922 lines
37 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file md.c
*
* \brief mode decision
*
* \date 2009.05.14 Created
*
*************************************************************************************
*/
#include "ls_defines.h"
#include "md.h"
#include "cpu_core.h"
#include "svc_enc_golomb.h"
namespace WelsSVCEnc {
#define INTRA_VARIANCE_SAD_THRESHOLD 150
#define INTER_VARIANCE_SAD_THRESHOLD 20
//fill cache of neighbor MB, containing pNonZeroCount, sample_avail, pIntra4x4PredMode
void FillNeighborCacheIntra (SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth) {
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
uint32_t uiNeighborIntra = 0;
if (uiNeighborAvail & LEFT_MB_POS) { //LEFT MB
int8_t* pLeftMbNonZeroCount = pCurMb->pNonZeroCount - MB_LUMA_CHROMA_BLOCK4x4_NUM;
pMbCache->iNonZeroCoeffCount[8] = pLeftMbNonZeroCount[ 3];
pMbCache->iNonZeroCoeffCount[16] = pLeftMbNonZeroCount[ 7];
pMbCache->iNonZeroCoeffCount[24] = pLeftMbNonZeroCount[11];
pMbCache->iNonZeroCoeffCount[32] = pLeftMbNonZeroCount[15];
pMbCache->iNonZeroCoeffCount[ 13] = pLeftMbNonZeroCount[17];
pMbCache->iNonZeroCoeffCount[21] = pLeftMbNonZeroCount[21];
pMbCache->iNonZeroCoeffCount[37] = pLeftMbNonZeroCount[19];
pMbCache->iNonZeroCoeffCount[45] = pLeftMbNonZeroCount[23];
uiNeighborIntra |= LEFT_MB_POS;
if (IS_INTRA4x4 ((pCurMb - 1)->uiMbType)) {
int8_t* pLeftMbIntra4x4PredMode = pCurMb->pIntra4x4PredMode - INTRA_4x4_MODE_NUM;
pMbCache->iIntraPredMode[8] = pLeftMbIntra4x4PredMode[4];
pMbCache->iIntraPredMode[16] = pLeftMbIntra4x4PredMode[5];
pMbCache->iIntraPredMode[24] = pLeftMbIntra4x4PredMode[6];
pMbCache->iIntraPredMode[32] = pLeftMbIntra4x4PredMode[3];
} else { // if ( 0 == constrained_intra_pred_flag || IS_INTRA16x16((pCurMb-1)->uiMbType ))
pMbCache->iIntraPredMode[8] =
pMbCache->iIntraPredMode[16] =
pMbCache->iIntraPredMode[24] =
pMbCache->iIntraPredMode[32] = 2; //DC
}
} else {
pMbCache->iNonZeroCoeffCount[ 8] =
pMbCache->iNonZeroCoeffCount[16] =
pMbCache->iNonZeroCoeffCount[24] =
pMbCache->iNonZeroCoeffCount[32] = -1;//unavailable
pMbCache->iNonZeroCoeffCount[13] =
pMbCache->iNonZeroCoeffCount[21] =
pMbCache->iNonZeroCoeffCount[37] =
pMbCache->iNonZeroCoeffCount[45] = -1;//unavailable
pMbCache->iIntraPredMode[8] =
pMbCache->iIntraPredMode[16] =
pMbCache->iIntraPredMode[24] =
pMbCache->iIntraPredMode[32] = -1;//unavailable
}
if (uiNeighborAvail & TOP_MB_POS) { //TOP MB
SMB* pTopMb = pCurMb - iMbWidth;
ST32 (&pMbCache->iNonZeroCoeffCount[1], LD32 (&pTopMb->pNonZeroCount[12]));
ST16 (&pMbCache->iNonZeroCoeffCount[6], LD16 (&pTopMb->pNonZeroCount[20]));
ST16 (&pMbCache->iNonZeroCoeffCount[30], LD16 (&pTopMb->pNonZeroCount[22]));
uiNeighborIntra |= TOP_MB_POS;
if (IS_INTRA4x4 (pTopMb->uiMbType)) {
ST32 (pMbCache->iIntraPredMode + 1, LD32 (&pTopMb->pIntra4x4PredMode[0]));
} else { // if ( 0 == constrained_intra_pred_flag || IS_INTRA16x16( pTopMb->uiMbType ))
const uint32_t kuiDc32 = 0x02020202;
ST32 (pMbCache->iIntraPredMode + 1 , kuiDc32);
}
} else {
const uint32_t kuiUnavail32 = 0xffffffff;
ST32 (pMbCache->iIntraPredMode + 1 , kuiUnavail32);
ST32 (&pMbCache->iNonZeroCoeffCount[1], kuiUnavail32);
ST16 (&pMbCache->iNonZeroCoeffCount[6], 0xffff);
ST16 (&pMbCache->iNonZeroCoeffCount[30], 0xffff);
}
if (uiNeighborAvail & TOPLEFT_MB_POS) {
uiNeighborIntra |= 0x04;
}
if (uiNeighborAvail & TOPRIGHT_MB_POS) {
uiNeighborIntra |= 0x08;
}
pMbCache->uiNeighborIntra = uiNeighborIntra;
}
//fill cache of neighbor MB, containing motion_vector and uiRefIndex
void FillNeighborCacheInterWithoutBGD (SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth, int8_t* pVaaBgMbFlag) {
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
SMB* pLeftMb = pCurMb - 1 ;
SMB* pTopMb = pCurMb - iMbWidth;
SMB* pLeftTopMb = pCurMb - iMbWidth - 1 ;
SMB* iRightTopMb = pCurMb - iMbWidth + 1 ;
SMVComponentUnit* pMvComp = &pMbCache->sMvComponents;
if ((uiNeighborAvail & LEFT_MB_POS) && IS_SVC_INTER (pLeftMb->uiMbType)) {
pMvComp->sMotionVectorCache[ 6] = pLeftMb->sMv[ 3];
pMvComp->sMotionVectorCache[12] = pLeftMb->sMv[ 7];
