openh264/codec/encoder/core/arm/reconstruct_neon.S
2014-06-01 01:13:01 +03:00

1151 lines
34 KiB
ArmAsm

/*!
* \copy
* Copyright (c) 2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifdef HAVE_NEON
.text
#include "arm_arch_common_macro.S"
#ifdef __APPLE__
.macro LOAD_4x4_DATA_FOR_DCT
// { // input: $0~$3, src1*, src1_stride, src2*, src2_stride
vld2.16 {$0[0],$1[0]}, [$4], $5
vld2.16 {$2[0],$3[0]}, [$6], $7
vld2.16 {$0[1],$1[1]}, [$4], $5
vld2.16 {$2[1],$3[1]}, [$6], $7
vld2.16 {$0[2],$1[2]}, [$4], $5
vld2.16 {$2[2],$3[2]}, [$6], $7
vld2.16 {$0[3],$1[3]}, [$4], $5
vld2.16 {$2[3],$3[3]}, [$6], $7
// }
.endm
.macro LOAD_8x8_DATA_FOR_DCT
// { // input: $0~$3, src1*, src2*; untouched r2:src1_stride &r4:src2_stride
vld1.64 {$0}, [$8], r2
vld1.64 {$4}, [$9], r4
vld1.64 {$1}, [$8], r2
vld1.64 {$5}, [$9], r4
vld1.64 {$2}, [$8], r2
vld1.64 {$6}, [$9], r4
vld1.64 {$3}, [$8], r2
vld1.64 {$7}, [$9], r4
// }
.endm
.macro DCT_ROW_TRANSFORM_TOTAL_16BITS
// { // input: src_d[0]~[3], working: [4]~[7]
vadd.s16 $4, $0, $3 //int16 s[0] = data[i] + data[i3];
vsub.s16 $7, $0, $3 //int16 s[3] = data[i] - data[i3];
vadd.s16 $5, $1, $2 //int16 s[1] = data[i1] + data[i2];
vsub.s16 $6, $1, $2 //int16 s[2] = data[i1] - data[i2];
vadd.s16 $0, $4, $5 //int16 dct[i ] = s[0] + s[1];
vsub.s16 $2, $4, $5 //int16 dct[i2] = s[0] - s[1];
vshl.s16 $1, $7, #1
vshl.s16 $3, $6, #1
vadd.s16 $1, $1, $6 //int16 dct[i1] = (s[3] << 1) + s[2];
vsub.s16 $3, $7, $3 //int16 dct[i3] = s[3] - (s[2] << 1);
// }
.endm
.macro MATRIX_TRANSFORM_EACH_16BITS
// { // input & output: src_d[0]~[3];[0 1 2 3]+[4 5 6 7]+[8 9 10 11]+[12 13 14 15]
vtrn.s16 $0, $1 //[0 1 2 3]+[4 5 6 7]-->[0 4 2 6]+[1 5 3 7]
vtrn.s16 $2, $3 //[8 9 10 11]+[12 13 14 15]-->[8 12 10 14]+[9 13 11 15]
vtrn.32 $0, $2 //[0 4 2 6]+[8 12 10 14]-->[0 4 8 12]+[2 6 10 14]
vtrn.32 $1, $3 //[1 5 3 7]+[9 13 11 15]-->[1 5 9 13]+[3 7 11 15]
// }
.endm
.macro NEWQUANT_COEF_EACH_16BITS // if coef <= 0, - coef; else , coef;
// { // input: coef, ff (dst), ff_d0, ff_d1, mf_d0, md_d1
veor.s16 $6, $6 // init 0 , and keep 0;
vaba.s16 $1, $0, $6 // f + abs(coef - 0)
vmull.s16 $7, $2, $4
vmull.s16 $8, $3, $5
vshr.s32 $7, #16
vshr.s32 $8, #16
vmovn.s32 $2, $7
vmovn.s32 $3, $8
vcgt.s16 $7, $0, #0 // if true, location of coef == 11111111
vbif.s16 $6, $1, $7 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 $6, #1
vsub.s16 $1, $1, $6 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro NEWQUANT_COEF_EACH_16BITS_MAX // if coef <= 0, - coef; else , coef;
// { // input: coef, ff (dst), ff_d0, ff_d1, mf_d0(max), md_d1
veor.s16 $6, $6 // init 0 , and keep 0;
vaba.s16 $1, $0, $6 // f + abs(coef - 0)
vmull.s16 $7, $2, $4
vmull.s16 $8, $3, $5
vshr.s32 $7, #16
vshr.s32 $8, #16
vmovn.s32 $2, $7
vmovn.s32 $3, $8
vcgt.s16 $7, $0, #0 // if true, location of coef == 11111111
vbif.s16 $6, $1, $7 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 $6, #1
vmax.s16 $9, $2, $3
vsub.s16 $1, $1, $6 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro QUANT_DUALWORD_COEF_EACH_16BITS // if coef <= 0, - coef; else , coef;
// { // input: coef, ff (dst), mf , working_d (all 0), working_q
vaba.s16 $1, $0, $3 // f + abs(coef - 0)
vmull.s16 $4, $1, $2 // *= mf
vshr.s32 $4, #16
vmovn.s32 $1, $4 // >> 16
vcgt.s16 $2, $0, #0 // if true, location of coef == 11111111
vbif.s16 $3, $1, $2 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 $3, #1
vsub.s16 $1, $1, $3 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro DC_ZERO_COUNT_IN_DUALWORD
// { // input: coef, dst_d, working_d (all 0x01)
vceq.s16 $1, $0, #0
vand.s16 $1, $2
vpadd.s16 $1, $1, $1
vpadd.s16 $1, $1, $1
// }
.endm
.macro SELECT_MAX_IN_ABS_COEF
