openh264/codec/common/macros.h
2014-01-09 15:41:24 +08:00

404 lines
11 KiB
C

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file macros.h
*
* \brief MACRO based tool utilization
*
* \date 3/13/2009 Created
*
*************************************************************************************
*/
#ifndef WELS_MACRO_UTILIZATIONS_H__
#define WELS_MACRO_UTILIZATIONS_H__
#include <math.h>
#include <assert.h>
#include "typedefs.h"
/*
* FORCE_STACK_ALIGN_1D: force 1 dimension local data aligned in stack
* _tp: type
* _nm: var name
* _sz: size
* _al: align bytes
* auxiliary var: _nm ## _tEmP
*/
#define FORCE_STACK_ALIGN_1D(_tp, _nm, _sz, _al) \
_tp _nm ## _tEmP[(_sz)+(_al)-1]; \
_tp *_nm = _nm ## _tEmP + ((_al)-1) - (((uintptr_t)(_nm ## _tEmP + ((_al)-1)) & ((_al)-1))/sizeof(_tp))
#define ENFORCE_STACK_ALIGN_2D(_tp, _nm, _cx, _cy, _al) \
assert( ((_al) && !((_al) & ((_al) - 1))) && ((_al) >= sizeof(_tp)) ); /*_al should be power-of-2 and >= sizeof(_tp)*/\
_tp _nm ## _tEmP[(_cx)*(_cy)+(_al)/sizeof(_tp)-1]; \
_tp *_nm ## _tEmP_al = _nm ## _tEmP + ((_al)/sizeof(_tp)-1); \
_nm ## _tEmP_al -= (((uintptr_t)_nm ## _tEmP_al & ((_al)-1))/sizeof(_tp)); \
_tp (*_nm)[(_cy)] = (_tp (*)[(_cy)])_nm ## _tEmP_al;
///////////// from encoder
#if defined(_MSC_VER)
#if(_MSC_VER < 1700)
#define inline __inline
#endif
#define __FASTCALL __fastcall
#define ALIGNED_DECLARE( type, var, n ) __declspec(align(n)) type var
#define __align8(t,v) __declspec(align(8)) t v
#define __align16(t,v) __declspec(align(16)) t v
#elif defined(__GNUC__)
#if !defined(MAC_POWERPC)
#define __FASTCALL __attribute__ ((fastcall))
#else
#define __FASTCALL // mean NULL for mac ppc
#endif//MAC_POWERPC
#define ALIGNED_DECLARE( type, var, n ) type var __attribute__((aligned(n)))
#define __align8(t,v) t v __attribute__ ((aligned (8)))
#define __align16(t,v) t v __attribute__ ((aligned (16)))
#endif//_MSC_VER
#if defined(_MACH_PLATFORM) || defined(__GNUC__)
#define ALIGNED_DECLARE_MATRIX_2D(name,sizex,sizey,type,alignment) \
type name[(sizex)*(sizey)] __attribute__((aligned(alignment)))
#else //_MSC_VER <= 1200
#define ALIGNED_DECLARE_MATRIX_2D(name,sizex,sizey,type,alignment) \
__declspec(align(alignment)) type name[(sizex)*(sizey)]
#endif//#if _MACH_PLATFORM
#if defined(_MACH_PLATFORM) || defined(__GNUC__)
#define ALIGNED_DECLARE_MATRIX_1D(name,size,type,alignment) \
type name[size] __attribute__((aligned(alignment)))
#else //_MSC_VER <= 1200
#define ALIGNED_DECLARE_MATRIX_1D(name,size,type,alignment) \
__declspec(align(alignment)) type name[(size)]
#endif//#if _MACH_PLATFORM
#if defined(_MSC_VER)
#define inline __inline
#define __FASTCALL __fastcall
// #define __align8(t,v) __declspec(align(8)) t v
#define __align16(t,v) __declspec(align(16)) t v
#elif defined(__GNUC__)
#if !defined(MAC_POWERPC) && !defined(UNIX) && !defined(ANDROID_NDK) && !defined(APPLE_IOS)
#define __FASTCALL __attribute__ ((fastcall))// linux, centos, mac_x86 can be used
#else
#define __FASTCALL // mean NULL for mac_ppc, solaris(sparc/x86)
#endif//MAC_POWERPC
// #define __align8(t,v) t v __attribute__ ((aligned (8)))
#define __align16(t,v) t v __attribute__ ((aligned (16)))
#if defined(APPLE_IOS)
#define inline //For iOS platform
#endif
#endif//_MSC_VER
#if !defined(SIZEOFRGB24)
#define SIZEOFRGB24(cx, cy) (3 * (cx) * (cy))
#endif//SIZEOFRGB24
#if !defined(SIZEOFRGB32)
#define SIZEOFRGB32(cx, cy) (4 * (cx) * (cy))
#endif//SIZEOFRGB32
#if 1
#ifndef WELS_ALIGN
#define WELS_ALIGN(x, n) (((x)+(n)-1)&~((n)-1))
#endif//WELS_ALIGN
#ifndef WELS_MAX
#define WELS_MAX(x, y) ((x) > (y) ? (x) : (y))