pMvComp->sMotionVectorCache[18] = pLeftMb->sMv[11];
pMvComp->sMotionVectorCache[24] = pLeftMb->sMv[15];
pMvComp->iRefIndexCache[ 6] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[12] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[18] = pLeftMb->pRefIndex[3];
pMvComp->iRefIndexCache[24] = pLeftMb->pRefIndex[3];
pMbCache->iSadCost[3] = pLeftMb->pSadCost[0];
if (pLeftMb->uiMbType == MB_TYPE_SKIP) {
pMbCache->bMbTypeSkip[3] = 1;
pMbCache->iSadCostSkip[3] = pMbCache->pEncSad[-1];
} else {
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
} else { //avail or non-inter
ST32 (&pMvComp->sMotionVectorCache[ 6], 0);
ST32 (&pMvComp->sMotionVectorCache[12], 0);
ST32 (&pMvComp->sMotionVectorCache[18], 0);
ST32 (&pMvComp->sMotionVectorCache[24], 0);
pMvComp->iRefIndexCache[ 6] =
pMvComp->iRefIndexCache[12] =
pMvComp->iRefIndexCache[18] =
pMvComp->iRefIndexCache[24] = (uiNeighborAvail & LEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[3] = 0;
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
if ((uiNeighborAvail & TOP_MB_POS) && IS_SVC_INTER (pTopMb->uiMbType)) { //TOP MB
ST64 (&pMvComp->sMotionVectorCache[1], LD64 (&pTopMb->sMv[12]));
ST64 (&pMvComp->sMotionVectorCache[3], LD64 (&pTopMb->sMv[14]));
pMvComp->iRefIndexCache[1] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[2] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[3] = pTopMb->pRefIndex[3];
pMvComp->iRefIndexCache[4] = pTopMb->pRefIndex[3];
pMbCache->iSadCost[1] = pTopMb->pSadCost[0];
if (pTopMb->uiMbType == MB_TYPE_SKIP) {
pMbCache->bMbTypeSkip[1] = 1;
pMbCache->iSadCostSkip[1] = pMbCache->pEncSad[-iMbWidth];
} else {
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
} else { //unavail
ST64 (&pMvComp->sMotionVectorCache[1], 0);
ST64 (&pMvComp->sMotionVectorCache[3], 0);
pMvComp->iRefIndexCache[1] =
pMvComp->iRefIndexCache[2] =
pMvComp->iRefIndexCache[3] =
pMvComp->iRefIndexCache[4] = (uiNeighborAvail & TOP_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[1] = 0;
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
if ((uiNeighborAvail & TOPLEFT_MB_POS) && IS_SVC_INTER (pLeftTopMb->uiMbType)) { //LEFT_TOP MB
pMvComp->sMotionVectorCache[0] = pLeftTopMb->sMv[15];
pMvComp->iRefIndexCache[0] = pLeftTopMb->pRefIndex[3];
pMbCache->iSadCost[0] = pLeftTopMb->pSadCost[0];
if (pLeftTopMb->uiMbType == MB_TYPE_SKIP) {
pMbCache->bMbTypeSkip[0] = 1;
pMbCache->iSadCostSkip[0] = pMbCache->pEncSad[-iMbWidth - 1];
} else {
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
} else { //unavail
ST32 (&pMvComp->sMotionVectorCache[0], 0);
pMvComp->iRefIndexCache[0] = (uiNeighborAvail & TOPLEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[0] = 0;
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
if ((uiNeighborAvail & TOPRIGHT_MB_POS) && IS_SVC_INTER (iRightTopMb->uiMbType)) { //RIGHT_TOP MB
pMvComp->sMotionVectorCache[5] = iRightTopMb->sMv[12];
pMvComp->iRefIndexCache[5] = iRightTopMb->pRefIndex[2];
pMbCache->iSadCost[2] = iRightTopMb->pSadCost[0];
if (iRightTopMb->uiMbType == MB_TYPE_SKIP) {
pMbCache->bMbTypeSkip[2] = 1;
pMbCache->iSadCostSkip[2] = pMbCache->pEncSad[-iMbWidth + 1];
} else {
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
} else { //unavail
ST32 (&pMvComp->sMotionVectorCache[5], 0);
pMvComp->iRefIndexCache[5] = (uiNeighborAvail & TOPRIGHT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[2] = 0;
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
//right-top 4*4 pBlock unavailable
ST32 (&pMvComp->sMotionVectorCache[ 9], 0);
ST32 (&pMvComp->sMotionVectorCache[21], 0);
ST32 (&pMvComp->sMotionVectorCache[11], 0);
ST32 (&pMvComp->sMotionVectorCache[17], 0);
ST32 (&pMvComp->sMotionVectorCache[23], 0);
pMvComp->iRefIndexCache[ 9] =
pMvComp->iRefIndexCache[11] =
pMvComp->iRefIndexCache[17] =
pMvComp->iRefIndexCache[21] =
pMvComp->iRefIndexCache[23] = REF_NOT_AVAIL;
}
void FillNeighborCacheInterWithBGD (SMbCache* pMbCache, SMB* pCurMb, int32_t iMbWidth, int8_t* pVaaBgMbFlag) {
uint32_t uiNeighborAvail = pCurMb->uiNeighborAvail;
SMB* pLeftMb = pCurMb - 1 ;
SMB* pTopMb = pCurMb - iMbWidth;
SMB* pLeftTopMb = pCurMb - iMbWidth - 1 ;