// { // input: coef_0, coef_1, max_q (identy to follow two)
vmax.s16 $2, $0, $1 // max 1st in $3 & max 2nd in $4
vpmax.s16 $3, $3, $4 // max 1st in $3[0][1] & max 2nd in $3[2][3]
vpmax.s16 $3, $3, $4 // max 1st in $3[0][1]
// }
.endm
.macro ZERO_COUNT_IN_2_QUARWORD
// { // input: coef_0 (identy to $3 $4), coef_1(identy to $5 $6), mask_q
vceq.s16 $0, #0
vceq.s16 $1, #0
vand.s16 $0, $2
vand.s16 $1, $2
vpadd.s16 $3, $3, $5
vpadd.s16 $4, $4, $6
vpadd.s16 $3, $3, $4 // 8-->4
vpadd.s16 $3, $3, $3
vpadd.s16 $3, $3, $3
// }
.endm
.macro HDM_QUANT_2x2_TOTAL_16BITS
// { // input: src_d[0]~[3], working_d, dst_d
vshr.s64 $1, $0, #32
vadd.s16 $2, $0, $1 // [0] = rs[0] + rs[32];[1] = rs[16] + rs[48];
vsub.s16 $1, $0, $1 // [0] = rs[0] - rs[32];[1] = rs[16] - rs[48];
vtrn.s16 $2, $1
vtrn.s32 $2, $1
// }
.endm
.macro IHDM_4x4_TOTAL_16BITS
// { // input: each src_d[0]~[3](dst), working_q0, working_q1, working_q2
vshr.s64 $1, $0, #32
vadd.s16 $2, $0, $1 // [0] = rs[0] + rs[2];[1] = rs[1] + rs[3];
vsub.s16 $1, $0, $1 // [0] = rs[0] - rs[2];[1] = rs[1] - rs[3];
vtrn.s16 $2, $1
vrev32.16 $1, $1
vtrn.s32 $2, $1 // [0] = rs[0] + rs[2];[1] = rs[0] - rs[2];[2] = rs[1] - rs[3];[3] = rs[1] + rs[3];
vrev64.16 $1, $2
vadd.s16 $0, $2, $1 // [0] = rs[0] + rs[3];[1] = rs[1] + rs[2];
vsub.s16 $1, $2, $1
vrev32.16 $1, $1 // [0] = rs[1] - rs[2];[1] = rs[0] - rs[3];
vtrn.s32 $0, $1 // [0] = rs[0] + rs[3];[1] = rs[1] + rs[2];[2] = rs[1] - rs[2];[3] = rs[0] - rs[3];
// }
.endm
.macro MB_PRED_8BITS_ADD_DCT_16BITS_CLIP
// { // input: pred_d[0]/[1](output), dct_q0/1, working_q0/1;
vmovl.u8 $4,$0
vmovl.u8 $5,$1
vadd.s16 $4,$2
vadd.s16 $5,$3
vqmovun.s16 $0,$4
vqmovun.s16 $1,$5
// }
.endm
.macro ROW_TRANSFORM_1_STEP_TOTAL_16BITS
// { // input: src_d[0]~[3], output: e_d[0]~[3];
vadd.s16 $4, $0, $2 //int16 e[i][0] = src[0] + src[2];
vsub.s16 $5, $0, $2 //int16 e[i][1] = src[0] - src[2];
vshr.s16 $6, $1, #1
vshr.s16 $7, $3, #1
vsub.s16 $6, $6, $3 //int16 e[i][2] = (src[1]>>1)-src[3];
vadd.s16 $7, $1, $7 //int16 e[i][3] = src[1] + (src[3]>>1);
// }
.endm
.macro TRANSFORM_TOTAL_16BITS // both row & col transform used
// { // output: f_q[0]~[3], input: e_q[0]~[3];
vadd.s16 $0, $4, $7 //int16 f[i][0] = e[i][0] + e[i][3];
vadd.s16 $1, $5, $6 //int16 f[i][1] = e[i][1] + e[i][2];
vsub.s16 $2, $5, $6 //int16 f[i][2] = e[i][1] - e[i][2];
vsub.s16 $3, $4, $7 //int16 f[i][3] = e[i][0] - e[i][3];
// }
.endm
.macro ROW_TRANSFORM_0_STEP
// { // input: src_d[0]~[3], output: e_q[0]~[3];
vaddl.s16 $4, $0, $2 //int32 e[i][0] = src[0] + src[2];
vsubl.s16 $5, $0, $2 //int32 e[i][1] = src[0] - src[2];
vsubl.s16 $6, $1, $3 //int32 e[i][2] = src[1] - src[3];
vaddl.s16 $7, $1, $3 //int32 e[i][3] = src[1] + src[3];
// }
.endm
.macro ROW_TRANSFORM_1_STEP
// { // input: src_d[0]~[3], output: e_q[0]~[3]; working: $8 $9
vaddl.s16 $4, $0, $2 //int32 e[i][0] = src[0] + src[2];
vsubl.s16 $5, $0, $2 //int32 e[i][1] = src[0] - src[2];
vshr.s16 $8, $1, #1
vshr.s16 $9, $3, #1
vsubl.s16 $6, $8, $3 //int32 e[i][2] = (src[1]>>1)-src[3];
vaddl.s16 $7, $1, $9 //int32 e[i][3] = src[1] + (src[3]>>1);
// }
.endm
.macro TRANSFORM_4BYTES // both row & col transform used
// { // output: f_q[0]~[3], input: e_q[0]~[3];
vadd.s32 $0, $4, $7 //int16 f[i][0] = e[i][0] + e[i][3];
vadd.s32 $1, $5, $6 //int16 f[i][1] = e[i][1] + e[i][2];
vsub.s32 $2, $5, $6 //int16 f[i][2] = e[i][1] - e[i][2];
vsub.s32 $3, $4, $7 //int16 f[i][3] = e[i][0] - e[i][3];
// }
.endm
.macro COL_TRANSFORM_0_STEP
// { // input: src_q[0]~[3], output: e_q[0]~[3];
vadd.s32 $4, $0, $2 //int32 e[0][j] = f[0][j] + f[2][j];
vsub.s32 $5, $0, $2 //int32 e[1][j] = f[0][j] - f[2][j];
vsub.s32 $6, $1, $3 //int32 e[2][j] = (f[1][j]>>1) - f[3][j];
