matrices
|
||||
void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
|
||||
{
|
||||
#define ROWCOL(i, j) \
|
||||
a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
|
||||
|
||||
_cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
|
||||
_cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
|
||||
_cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
|
||||
|
||||
#undef ROWCOL //(i, j)
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Inverse of a matrix b = a^(-1)
|
||||
cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
|
||||
{
|
||||
cmsFloat64Number det, c0, c1, c2;
|
||||
|
||||
c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
|
||||
c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
|
||||
c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];
|
||||
|
||||
det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;
|
||||
|
||||
if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert
|
||||
|
||||
b -> v[0].n[0] = c0/det;
|
||||
b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
|
||||
b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
|
||||
b -> v[1].n[0] = c1/det;
|
||||
b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
|
||||
b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
|
||||
b -> v[2].n[0] = c2/det;
|
||||
b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
|
||||
b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
|
||||
// Solve a system in the form Ax = b
|
||||
cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
|
||||
{
|
||||
cmsMAT3 m, a_1;
|
||||
|
||||
memmove(&m, a, sizeof(cmsMAT3));
|
||||
|
||||
if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix
|
||||
|
||||
_cmsMAT3eval(x, &a_1, b);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
// Evaluate a vector across a matrix
|
||||
void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
|
||||
{
|
||||
r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
|
||||
r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
|
||||
r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user