SMB* iRightTopMb = pCurMb - iMbWidth + 1 ;
SMVComponentUnit* pMvComp = &pMbCache->sMvComponents;
if ((uiNeighborAvail & LEFT_MB_POS) && IS_SVC_INTER (pLeftMb->uiMbType)) {
pMvComp->sMotionVectorCache[ 6] = pLeftMb->sMv[ 3];
pMvComp->sMotionVectorCache[12] = pLeftMb->sMv[ 7];
pMvComp->sMotionVectorCache[18] = pLeftMb->sMv[11];
pMvComp->sMotionVectorCache[24] = pLeftMb->sMv[15];
pMvComp->iRefIndexCache[ 6] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[12] = pLeftMb->pRefIndex[1];
pMvComp->iRefIndexCache[18] = pLeftMb->pRefIndex[3];
pMvComp->iRefIndexCache[24] = pLeftMb->pRefIndex[3];
pMbCache->iSadCost[3] = pLeftMb->pSadCost[0];
if (pLeftMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-1] == 0) {
pMbCache->bMbTypeSkip[3] = 1;
pMbCache->iSadCostSkip[3] = pMbCache->pEncSad[-1];
} else {
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
} else { //avail or non-inter
ST32 (&pMvComp->sMotionVectorCache[ 6], 0);
ST32 (&pMvComp->sMotionVectorCache[12], 0);
ST32 (&pMvComp->sMotionVectorCache[18], 0);
ST32 (&pMvComp->sMotionVectorCache[24], 0);
pMvComp->iRefIndexCache[ 6] =
pMvComp->iRefIndexCache[12] =
pMvComp->iRefIndexCache[18] =
pMvComp->iRefIndexCache[24] = (uiNeighborAvail & LEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[3] = 0;
pMbCache->bMbTypeSkip[3] = 0;
pMbCache->iSadCostSkip[3] = 0;
}
if ((uiNeighborAvail & TOP_MB_POS) && IS_SVC_INTER (pTopMb->uiMbType)) { //TOP MB
ST64 (&pMvComp->sMotionVectorCache[1], LD64 (&pTopMb->sMv[12]));
ST64 (&pMvComp->sMotionVectorCache[3], LD64 (&pTopMb->sMv[14]));
pMvComp->iRefIndexCache[1] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[2] = pTopMb->pRefIndex[2];
pMvComp->iRefIndexCache[3] = pTopMb->pRefIndex[3];
pMvComp->iRefIndexCache[4] = pTopMb->pRefIndex[3];
pMbCache->iSadCost[1] = pTopMb->pSadCost[0];
if (pTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth] == 0) {
pMbCache->bMbTypeSkip[1] = 1;
pMbCache->iSadCostSkip[1] = pMbCache->pEncSad[-iMbWidth];
} else {
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
} else { //unavail
ST64 (&pMvComp->sMotionVectorCache[1], 0);
ST64 (&pMvComp->sMotionVectorCache[3], 0);
pMvComp->iRefIndexCache[1] =
pMvComp->iRefIndexCache[2] =
pMvComp->iRefIndexCache[3] =
pMvComp->iRefIndexCache[4] = (uiNeighborAvail & TOP_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[1] = 0;
pMbCache->bMbTypeSkip[1] = 0;
pMbCache->iSadCostSkip[1] = 0;
}
if ((uiNeighborAvail & TOPLEFT_MB_POS) && IS_SVC_INTER (pLeftTopMb->uiMbType)) { //LEFT_TOP MB
pMvComp->sMotionVectorCache[0] = pLeftTopMb->sMv[15];
pMvComp->iRefIndexCache[0] = pLeftTopMb->pRefIndex[3];
pMbCache->iSadCost[0] = pLeftTopMb->pSadCost[0];
if (pLeftTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth - 1] == 0) {
pMbCache->bMbTypeSkip[0] = 1;
pMbCache->iSadCostSkip[0] = pMbCache->pEncSad[-iMbWidth - 1];
} else {
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
} else { //unavail
ST32 (&pMvComp->sMotionVectorCache[0], 0);
pMvComp->iRefIndexCache[0] = (uiNeighborAvail & TOPLEFT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[0] = 0;
pMbCache->bMbTypeSkip[0] = 0;
pMbCache->iSadCostSkip[0] = 0;
}
if ((uiNeighborAvail & TOPRIGHT_MB_POS) && IS_SVC_INTER (iRightTopMb->uiMbType)) { //RIGHT_TOP MB
pMvComp->sMotionVectorCache[5] = iRightTopMb->sMv[12];
pMvComp->iRefIndexCache[5] = iRightTopMb->pRefIndex[2];
pMbCache->iSadCost[2] = iRightTopMb->pSadCost[0];
if (iRightTopMb->uiMbType == MB_TYPE_SKIP && pVaaBgMbFlag[-iMbWidth + 1] == 0) {
pMbCache->bMbTypeSkip[2] = 1;
pMbCache->iSadCostSkip[2] = pMbCache->pEncSad[-iMbWidth + 1];
} else {
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
} else { //unavail
ST32 (&pMvComp->sMotionVectorCache[5], 0);
pMvComp->iRefIndexCache[5] = (uiNeighborAvail & TOPRIGHT_MB_POS) ? REF_NOT_IN_LIST : REF_NOT_AVAIL;
pMbCache->iSadCost[2] = 0;
pMbCache->bMbTypeSkip[2] = 0;
pMbCache->iSadCostSkip[2] = 0;
}
//right-top 4*4 pBlock unavailable
ST32 (&pMvComp->sMotionVectorCache[ 9], 0);
ST32 (&pMvComp->sMotionVectorCache[21], 0);
ST32 (&pMvComp->sMotionVectorCache[11], 0);
ST32 (&pMvComp->sMotionVectorCache[17], 0);