vadd.s32 $7, $1, $3 //int32 e[3][j] = f[1][j] + (f[3][j]>>1);
// }
.endm
.macro COL_TRANSFORM_1_STEP
// { // input: src_q[0]~[3], output: e_q[0]~[3];
vadd.s32 $4, $0, $2 //int32 e[0][j] = f[0][j] + f[2][j];
vsub.s32 $5, $0, $2 //int32 e[1][j] = f[0][j] - f[2][j];
vshr.s32 $6, $1, #1
vshr.s32 $7, $3, #1
vsub.s32 $6, $6, $3 //int32 e[2][j] = (f[1][j]>>1) - f[3][j];
vadd.s32 $7, $1, $7 //int32 e[3][j] = f[1][j] + (f[3][j]>>1);
// }
.endm
#else
.macro LOAD_4x4_DATA_FOR_DCT arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: \arg0~\arg3, src1*, src1_stride, src2*, src2_stride
vld2.16 {\arg0[0],\arg1[0]}, [\arg4], \arg5
vld2.16 {\arg2[0],\arg3[0]}, [\arg6], \arg7
vld2.16 {\arg0[1],\arg1[1]}, [\arg4], \arg5
vld2.16 {\arg2[1],\arg3[1]}, [\arg6], \arg7
vld2.16 {\arg0[2],\arg1[2]}, [\arg4], \arg5
vld2.16 {\arg2[2],\arg3[2]}, [\arg6], \arg7
vld2.16 {\arg0[3],\arg1[3]}, [\arg4], \arg5
vld2.16 {\arg2[3],\arg3[3]}, [\arg6], \arg7
// }
.endm
.macro LOAD_8x8_DATA_FOR_DCT arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
// { // input: \arg0~\arg3, src1*, src2*; untouched r2:src1_stride &r4:src2_stride
vld1.64 {\arg0}, [\arg8], r2
vld1.64 {\arg4}, [\arg9], r4
vld1.64 {\arg1}, [\arg8], r2
vld1.64 {\arg5}, [\arg9], r4
vld1.64 {\arg2}, [\arg8], r2
vld1.64 {\arg6}, [\arg9], r4
vld1.64 {\arg3}, [\arg8], r2
vld1.64 {\arg7}, [\arg9], r4
// }
.endm
.macro DCT_ROW_TRANSFORM_TOTAL_16BITS arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: src_d[0]~[3], working: [4]~[7]
vadd.s16 \arg4, \arg0, \arg3 //int16 s[0] = data[i] + data[i3];
vsub.s16 \arg7, \arg0, \arg3 //int16 s[3] = data[i] - data[i3];
vadd.s16 \arg5, \arg1, \arg2 //int16 s[1] = data[i1] + data[i2];
vsub.s16 \arg6, \arg1, \arg2 //int16 s[2] = data[i1] - data[i2];
vadd.s16 \arg0, \arg4, \arg5 //int16 dct[i ] = s[0] + s[1];
vsub.s16 \arg2, \arg4, \arg5 //int16 dct[i2] = s[0] - s[1];
vshl.s16 \arg1, \arg7, #1
vshl.s16 \arg3, \arg6, #1
vadd.s16 \arg1, \arg1, \arg6 //int16 dct[i1] = (s[3] << 1) + s[2];
vsub.s16 \arg3, \arg7, \arg3 //int16 dct[i3] = s[3] - (s[2] << 1);
// }
.endm
.macro MATRIX_TRANSFORM_EACH_16BITS arg0, arg1, arg2, arg3
// { // input & output: src_d[0]~[3];[0 1 2 3]+[4 5 6 7]+[8 9 10 11]+[12 13 14 15]
vtrn.s16 \arg0, \arg1 //[0 1 2 3]+[4 5 6 7]-->[0 4 2 6]+[1 5 3 7]
vtrn.s16 \arg2, \arg3 //[8 9 10 11]+[12 13 14 15]-->[8 12 10 14]+[9 13 11 15]
vtrn.32 \arg0, \arg2 //[0 4 2 6]+[8 12 10 14]-->[0 4 8 12]+[2 6 10 14]
vtrn.32 \arg1, \arg3 //[1 5 3 7]+[9 13 11 15]-->[1 5 9 13]+[3 7 11 15]
// }
.endm
.macro NEWQUANT_COEF_EACH_16BITS arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8
// { // input: coef, ff (dst), ff_d0, ff_d1, mf_d0, md_d1
veor.s16 \arg6, \arg6 // init 0 , and keep 0;
vaba.s16 \arg1, \arg0, \arg6 // f + abs(coef - 0)
vmull.s16 \arg7, \arg2, \arg4
vmull.s16 \arg8, \arg3, \arg5
vshr.s32 \arg7, #16
vshr.s32 \arg8, #16
vmovn.s32 \arg2, \arg7
vmovn.s32 \arg3, \arg8
vcgt.s16 \arg7, \arg0, #0 // if true, location of coef == 11111111
vbif.s16 \arg6, \arg1, \arg7 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 \arg6, #1
vsub.s16 \arg1, \arg1, \arg6 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro NEWQUANT_COEF_EACH_16BITS_MAX arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
// { // input: coef, ff (dst), ff_d0, ff_d1, mf_d0(max), md_d1
veor.s16 \arg6, \arg6 // init 0 , and keep 0;
vaba.s16 \arg1, \arg0, \arg6 // f + abs(coef - 0)
vmull.s16 \arg7, \arg2, \arg4
vmull.s16 \arg8, \arg3, \arg5
vshr.s32 \arg7, #16
vshr.s32 \arg8, #16
vmovn.s32 \arg2, \arg7
vmovn.s32 \arg3, \arg8
vcgt.s16 \arg7, \arg0, #0 // if true, location of coef == 11111111
vbif.s16 \arg6, \arg1, \arg7 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 \arg6, #1
vmax.s16 \arg9, \arg2, \arg3
vsub.s16 \arg1, \arg1, \arg6 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro QUANT_DUALWORD_COEF_EACH_16BITS arg0, arg1, arg2, arg3, arg4
// { // input: coef, ff (dst), mf , working_d (all 0), working_q
vaba.s16 \arg1, \arg0, \arg3 // f + abs(coef - 0)
vmull.s16 \arg4, \arg1, \arg2 // *= mf
vshr.s32 \arg4, #16
vmovn.s32 \arg1, \arg4 // >> 16
vcgt.s16 \arg2, \arg0, #0 // if true, location of coef == 11111111
vbif.s16 \arg3, \arg1, \arg2 // if (x<0) reserved part; else keep 0 untouched
vshl.s16 \arg3, #1
vsub.s16 \arg1, \arg1, \arg3 // if x > 0, -= 0; else x-= 2x
// }
.endm
.macro DC_ZERO_COUNT_IN_DUALWORD arg0, arg1, arg2
// { // input: coef, dst_d, working_d (all 0x01)
vceq.s16 \arg1, \arg0, #0
vand.s16 \arg1, \arg2
vpadd.s16 \arg1, \arg1, \arg1
vpadd.s16 \arg1, \arg1, \arg1
// }
.endm
.macro SELECT_MAX_IN_ABS_COEF arg0, arg1, arg2, arg3, arg4
// { // input: coef_0, coef_1, max_q (identy to follow two), output: max_d0, max_d1
vmax.s16 \arg2, \arg0, \arg1 // max 1st in \arg3 & max 2nd in \arg4
vpmax.s16 \arg3, \arg3, \arg4 // max 1st in \arg3[0][1] & max 2nd in \arg3[2][3]
vpmax.s16 \arg3, \arg3, \arg4 // max 1st in \arg3[0][1]
// }
.endm
.macro ZERO_COUNT_IN_2_QUARWORD arg0, arg1, arg2, arg3, arg4, arg5, arg6
// { // input: coef_0 (identy to \arg3 \arg4), coef_1(identy to \arg5 \arg6), mask_q
vceq.s16 \arg0, #0
vceq.s16 \arg1, #0
vand.s16 \arg0, \arg2
vand.s16 \arg1, \arg2
vpadd.s16 \arg3, \arg3, \arg5
vpadd.s16 \arg4, \arg4, \arg6
vpadd.s16 \arg3, \arg3, \arg4 // 8-->4
vpadd.s16 \arg3, \arg3, \arg3
vpadd.s16 \arg3, \arg3, \arg3
// }
.endm
.macro HDM_QUANT_2x2_TOTAL_16BITS arg0, arg1, arg2
// { // input: src_d[0]~[3], working_d, dst_d
vshr.s64 \arg1, \arg0, #32
vadd.s16 \arg2, \arg0, \arg1 // [0] = rs[0] + rs[32];[1] = rs[16] + rs[48];
vsub.s16 \arg1, \arg0, \arg1 // [0] = rs[0] - rs[32];[1] = rs[16] - rs[48];
vtrn.s16 \arg2, \arg1
vtrn.s32 \arg2, \arg1
// }
.endm
.macro IHDM_4x4_TOTAL_16BITS arg0, arg1, arg2
// { // input: each src_d[0]~[3](dst), working_q0, working_q1, working_q2
vshr.s64 \arg1, \arg0, #32
vadd.s16 \arg2, \arg0, \arg1 // [0] = rs[0] + rs[2];[1] = rs[1] + rs[3];
vsub.s16 \arg1, \arg0, \arg1 // [0] = rs[0] - rs[2];[1] = rs[1] - rs[3];
vtrn.s16 \arg2, \arg1
vrev32.16 \arg1, \arg1
vtrn.s32 \arg2, \arg1 // [0] = rs[0] + rs[2];[1] = rs[0] - rs[2];[2] = rs[1] - rs[3];[3] = rs[1] + rs[3];
vrev64.16 \arg1, \arg2
vadd.s16 \arg0, \arg2, \arg1 // [0] = rs[0] + rs[3];[1] = rs[1] + rs[2];
vsub.s16 \arg1, \arg2, \arg1
vrev32.16 \arg1, \arg1 // [0] = rs[1] - rs[2];[1] = rs[0] - rs[3];
vtrn.s32 \arg0, \arg1 // [0] = rs[0] + rs[3];[1] = rs[1] + rs[2];[2] = rs[1] - rs[2];[3] = rs[0] - rs[3];
// }
.endm
.macro MB_PRED_8BITS_ADD_DCT_16BITS_CLIP arg0, arg1, arg2, arg3, arg4, arg5
// { // input: pred_d[0]/[1](output), dct_q0/1, working_q0/1;
vmovl.u8 \arg4,\arg0
vmovl.u8 \arg5,\arg1
vadd.s16 \arg4,\arg2
vadd.s16 \arg5,\arg3
vqmovun.s16 \arg0,\arg4
vqmovun.s16 \arg1,\arg5
// }
.endm
.macro ROW_TRANSFORM_1_STEP_TOTAL_16BITS arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: src_d[0]~[3], output: e_d[0]~[3];
vadd.s16 \arg4, \arg0, \arg2 //int16 e[i][0] = src[0] + src[2];
vsub.s16 \arg5, \arg0, \arg2 //int16 e[i][1] = src[0] - src[2];
vshr.s16 \arg6, \arg1, #1
vshr.s16 \arg7, \arg3, #1
vsub.s16 \arg6, \arg6, \arg3 //int16 e[i][2] = (src[1]>>1)-src[3];
vadd.s16 \arg7, \arg1, \arg7 //int16 e[i][3] = src[1] + (src[3]>>1);
// }
.endm
.macro TRANSFORM_TOTAL_16BITS arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7 // both row & col transform used
// { // output: f_q[0]~[3], input: e_q[0]~[3];