ST32 (&pMvComp->sMotionVectorCache[23], 0);
pMvComp->iRefIndexCache[ 9] =
pMvComp->iRefIndexCache[11] =
pMvComp->iRefIndexCache[17] =
pMvComp->iRefIndexCache[21] =
pMvComp->iRefIndexCache[23] = REF_NOT_AVAIL;
}
void InitFillNeighborCacheInterFunc (SWelsFuncPtrList* pFuncList, const int32_t kiFlag) {
pFuncList->pfFillInterNeighborCache = kiFlag ? FillNeighborCacheInterWithBGD : FillNeighborCacheInterWithoutBGD;
}
void UpdateMbMv_c (SMVUnitXY* pMvBuffer, const SMVUnitXY ksMv) {
int32_t k = 0;
for (; k < MB_BLOCK4x4_NUM; k += 4) {
pMvBuffer[k ] =
pMvBuffer[k + 1] =
pMvBuffer[k + 2] =
pMvBuffer[k + 3] = ksMv;
}
}
uint8_t MdInterAnalysisVaaInfo_c (int32_t* pSad8x8) {
int32_t iSadBlock[4], iAverageSadBlock[4];
int32_t iAverageSad, iVarianceSad;
iSadBlock[0] = pSad8x8[0];
iAverageSad = iSadBlock[0];
iSadBlock[1] = pSad8x8[1];
iAverageSad += iSadBlock[1];
iSadBlock[2] = pSad8x8[2];
iAverageSad += iSadBlock[2];
iSadBlock[3] = pSad8x8[3];
iAverageSad += iSadBlock[3];
iAverageSad = iAverageSad >> 2;
iAverageSadBlock[0] = (iSadBlock[0] >> 6) - (iAverageSad >> 6);
iVarianceSad = iAverageSadBlock[0] * iAverageSadBlock[0];
iAverageSadBlock[1] = (iSadBlock[1] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[1] * iAverageSadBlock[1];
iAverageSadBlock[2] = (iSadBlock[2] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[2] * iAverageSadBlock[2];
iAverageSadBlock[3] = (iSadBlock[3] >> 6) - (iAverageSad >> 6);
iVarianceSad += iAverageSadBlock[3] * iAverageSadBlock[3];
if (iVarianceSad < INTER_VARIANCE_SAD_THRESHOLD) {
return 15;
}
uint8_t uiMbSign = 0;
if (iSadBlock[0] > iAverageSad)
uiMbSign |= 0x08;
if (iSadBlock[1] > iAverageSad)
uiMbSign |= 0x04;
if (iSadBlock[2] > iAverageSad)
uiMbSign |= 0x02;
if (iSadBlock[3] > iAverageSad)
uiMbSign |= 0x01;
return (uiMbSign);
}
int32_t AnalysisVaaInfoIntra_c (uint8_t* pDataY, const int32_t kiLineSize) {
ENFORCE_STACK_ALIGN_1D (uint16_t, uiAvgBlock, 16, 16)
uint16_t* pBlock = &uiAvgBlock[0];
uint8_t* pEncData = pDataY;
const int32_t kiLineSize2 = kiLineSize << 1;
const int32_t kiLineSize3 = kiLineSize + kiLineSize2;
const int32_t kiLineSize4 = kiLineSize << 2;
int32_t i = 0, j = 0, num = 0;
int32_t iSumAvg = 0, iSumSqr = 0;
// analysis_vaa_info_intra_core_c( pDataY, iLineSize, pBlock );
for (; j < 16; j += 4) {
num = 0;
for (i = 0; i < 16; i += 4, num ++) {
pBlock[num] = pEncData[i ] + pEncData[i + 1 ] + pEncData[i + 2 ] + pEncData[i +
3 ];
pBlock[num] += pEncData[i + kiLineSize ] + pEncData[i + kiLineSize + 1 ] + pEncData[i + kiLineSize + 2 ] + pEncData[i +
kiLineSize + 3 ];
pBlock[num] += pEncData[i + kiLineSize2] + pEncData[i + kiLineSize2 + 1] + pEncData[i + kiLineSize2 + 2] + pEncData[i +
kiLineSize2 + 3];
pBlock[num] += pEncData[i + kiLineSize3] + pEncData[i + kiLineSize3 + 1] + pEncData[i + kiLineSize3 + 2] + pEncData[i +
kiLineSize3 + 3];
pBlock[num] >>= 4;
}
pBlock += 4;
pEncData += kiLineSize4;
}
pBlock = &uiAvgBlock[0];
i = 4;
for (; i > 0; --i) {
iSumAvg += pBlock[0] + pBlock[1] + pBlock[2] + pBlock[3];
iSumSqr += pBlock[0] * pBlock[0] + pBlock[1] * pBlock[1] + pBlock[2] * pBlock[2] + pBlock[3] * pBlock[3];
pBlock += 4;
}
return /*variance =*/ (iSumSqr - ((iSumAvg * iSumAvg) >> 4));
}
// for pfGetVarianceFromIntraVaa function ptr adaptive by CPU features, 6/7/2010
void InitIntraAnalysisVaaInfo (SWelsFuncPtrList* pFuncList, const uint32_t kuiCpuFlag) {
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_c;
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_c;
pFuncList->pfUpdateMbMv = UpdateMbMv_c;
#if defined(X86_ASM)
if ((kuiCpuFlag & WELS_CPU_SSE2) == WELS_CPU_SSE2) {
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_sse2;
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_sse2;
pFuncList->pfUpdateMbMv = UpdateMbMv_sse2;
}
if ((kuiCpuFlag & WELS_CPU_SSSE3) == WELS_CPU_SSSE3) {
pFuncList->pfGetVarianceFromIntraVaa = AnalysisVaaInfoIntra_ssse3;
}
if ((kuiCpuFlag & WELS_CPU_SSE41) == WELS_CPU_SSE41) {
pFuncList->pfGetMbSignFromInterVaa = MdInterAnalysisVaaInfo_sse41;
}
#endif//X86_ASM
}
bool MdIntraAnalysisVaaInfo (sWelsEncCtx* pEncCtx, uint8_t* pEncMb) {