vadd.s16 \arg0, \arg4, \arg7 //int16 f[i][0] = e[i][0] + e[i][3];
vadd.s16 \arg1, \arg5, \arg6 //int16 f[i][1] = e[i][1] + e[i][2];
vsub.s16 \arg2, \arg5, \arg6 //int16 f[i][2] = e[i][1] - e[i][2];
vsub.s16 \arg3, \arg4, \arg7 //int16 f[i][3] = e[i][0] - e[i][3];
// }
.endm
.macro ROW_TRANSFORM_0_STEP arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: src_d[0]~[3], output: e_q[0]~[3];
vaddl.s16 \arg4, \arg0, \arg2 //int32 e[i][0] = src[0] + src[2];
vsubl.s16 \arg5, \arg0, \arg2 //int32 e[i][1] = src[0] - src[2];
vsubl.s16 \arg6, \arg1, \arg3 //int32 e[i][2] = src[1] - src[3];
vaddl.s16 \arg7, \arg1, \arg3 //int32 e[i][3] = src[1] + src[3];
// }
.endm
.macro ROW_TRANSFORM_1_STEP arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
// { // input: src_d[0]~[3], output: e_q[0]~[3]; working: \arg8 \arg9
vaddl.s16 \arg4, \arg0, \arg2 //int32 e[i][0] = src[0] + src[2];
vsubl.s16 \arg5, \arg0, \arg2 //int32 e[i][1] = src[0] - src[2];
vshr.s16 \arg8, \arg1, #1
vshr.s16 \arg9, \arg3, #1
vsubl.s16 \arg6, \arg8, \arg3 //int32 e[i][2] = (src[1]>>1)-src[3];
vaddl.s16 \arg7, \arg1, \arg9 //int32 e[i][3] = src[1] + (src[3]>>1);
// }
.endm
.macro TRANSFORM_4BYTES arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7 // both row & col transform used
// { // output: f_q[0]~[3], input: e_q[0]~[3];
vadd.s32 \arg0, \arg4, \arg7 //int16 f[i][0] = e[i][0] + e[i][3];
vadd.s32 \arg1, \arg5, \arg6 //int16 f[i][1] = e[i][1] + e[i][2];
vsub.s32 \arg2, \arg5, \arg6 //int16 f[i][2] = e[i][1] - e[i][2];
vsub.s32 \arg3, \arg4, \arg7 //int16 f[i][3] = e[i][0] - e[i][3];
// }
.endm
.macro COL_TRANSFORM_0_STEP arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: src_q[0]~[3], output: e_q[0]~[3];
vadd.s32 \arg4, \arg0, \arg2 //int32 e[0][j] = f[0][j] + f[2][j];
vsub.s32 \arg5, \arg0, \arg2 //int32 e[1][j] = f[0][j] - f[2][j];
vsub.s32 \arg6, \arg1, \arg3 //int32 e[2][j] = (f[1][j]>>1) - f[3][j];
vadd.s32 \arg7, \arg1, \arg3 //int32 e[3][j] = f[1][j] + (f[3][j]>>1);
// }
.endm
.macro COL_TRANSFORM_1_STEP arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7
// { // input: src_q[0]~[3], output: e_q[0]~[3];
vadd.s32 \arg4, \arg0, \arg2 //int32 e[0][j] = f[0][j] + f[2][j];
vsub.s32 \arg5, \arg0, \arg2 //int32 e[1][j] = f[0][j] - f[2][j];
vshr.s32 \arg6, \arg1, #1
vshr.s32 \arg7, \arg3, #1
vsub.s32 \arg6, \arg6, \arg3 //int32 e[2][j] = (f[1][j]>>1) - f[3][j];
vadd.s32 \arg7, \arg1, \arg7 //int32 e[3][j] = f[1][j] + (f[3][j]>>1);
// }
.endm
#endif
WELS_ASM_FUNC_BEGIN WelsDctT4_neon
push {r4}
ldr r4, [sp, #4]
LOAD_4x4_DATA_FOR_DCT d4, d5, d6, d7, r1, r2, r3, r4
vsubl.u8 q0, d4, d6
vsubl.u8 q1, d5, d7
vtrn.s32 q0, q1
vswp d1, d2
// horizontal transform
DCT_ROW_TRANSFORM_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
// transform element
MATRIX_TRANSFORM_EACH_16BITS d0, d1, d2, d3
// vertical transform
DCT_ROW_TRANSFORM_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
// transform element
MATRIX_TRANSFORM_EACH_16BITS d0, d1, d2, d3
vst1.s16 {q0, q1}, [r0]!
pop {r4}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsDctFourT4_neon
push {r4}
ldr r4, [sp, #4]
LOAD_8x8_DATA_FOR_DCT d16, d17, d18, d19, d20, d21, d22, d23, r1, r3
vsubl.u8 q0, d16, d20
vsubl.u8 q1, d17, d21
vsubl.u8 q2, d18, d22
vsubl.u8 q3, d19, d23
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
// horizontal transform
DCT_ROW_TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
// transform element
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
// vertical transform
DCT_ROW_TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
vswp d1, d2
vswp d5, d6
vswp q1, q2
vst1.s16 {q0, q1}, [r0]!
vst1.s16 {q2, q3}, [r0]!