SDqLayer* pCurDqLayer = pEncCtx->pCurDqLayer;
const int32_t kiLineSize = pCurDqLayer->iEncStride[0];
const int32_t kiVariance = pEncCtx->pFuncList->pfGetVarianceFromIntraVaa (pEncMb, kiLineSize);
return (kiVariance >= INTRA_VARIANCE_SAD_THRESHOLD);
}
void InitMeRefinePointer (SMeRefinePointer* pMeRefine, SMbCache* pMbCache, int32_t iStride) {
pMeRefine->pHalfPixH = &pMbCache->pBufferInterPredMe[0] + iStride;
pMeRefine->pHalfPixV = &pMbCache->pBufferInterPredMe[640] + iStride;
pMeRefine->pQuarPixBest = &pMbCache->pBufferInterPredMe[1280] + iStride;
pMeRefine->pQuarPixTmp = &pMbCache->pBufferInterPredMe[1920] + iStride;
}
typedef struct TagQuarParams {
int32_t iBestCost;
int32_t iBestHalfPix;
int32_t iStrideA;
int32_t iStrideB;
uint8_t* pRef;
uint8_t* pSrcB[4];
uint8_t* pSrcA[4];
int32_t iLms[4];
int32_t iBestQuarPix;
} SQuarRefineParams;
#define SWITCH_BEST_TMP_BUF(prev_best, curr_best){\
pParams->iBestCost = iCurCost;\
pTmp = prev_best;\
prev_best = curr_best;\
curr_best = pTmp;\
}
#define CALC_COST(me_buf, lm) ( pFunc->sSampleDealingFuncs.pfMeCost[kuiPixel](pEncMb, iStrideEnc, me_buf, ME_REFINE_BUF_STRIDE) + lm )
inline void MeRefineQuarPixel (SWelsFuncPtrList* pFunc, SWelsME* pMe, SMeRefinePointer* pMeRefine,
const int32_t kiWidth, const int32_t kiHeight, SQuarRefineParams* pParams, int32_t iStrideEnc) {
PWelsSampleAveragingFunc* pSampleAvg = pFunc->sMcFuncs.pfSampleAveraging;
const int32_t kiAvgIndex = kiWidth >> 4;
int32_t iCurCost;
uint8_t* pEncMb = pMe->pEncMb;
uint8_t* pTmp = NULL;
const uint8_t kuiPixel = pMe->uiBlockSize;
pSampleAvg[kiAvgIndex] (pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[0], ME_REFINE_BUF_STRIDE,
pParams->pSrcB[0], pParams->iStrideA, kiHeight);
iCurCost = CALC_COST (pMeRefine->pQuarPixTmp, pParams->iLms[0]);
if (iCurCost < pParams->iBestCost) {
pParams->iBestQuarPix = ME_QUAR_PIXEL_TOP;
SWITCH_BEST_TMP_BUF (pMeRefine->pQuarPixBest, pMeRefine->pQuarPixTmp);
}
//=========================(0, 1)=======================//
pSampleAvg[kiAvgIndex] (pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[1],
ME_REFINE_BUF_STRIDE, pParams->pSrcB[1], pParams->iStrideA, kiHeight);
iCurCost = CALC_COST (pMeRefine->pQuarPixTmp, pParams->iLms[1]);
if (iCurCost < pParams->iBestCost) {
pParams->iBestQuarPix = ME_QUAR_PIXEL_BOTTOM;
SWITCH_BEST_TMP_BUF (pMeRefine->pQuarPixBest, pMeRefine->pQuarPixTmp);
}
//==========================(-1, 0)=========================//
pSampleAvg[kiAvgIndex] (pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[2],
ME_REFINE_BUF_STRIDE, pParams->pSrcB[2], pParams->iStrideB, kiHeight);
iCurCost = CALC_COST (pMeRefine->pQuarPixTmp, pParams->iLms[2]);
if (iCurCost < pParams->iBestCost) {
pParams->iBestQuarPix = ME_QUAR_PIXEL_LEFT;
SWITCH_BEST_TMP_BUF (pMeRefine->pQuarPixBest, pMeRefine->pQuarPixTmp);
}
//==========================(1, 0)=========================//
pSampleAvg[kiAvgIndex] (pMeRefine->pQuarPixTmp, ME_REFINE_BUF_STRIDE, pParams->pSrcA[3],
ME_REFINE_BUF_STRIDE, pParams->pSrcB[3], pParams->iStrideB, kiHeight);
iCurCost = CALC_COST (pMeRefine->pQuarPixTmp, pParams->iLms[3]);
if (iCurCost < pParams->iBestCost) {
pParams->iBestQuarPix = ME_QUAR_PIXEL_RIGHT;
SWITCH_BEST_TMP_BUF (pMeRefine->pQuarPixBest, pMeRefine->pQuarPixTmp);
}
}
void MeRefineFracPixel (sWelsEncCtx* pEncCtx, uint8_t* pMemPredInterMb, SWelsME* pMe,
SMeRefinePointer* pMeRefine, int32_t iWidth, int32_t iHeight) {
SWelsFuncPtrList* pFunc = pEncCtx->pFuncList;
int16_t iMvx = pMe->sMv.iMvX;
int16_t iMvy = pMe->sMv.iMvY;
int16_t iHalfMvx = iMvx;
int16_t iHalfMvy = iMvy;
const int32_t kiStrideEnc = pEncCtx->pCurDqLayer->iEncStride[0];
const int32_t kiStrideRef = pEncCtx->pCurDqLayer->pRefPic->iLineSize[0];
uint8_t* pEncData = pMe->pEncMb;
uint8_t* pRef = pMe->pRefMb;//091010
int32_t iBestQuarPix = ME_NO_BEST_QUAR_PIXEL;
SQuarRefineParams sParams;
static int32_t iMvQuarAddX[10] = {0, 0, -1, 1, 0, 0, 0, -1, 1, 0};
int32_t* pMvQuarAddY = iMvQuarAddX + 3;
uint8_t* pBestPredInter = pRef;
int32_t iInterBlk4Stride = ME_REFINE_BUF_STRIDE;
int32_t iBestCost;
int32_t iCurCost;
int32_t iBestHalfPix;
if ((pFunc->sSampleDealingFuncs.pfMeCost == pFunc->sSampleDealingFuncs.pfSampleSatd)
&& (pFunc->sSampleDealingFuncs.pfMdCost == pFunc->sSampleDealingFuncs.pfSampleSatd)) {
iBestCost = pMe->uSadPredISatd.uiSatd + COST_MVD (pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
} else {
iBestCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiBlockSize] (pEncData, kiStrideEnc, pRef, kiStrideRef) +
COST_MVD (pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
}
iBestHalfPix = REFINE_ME_NO_BEST_HALF_PIXEL;
pFunc->sMcFuncs.pfLumaHalfpelVer (pRef - kiStrideRef, kiStrideRef, pMeRefine->pHalfPixV, ME_REFINE_BUF_STRIDE, iWidth,
iHeight + 1);
//step 1: get [iWidth][iHeight+1] half pixel from vertical filter
//===========================(0, -2)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiBlockSize] (pEncData, kiStrideEnc, pMeRefine->pHalfPixV,
ME_REFINE_BUF_STRIDE) +
COST_MVD (pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy - 2 - pMe->sMvp.iMvY);
if (iCurCost < iBestCost) {
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_TOP;
pBestPredInter = pMeRefine->pHalfPixV;
}
//===========================(0, 2)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiBlockSize] (pEncData, kiStrideEnc,
pMeRefine->pHalfPixV + ME_REFINE_BUF_STRIDE, ME_REFINE_BUF_STRIDE) +
COST_MVD (pMe->pMvdCost, iMvx - pMe->sMvp.iMvX, iMvy + 2 - pMe->sMvp.iMvY);
if (iCurCost < iBestCost) {
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_BOTTOM;
pBestPredInter = pMeRefine->pHalfPixV + ME_REFINE_BUF_STRIDE;
}
pFunc->sMcFuncs.pfLumaHalfpelHor (pRef - 1, kiStrideRef, pMeRefine->pHalfPixH, ME_REFINE_BUF_STRIDE, iWidth + 1,
iHeight);
//step 2: get [iWidth][iHeight+1] half pixel from horizon filter
//===========================(-2, 0)==============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiBlockSize] (pEncData, kiStrideEnc, pMeRefine->pHalfPixH,
ME_REFINE_BUF_STRIDE) +
COST_MVD (pMe->pMvdCost, iMvx - 2 - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
if (iCurCost < iBestCost) {
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_LEFT;
pBestPredInter = pMeRefine->pHalfPixH;
}
//===========================(2, 0)===============================//
iCurCost = pFunc->sSampleDealingFuncs.pfMeCost[pMe->uiBlockSize] (pEncData, kiStrideEnc, pMeRefine->pHalfPixH + 1,
ME_REFINE_BUF_STRIDE) +
COST_MVD (pMe->pMvdCost, iMvx + 2 - pMe->sMvp.iMvX, iMvy - pMe->sMvp.iMvY);
if (iCurCost < iBestCost) {
iBestCost = iCurCost;
iBestHalfPix = REFINE_ME_HALF_PIXEL_RIGHT;
pBestPredInter = pMeRefine->pHalfPixH + 1;
}
sParams.iBestCost = iBestCost;
sParams.iBestHalfPix = iBestHalfPix;
sParams.pRef = pRef;
sParams.iBestQuarPix = ME_NO_BEST_QUAR_PIXEL;
//step 5: if no best half-pixel prediction, try quarter pixel prediction
// if yes, must get [X+1][X+1] half-pixel from (2, 2) horizontal and vertical filter
if (REFINE_ME_NO_BEST_HALF_PIXEL == iBestHalfPix) {
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixV;
sParams.pSrcA[1] = pMeRefine->pHalfPixV + ME_REFINE_BUF_STRIDE;
sParams.pSrcA[2] = pMeRefine->pHalfPixH;
sParams.pSrcA[3] = pMeRefine->pHalfPixH + 1;
sParams.pSrcB[0] = sParams.pSrcB[1] = sParams.pSrcB[2] = sParams.pSrcB[3] = pRef;
sParams.iLms[0] = COST_MVD (pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy - 1 - pMe->sMvp.iMvY);
sParams.iLms[1] = COST_MVD (pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy + 1 - pMe->sMvp.iMvY);
sParams.iLms[2] = COST_MVD (pMe->pMvdCost, iHalfMvx - 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY);
sParams.iLms[3] = COST_MVD (pMe->pMvdCost, iHalfMvx + 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY);
} else { //must get [X+1][X+1] half-pixel from (2, 2) horizontal and vertical filter
switch (iBestHalfPix) {
case REFINE_ME_HALF_PIXEL_LEFT: {
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixV;//reuse pBuffer, here only h&hv
pFunc->sMcFuncs.pfLumaHalfpelCen (pRef - 1 - kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV, ME_REFINE_BUF_STRIDE,
iWidth + 1, iHeight + 1);
iHalfMvx -= 2;
sParams.iStrideA = ME_REFINE_BUF_STRIDE;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixH;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pMeRefine->pHalfPixHV;