////////////////
LOAD_8x8_DATA_FOR_DCT d16, d17, d18, d19, d20, d21, d22, d23, r1, r3
vsubl.u8 q0, d16, d20
vsubl.u8 q1, d17, d21
vsubl.u8 q2, d18, d22
vsubl.u8 q3, d19, d23
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
// horizontal transform
DCT_ROW_TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
// transform element
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
// vertical transform
DCT_ROW_TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
vswp d1, d2
vswp d5, d6
vswp q1, q2
vst1.s16 {q0, q1}, [r0]!
vst1.s16 {q2, q3}, [r0]!
pop {r4}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsQuant4x4_neon
vld1.s16 {q2}, [r1]
vld1.s16 {q0, q1}, [r0]
vld1.s16 {q3}, [r2]
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q2, d4, d5, d6, d7, q9, q10, q11
vst1.s16 {q2}, [r0]!
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r0]!
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsQuant4x4Dc_neon
vld1.s16 {q0, q1}, [r0]
vdup.s16 q2, r1 // even ff range [0, 768]
vdup.s16 q3, r2
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q2, d4, d5, d6, d7, q9, q10, q11
vst1.s16 {q2}, [r0]!
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r0]!
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsQuantFour4x4_neon
vld1.s16 {q2}, [r1]
vld1.s16 {q3}, [r2]
mov r1, r0
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q0, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS q1, q8, d16, d17, d6, d7, q9, q10, q11
vst1.s16 {q8}, [r1]!
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsQuantFour4x4Max_neon
vld1.s16 {q2}, [r1]
vld1.s16 {q3}, [r2]
mov r1, r0
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS_MAX q0, q8, d16, d17, d6, d7, q9, q10, q11, d26
vst1.s16 {q8}, [r1]!
vmov q12, q2
NEWQUANT_COEF_EACH_16BITS_MAX q1, q12, d24, d25, d6, d7, q9, q10, q11, d28
vst1.s16 {q12}, [r1]! // then 1st 16 elem in d26 & d28
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS_MAX q0, q8, d16, d17, d6, d7, q9, q10, q11, d27
vst1.s16 {q8}, [r1]!
vmov q12, q2
NEWQUANT_COEF_EACH_16BITS_MAX q1, q12, d24, d25, d6, d7, q9, q10, q11, d29
vst1.s16 {q12}, [r1]! // then 2nd 16 elem in d27 & d29
SELECT_MAX_IN_ABS_COEF q13, q14, q0, d0, d1
vst1.s32 {d0[0]}, [r3]!
///////////
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS_MAX q0, q8, d16, d17, d6, d7, q9, q10, q11, d26
vst1.s16 {q8}, [r1]!
vmov q12, q2
NEWQUANT_COEF_EACH_16BITS_MAX q1, q12, d24, d25, d6, d7, q9, q10, q11, d28
vst1.s16 {q12}, [r1]! // then 3rd 16 elem in d26 & d28
vld1.s16 {q0, q1}, [r0]!
vmov q8, q2
NEWQUANT_COEF_EACH_16BITS_MAX q0, q8, d16, d17, d6, d7, q9, q10, q11, d27
vst1.s16 {q8}, [r1]!
vmov q12, q2
NEWQUANT_COEF_EACH_16BITS_MAX q1, q12, d24, d25, d6, d7, q9, q10, q11, d29
vst1.s16 {q12}, [r1]! // then 4th 16 elem in d27 & d29
SELECT_MAX_IN_ABS_COEF q13, q14, q0, d0, d1
vst1.s32 {d0[0]}, [r3]!