sParams.pSrcB[1] = pMeRefine->pHalfPixHV + ME_REFINE_BUF_STRIDE;
sParams.pSrcB[2] = pRef - 1;
sParams.pSrcB[3] = pRef;
}
break;
case REFINE_ME_HALF_PIXEL_RIGHT: {
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixV;//reuse pBuffer, here only h&hv
pFunc->sMcFuncs.pfLumaHalfpelCen (pRef - 1 - kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV, ME_REFINE_BUF_STRIDE,
iWidth + 1, iHeight + 1);
iHalfMvx += 2;
sParams.iStrideA = ME_REFINE_BUF_STRIDE;
sParams.iStrideB = kiStrideRef;
sParams.pSrcA[0] = pMeRefine->pHalfPixH + 1;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pMeRefine->pHalfPixHV + 1;
sParams.pSrcB[1] = pMeRefine->pHalfPixHV + 1 + ME_REFINE_BUF_STRIDE;
sParams.pSrcB[2] = pRef;
sParams.pSrcB[3] = pRef + 1;
}
break;
case REFINE_ME_HALF_PIXEL_TOP: {
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixH;//reuse pBuffer, here only v&hv
pFunc->sMcFuncs.pfLumaHalfpelCen (pRef - 1 - kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV, ME_REFINE_BUF_STRIDE,
iWidth + 1, iHeight + 1);
iHalfMvy -= 2;
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = ME_REFINE_BUF_STRIDE;
sParams.pSrcA[0] = pMeRefine->pHalfPixV;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pRef - kiStrideRef;
sParams.pSrcB[1] = pRef;
sParams.pSrcB[2] = pMeRefine->pHalfPixHV;
sParams.pSrcB[3] = pMeRefine->pHalfPixHV + 1;
}
break;
case REFINE_ME_HALF_PIXEL_BOTTOM: {
pMeRefine->pHalfPixHV = pMeRefine->pHalfPixH;//reuse pBuffer, here only v&hv
pFunc->sMcFuncs.pfLumaHalfpelCen (pRef - 1 - kiStrideRef, kiStrideRef, pMeRefine->pHalfPixHV, ME_REFINE_BUF_STRIDE,
iWidth + 1, iHeight + 1);
iHalfMvy += 2;
sParams.iStrideA = kiStrideRef;
sParams.iStrideB = ME_REFINE_BUF_STRIDE;
sParams.pSrcA[0] = pMeRefine->pHalfPixV + ME_REFINE_BUF_STRIDE;
sParams.pSrcA[3] = sParams.pSrcA[2] = sParams.pSrcA[1] = sParams.pSrcA[0];
sParams.pSrcB[0] = pRef;
sParams.pSrcB[1] = pRef + kiStrideRef;
sParams.pSrcB[2] = pMeRefine->pHalfPixHV + ME_REFINE_BUF_STRIDE;
sParams.pSrcB[3] = pMeRefine->pHalfPixHV + ME_REFINE_BUF_STRIDE + 1;
}
break;
default:
break;
}
sParams.iLms[0] = COST_MVD (pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy - 1 - pMe->sMvp.iMvY);
sParams.iLms[1] = COST_MVD (pMe->pMvdCost, iHalfMvx - pMe->sMvp.iMvX, iHalfMvy + 1 - pMe->sMvp.iMvY);
sParams.iLms[2] = COST_MVD (pMe->pMvdCost, iHalfMvx - 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY);
sParams.iLms[3] = COST_MVD (pMe->pMvdCost, iHalfMvx + 1 - pMe->sMvp.iMvX, iHalfMvy - pMe->sMvp.iMvY);
}
MeRefineQuarPixel (pFunc, pMe, pMeRefine, iWidth, iHeight, &sParams, kiStrideEnc);
if (iBestCost > sParams.iBestCost) {
pBestPredInter = pMeRefine->pQuarPixBest;
iBestCost = sParams.iBestCost;
}
iBestQuarPix = sParams.iBestQuarPix;
//update final best MV
pMe->sMv.iMvX = iHalfMvx + iMvQuarAddX[iBestQuarPix];
pMe->sMv.iMvY = iHalfMvy + pMvQuarAddY[iBestQuarPix];
pMe->uiSatdCost = iBestCost;
//No half or quarter pixel best, so do MC with integer pixel MV
if (iBestHalfPix + iBestQuarPix == NO_BEST_FRAC_PIX) {
pBestPredInter = pRef;
iInterBlk4Stride = kiStrideRef;
}
if (MB_WIDTH_LUMA == iWidth && MB_HEIGHT_LUMA == iHeight) { //P16x16
pFunc->pfCopy16x16NotAligned (pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter,
iInterBlk4Stride); // dst can be align with 16 bytes, but not sure at pSrc, 12/29/2011
} else if (MB_WIDTH_LUMA == iWidth && MB_HEIGHT_CHROMA == iHeight) { //P16x8
pFunc->pfCopy16x8NotAligned (pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter,
iInterBlk4Stride); // dst can be align with 16 bytes, but not sure at pSrc, 12/29/2011
} else if (MB_WIDTH_CHROMA == iWidth && MB_HEIGHT_LUMA == iHeight) { //P8x16
pFunc->pfCopy8x16Aligned (pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride);
} else { //P8x8
pFunc->pfCopy8x8Aligned (pMemPredInterMb, MB_WIDTH_LUMA, pBestPredInter, iInterBlk4Stride);
}
}
void InitBlkStrideWithRef (int32_t* pBlkStride, const int32_t kiStrideRef) {
static const uint8_t kuiStrideX[16] = {
0, 4 , 0, 4 ,
8, 12, 8, 12,
0, 4 , 0, 4 ,
8, 12, 8, 12
};