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsHadamardT4Dc_neon
push {r2,r3}
mov r2, #64 // 2*16*sizeof(int16_t)
add r3, r1, #32
vld1.s16 {d0}, [r1], r2
vld1.s16 {d1}, [r3], r2
vld1.s16 {d4}, [r1], r2
vld1.s16 {d5}, [r3], r2
vld1.s16 {d2}, [r1], r2
vld1.s16 {d3}, [r3], r2
vld1.s16 {d6}, [r1], r2
vld1.s16 {d7}, [r3], r2
vtrn.16 q0, q2 // d0[0 4], d1[1 5]
vtrn.16 q1, q3 // d2[2 6], d3[3 7]
vld1.s16 {d16}, [r1], r2
vld1.s16 {d17}, [r3], r2
vld1.s16 {d20}, [r1], r2
vld1.s16 {d21}, [r3], r2
vld1.s16 {d18}, [r1], r2
vld1.s16 {d19}, [r3], r2
vld1.s16 {d22}, [r1], r2
vld1.s16 {d23}, [r3], r2
vtrn.16 q8, q10 //d16[08 12],d17[09 13]
vtrn.16 q9, q11 //d18[10 14],d19[11 15]
vtrn.32 q0, q8 // d0 [0 4 08 12] = dct[idx], d1[1 5 09 13] = dct[idx+16]
vtrn.32 q1, q9 // d2 [2 6 10 14] = dct[idx+64], d3[3 7 11 15] = dct[idx+80]
ROW_TRANSFORM_0_STEP d0, d1, d3, d2, q8, q11, q10, q9
TRANSFORM_4BYTES q0, q1, q3, q2, q8, q11, q10, q9
// transform element 32bits
vtrn.s32 q0, q1 //[0 1 2 3]+[4 5 6 7]-->[0 4 2 6]+[1 5 3 7]
vtrn.s32 q2, q3 //[8 9 10 11]+[12 13 14 15]-->[8 12 10 14]+[9 13 11 15]
vswp d1, d4 //[0 4 2 6]+[8 12 10 14]-->[0 4 8 12]+[2 6 10 14]
vswp d3, d6 //[1 5 3 7]+[9 13 11 15]-->[1 5 9 13]+[3 7 11 15]
COL_TRANSFORM_0_STEP q0, q1, q3, q2, q8, q11, q10, q9
TRANSFORM_4BYTES q0, q1, q3, q2, q8, q11, q10, q9
vrshrn.s32 d16, q0, #1
vrshrn.s32 d17, q1, #1
vrshrn.s32 d18, q2, #1
vrshrn.s32 d19, q3, #1
vst1.16 {q8, q9}, [r0] //store
pop {r2,r3}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsHadamardQuant2x2_neon
vdup.s16 d1, r1 //ff
vdup.s16 d2, r2 //mf
veor d3, d3
mov r1, #32
mov r2, r0
vld1.s16 {d0[0]}, [r0], r1 //rs[00]
vst1.s16 {d3[0]}, [r2], r1 //rs[00]=0
vld1.s16 {d0[1]}, [r0], r1 //rs[16]
vst1.s16 {d3[0]}, [r2], r1 //rs[16]=0
vld1.s16 {d0[2]}, [r0], r1 //rs[32]
vst1.s16 {d3[0]}, [r2], r1 //rs[32]=0
vld1.s16 {d0[3]}, [r0], r1 //rs[48]
vst1.s16 {d3[0]}, [r2], r1 //rs[48]=0
HDM_QUANT_2x2_TOTAL_16BITS d0, d4, d5 // output d5
HDM_QUANT_2x2_TOTAL_16BITS d5, d4, d0 // output d0
QUANT_DUALWORD_COEF_EACH_16BITS d0, d1, d2, d3, q2
vst1.s16 d1, [r3] // store to dct
ldr r2, [sp, #0]
vst1.s16 d1, [r2] // store to block
mov r1, #1
vdup.s16 d3, r1
DC_ZERO_COUNT_IN_DUALWORD d1, d0, d3
vmov r0, r1, d0
and r0, #0x07 // range [0~4]
rsb r0, #4
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsHadamardQuant2x2SkipKernel_neon
vdup.s16 d3, r1
mov r1, #32
vld1.s16 {d0[0]}, [r0], r1 //rs[00]
vld1.s16 {d0[1]}, [r0], r1 //rs[16]
vld1.s16 {d0[2]}, [r0], r1 //rs[32]
vld1.s16 {d0[3]}, [r0], r1 //rs[48]
HDM_QUANT_2x2_TOTAL_16BITS d0, d1, d2 // output d2
HDM_QUANT_2x2_TOTAL_16BITS d2, d1, d0 // output d0
vabs.s16 d1, d0
vcgt.s16 d1, d1, d3 // abs(dct[i])>threshold;
vmov r0, r1, d1
orr r0, r1
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsGetNoneZeroCount_neon
push {r1}
vld1.s16 {q0, q1}, [r0]
vmov.s16 q8, #1
ZERO_COUNT_IN_2_QUARWORD q0, q1, q8, d0, d1, d2, d3
vmov r0, r1, d0
and r0, #0x1F // range [0~16]
rsb r0, #16
pop {r1}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsDequant4x4_neon
vld1.s16 {q0, q1}, [r0]
vld1.u16 {q2}, [r1]
vmul.s16 q8, q0, q2
vmul.s16 q9, q1, q2
vst1.s16 {q8, q9}, [r0]
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsDequantFour4x4_neon
vld1.u16 {q12}, [r1]
mov r1, r0
vld1.s16 {q0, q1}, [r0]!
vld1.s16 {q2, q3}, [r0]!
vmul.s16 q0, q0, q12
vld1.s16 {q8, q9}, [r0]!
vmul.s16 q1, q1, q12
vld1.s16 {q10, q11}, [r0]!
vst1.s16 {q0, q1}, [r1]!
vmul.s16 q2, q2, q12
vmul.s16 q3, q3, q12
vmul.s16 q8, q8, q12
vst1.s16 {q2, q3}, [r1]!
vmul.s16 q9, q9, q12
vmul.s16 q10, q10, q12
vmul.s16 q11, q11, q12
vst1.s16 {q8, q9}, [r1]!
vst1.s16 {q10, q11}, [r1]!