static const uint8_t kuiStrideY[16] = {
0, 0, 4 , 4 ,
0, 0, 4 , 4 ,
8, 8, 12, 12,
8, 8, 12, 12
};
int32_t i;
for (i = 0; i < 16; i += 4) {
pBlkStride[i ] = kuiStrideX[i ] + kuiStrideY[i ] * kiStrideRef;
pBlkStride[i + 1] = kuiStrideX[i + 1] + kuiStrideY[i + 1] * kiStrideRef;
pBlkStride[i + 2] = kuiStrideX[i + 2] + kuiStrideY[i + 2] * kiStrideRef;
pBlkStride[i + 3] = kuiStrideX[i + 3] + kuiStrideY[i + 3] * kiStrideRef;
}
}
/*
* iMvdSz = (648*2+1) or (972*2+1);
*/
void MvdCostInit (uint16_t* pMvdCostInter, const int32_t kiMvdSz) {
const int32_t kiSz = kiMvdSz >> 1;
uint16_t* pNegMvd = pMvdCostInter;
uint16_t* pPosMvd = pMvdCostInter + kiSz + 1;
const int32_t* kpQpLambda = &g_kiQpCostTable[0];
int32_t i, j;
for (i = 0; i < 52; ++ i) {
const uint16_t kiLambda = kpQpLambda[i];
int32_t iNegSe = -kiSz;
int32_t iPosSe = 1;
for (j = 0; j < kiSz; j += 4) {
*pNegMvd++ = kiLambda * BsSizeSE (iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE (iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE (iNegSe++);
*pNegMvd++ = kiLambda * BsSizeSE (iNegSe++);
*pPosMvd++ = kiLambda * BsSizeSE (iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE (iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE (iPosSe++);
*pPosMvd++ = kiLambda * BsSizeSE (iPosSe++);
}
*pNegMvd = kiLambda;
pNegMvd += kiSz + 1;
pPosMvd += kiSz + 1;
}
}
void PredictSad (int8_t* pRefIndexCache, int32_t* pSadCostCache, int32_t uiRef, int32_t* pSadPred) {
const int32_t kiRefB = pRefIndexCache[1];//top g_uiCache12_8x8RefIdx[0] - 4
int32_t iRefC = pRefIndexCache[5];//top-right g_uiCache12_8x8RefIdx[0] - 2
const int32_t kiRefA = pRefIndexCache[6];//left g_uiCache12_8x8RefIdx[0] - 1
const int32_t kiSadB = pSadCostCache[1];
int32_t iSadC = pSadCostCache[2];
const int32_t kiSadA = pSadCostCache[3];
int32_t iCount;
if (iRefC == REF_NOT_AVAIL) {
iRefC = pRefIndexCache[0];//top-left g_uiCache12_8x8RefIdx[0] - 4 - 1
iSadC = pSadCostCache[0];
}
if (kiRefB == REF_NOT_AVAIL && iRefC == REF_NOT_AVAIL && kiRefA != REF_NOT_AVAIL) {
* pSadPred = kiSadA;
} else {
iCount = (uiRef == kiRefA) << MB_LEFT_BIT;
iCount |= (uiRef == kiRefB) << MB_TOP_BIT;
iCount |= (uiRef == iRefC) << MB_TOPRIGHT_BIT;
switch (iCount) {
case LEFT_MB_POS:// A
*pSadPred = kiSadA;
break;
case TOP_MB_POS:// B
*pSadPred = kiSadB;
break;
case TOPRIGHT_MB_POS:// C or D
*pSadPred = iSadC;
break;
default:
*pSadPred = WelsMedian (kiSadA, kiSadB, iSadC);
break;
}
}
#define REPLACE_SAD_MULTIPLY(x) ((x) - (x>>3) + (x >>5)) // it's 0.90625, very close with 0.9
iCount = (*pSadPred) << 6; // here *64 will not overflow. SAD range 0~ 255*256(max 2^16), int32_t is enough
*pSadPred = (REPLACE_SAD_MULTIPLY (iCount) + 32) >> 6;
#undef REPLACE_SAD_MULTIPLY
}
void PredictSadSkip (int8_t* pRefIndexCache, bool* pMbSkipCache, int32_t* pSadCostCache, int32_t uiRef,
int32_t* iSadPredSkip) {
const int32_t kiRefB = pRefIndexCache[1];//top g_uiCache12_8x8RefIdx[0] - 4
int32_t iRefC = pRefIndexCache[5];//top-right g_uiCache12_8x8RefIdx[0] - 2
const int32_t kiRefA = pRefIndexCache[6];//left g_uiCache12_8x8RefIdx[0] - 1
const int32_t kiSadB = (pMbSkipCache[1] == 1 ? pSadCostCache[1] : 0);
int32_t iSadC = (pMbSkipCache[2] == 1 ? pSadCostCache[2] : 0);
const int32_t kiSadA = (pMbSkipCache[3] == 1 ? pSadCostCache[3] : 0);
int32_t iRefSkip = pMbSkipCache[2];
int32_t iCount = 0;
if (iRefC == REF_NOT_AVAIL) {
iRefC = pRefIndexCache[0];//top-left g_uiCache12_8x8RefIdx[0] - 4 - 1
iSadC = (pMbSkipCache[0] == 1 ? pSadCostCache[0] : 0);
iRefSkip = pMbSkipCache[0];
}
if (kiRefB == REF_NOT_AVAIL && iRefC == REF_NOT_AVAIL && kiRefA != REF_NOT_AVAIL) {
* iSadPredSkip = kiSadA;
} else {
iCount = ((uiRef == kiRefA) && (pMbSkipCache[3] == 1)) << MB_LEFT_BIT;
iCount |= ((uiRef == kiRefB) && (pMbSkipCache[1] == 1)) << MB_TOP_BIT;
iCount |= ((uiRef == iRefC) && (iRefSkip == 1)) << MB_TOPRIGHT_BIT;
switch (iCount) {
case LEFT_MB_POS:// A
*iSadPredSkip = kiSadA;
break;
case TOP_MB_POS:// B
*iSadPredSkip = kiSadB;
break;
case TOPRIGHT_MB_POS:// C or D
*iSadPredSkip = iSadC;
break;
default:
*iSadPredSkip = WelsMedian (kiSadA, kiSadB, iSadC);
break;
}
}
}
}