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsDequantIHadamard4x4_neon
vld1.s16 {q0, q1}, [r0]
vdup.s16 q8, r1
IHDM_4x4_TOTAL_16BITS q0, q2, q3
IHDM_4x4_TOTAL_16BITS q1, q2, q3
MATRIX_TRANSFORM_EACH_16BITS d0, d1, d2, d3
IHDM_4x4_TOTAL_16BITS q0, q2, q3
vmul.s16 q0, q8
IHDM_4x4_TOTAL_16BITS q1, q2, q3
vmul.s16 q1, q8
MATRIX_TRANSFORM_EACH_16BITS d0, d1, d2, d3
vst1.s16 {q0, q1}, [r0]
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsIDctT4Rec_neon
vld1.u32 {d16[0]}, [r2], r3
push {r4}
ldr r4, [sp, #4]
vld1.u32 {d16[1]}, [r2], r3
vld4.s16 {d0, d1, d2, d3}, [r4] // cost 3 cycles!
vld1.u32 {d17[0]}, [r2], r3
vld1.u32 {d17[1]}, [r2], r3 // q7 is pred
ROW_TRANSFORM_1_STEP_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
TRANSFORM_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
MATRIX_TRANSFORM_EACH_16BITS d0, d1, d2, d3
ROW_TRANSFORM_1_STEP_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
TRANSFORM_TOTAL_16BITS d0, d1, d2, d3, d4, d5, d6, d7
vrshr.s16 d0, d0, #6
vrshr.s16 d1, d1, #6
vrshr.s16 d2, d2, #6
vrshr.s16 d3, d3, #6
//after rounding 6, clip into [0, 255]
vmovl.u8 q2,d16
vadd.s16 q0,q2
vqmovun.s16 d16,q0
vst1.32 {d16[0]},[r0],r1
vst1.32 {d16[1]},[r0],r1
vmovl.u8 q2,d17
vadd.s16 q1,q2
vqmovun.s16 d17,q1
vst1.32 {d17[0]},[r0],r1
vst1.32 {d17[1]},[r0]
pop {r4}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsIDctFourT4Rec_neon
vld1.u64 {d24}, [r2], r3
push {r4}
ldr r4, [sp, #4]
vld1.u64 {d25}, [r2], r3
vld4.s16 {d0, d1, d2, d3}, [r4]! // cost 3 cycles!
vld1.u64 {d26}, [r2], r3
vld1.u64 {d27}, [r2], r3
vld4.s16 {d4, d5, d6, d7}, [r4]! // cost 3 cycles!
vswp d1, d4
vswp d3, d6
vswp q1, q2 // q0~q3
ROW_TRANSFORM_1_STEP_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
ROW_TRANSFORM_1_STEP_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
vrshr.s16 q0, q0, #6
vrshr.s16 q1, q1, #6
vrshr.s16 q2, q2, #6
vrshr.s16 q3, q3, #6
//after rounding 6, clip into [0, 255]
vmovl.u8 q8,d24
vadd.s16 q0,q8
vqmovun.s16 d24,q0
vst1.u8 {d24},[r0],r1
vmovl.u8 q8,d25
vadd.s16 q1,q8
vqmovun.s16 d25,q1
vst1.u8 {d25},[r0],r1
vmovl.u8 q8,d26
vadd.s16 q2,q8
vqmovun.s16 d26,q2
vst1.u8 {d26},[r0],r1
vmovl.u8 q8,d27
vadd.s16 q3,q8
vqmovun.s16 d27,q3
vst1.u8 {d27},[r0],r1
vld1.u64 {d24}, [r2], r3
vld1.u64 {d25}, [r2], r3
vld4.s16 {d0, d1, d2, d3}, [r4]! // cost 3 cycles!
vld1.u64 {d26}, [r2], r3
vld1.u64 {d27}, [r2], r3
vld4.s16 {d4, d5, d6, d7}, [r4]! // cost 3 cycles!
vswp d1, d4
vswp d3, d6
vswp q1, q2 // q0~q3
ROW_TRANSFORM_1_STEP_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
MATRIX_TRANSFORM_EACH_16BITS q0, q1, q2, q3
ROW_TRANSFORM_1_STEP_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
TRANSFORM_TOTAL_16BITS q0, q1, q2, q3, q8, q9, q10, q11
vrshr.s16 q0, q0, #6
vrshr.s16 q1, q1, #6
vrshr.s16 q2, q2, #6
vrshr.s16 q3, q3, #6
//after rounding 6, clip into [0, 255]
vmovl.u8 q8,d24
vadd.s16 q0,q8
vqmovun.s16 d24,q0
vst1.u8 {d24},[r0],r1
vmovl.u8 q8,d25
vadd.s16 q1,q8
vqmovun.s16 d25,q1
vst1.u8 {d25},[r0],r1
vmovl.u8 q8,d26
vadd.s16 q2,q8
vqmovun.s16 d26,q2
vst1.u8 {d26},[r0],r1
vmovl.u8 q8,d27
vadd.s16 q3,q8
vqmovun.s16 d27,q3
vst1.u8 {d27},[r0],r1
pop {r4}
WELS_ASM_FUNC_END
WELS_ASM_FUNC_BEGIN WelsIDctRecI16x16Dc_neon
push {r4}
ldr r4, [sp, #4]
vld1.s16 {q8,q9}, [r4]
vrshr.s16 q8, q8, #6
vrshr.s16 q9, q9, #6
vdup.s16 d20, d16[0]
vdup.s16 d21, d16[1]
vdup.s16 d22, d16[2]
vdup.s16 d23, d16[3]
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vdup.s16 d20, d17[0]
vdup.s16 d21, d17[1]
vdup.s16 d22, d17[2]
vdup.s16 d23, d17[3]
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vdup.s16 d20, d18[0]
vdup.s16 d21, d18[1]
vdup.s16 d22, d18[2]
vdup.s16 d23, d18[3]
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vdup.s16 d20, d19[0]
vdup.s16 d21, d19[1]
vdup.s16 d22, d19[2]
vdup.s16 d23, d19[3]
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
vld1.u8 {q0}, [r2], r3
MB_PRED_8BITS_ADD_DCT_16BITS_CLIP d0, d1, q10, q11, q12, q13
vst1.u8 {q0}, [r0], r1
pop {r4}
WELS_ASM_FUNC_END
#endif