#endif//WELS_MAX
#ifndef WELS_MIN
#define WELS_MIN(x, y) ((x) < (y) ? (x) : (y))
#endif//WELS_MIN
#else
#ifndef WELS_ALIGN
#define WELS_ALIGN(x, n) (((x)+(n)-1)&~((n)-1))
#endif//WELS_ALIGN
#ifndef WELS_MAX
#define WELS_MAX(x, y) ((x) - (((x)-(y))&(((x)-(y))>>31)))
#endif//WELS_MAX
#ifndef WELS_MIN
#define WELS_MIN(x, y) ((y) + (((x)-(y))&(((x)-(y))>>31)))
#endif//WELS_MIN
#endif
#ifndef WELS_CEIL
#define WELS_CEIL(x) ceil(x) // FIXME: low complexity instead of math library used
#endif//WELS_CEIL
#ifndef WELS_FLOOR
#define WELS_FLOOR(x) floor(x) // FIXME: low complexity instead of math library used
#endif//WELS_FLOOR
#ifndef WELS_ROUND
#define WELS_ROUND(x) ((int32_t)(0.5f+(x)))
#endif//WELS_ROUND
#define WELS_NON_ZERO_COUNT_AVERAGE(nC,nA,nB) { \
nC = nA + nB + 1; \
nC >>= (uint8_t)( nA != -1 && nB != -1); \
nC += (uint8_t)(nA == -1 && nB == -1); \
}
static __inline int32_t CeilLog2 (int32_t i) {
int32_t s = 0;
i--;
while (i > 0) {
s++;
i >>= 1;
}
return s;
}
/*
the second path will degrades the performance
*/
#if 1
static inline int32_t WelsMedian (int32_t iX, int32_t iY, int32_t iZ) {
int32_t iMin = iX, iMax = iX;
if (iY < iMin)
iMin = iY;
else
iMax = iY;
if (iZ < iMin)
iMin = iZ;
else if (iZ > iMax)
iMax = iZ;
return (iX + iY + iZ) - (iMin + iMax);
}
#else
static inline int32_t WelsMedian (int32_t iX, int32_t iY, int32_t iZ) {
int32_t iTmp = (iX - iY) & ((iX - iY) >> 31);
iX -= iTmp;
iY += iTmp;
iY -= (iY - iZ) & ((iY - iZ) >> 31);
iY += (iX - iY) & ((iX - iY) >> 31);
return iY;
}
#endif
#ifndef NEG_NUM
//#define NEG_NUM( num ) (-num)
#define NEG_NUM(iX) (1+(~(iX)))
#endif// NEG_NUM
#ifndef WELS_CLIP1
//#define WELS_CLIP1(x) (x & ~255) ? (-x >> 31) : x
#define WELS_CLIP1(iX) (((iX) & ~255) ? (-(iX) >> 31) : (iX)) //iX not only a value but also can be an expression
#endif//WELS_CLIP1
#ifndef WELS_SIGN
#define WELS_SIGN(iX) ((int32_t)(iX) >> 31)
#endif //WELS_SIGN
#ifndef WELS_ABS
#define WELS_ABS(iX) ((WELS_SIGN(iX) ^ (int32_t)(iX)) - WELS_SIGN(iX))
#endif //WELS_ABS
// WELS_CLIP3
#ifndef WELS_CLIP3
#define WELS_CLIP3(iX, iY, iZ) ((iX) < (iY) ? (iY) : ((iX) > (iZ) ? (iZ) : (iX)))
#endif //WELS_CLIP3
/*
* Description: to check variable validation and return the specified result
* iResult: value to be return
* bCaseIf: negative condition to be verified
*/
#ifndef WELS_VERIFY_RETURN_IF
#define WELS_VERIFY_RETURN_IF(iResult, bCaseIf) \
if ( bCaseIf ){ \
return iResult; \
}
#endif//#if WELS_VERIFY_RETURN_IF
/*
* Description: to check variable validation and return the specified result
* with correspoinding process advance.
* result: value to be return
* case_if: negative condition to be verified
* proc: process need perform
*/
#ifndef WELS_VERIFY_RETURN_PROC_IF
#define WELS_VERIFY_RETURN_PROC_IF(iResult, bCaseIf, fProc) \
if ( bCaseIf ){ \
fProc; \
return iResult; \
}
#endif//#if WELS_VERIFY_RETURN_PROC_IF
/*
* Description: to check variable validation and return
* case_if: negtive condition to be verified
* return: NONE
*/
#ifndef WELS_VERIFY_IF
#define WELS_VERIFY_IF(bCaseIf) \
if ( bCaseIf ){ \
return; \
}
#endif//#if WELS_VERIFY_IF
/*
* Description: to check variable validation and return with correspoinding process advance.
* case_if: negtive condition to be verified
* proc: process need preform
* return: NONE
*/
#ifndef WELS_VERIFY_PROC_IF
#define WELS_VERIFY_PROC_IF(bCaseIf, fProc) \
if ( bCaseIf ){ \
fProc; \
return; \
}
#endif//#if WELS_VERIFY_IF
/*
* Description: to safe free a ptr with free function pointer
* p: pointer to be destroyed
* free_fn: free function pointer used
*/
#ifndef WELS_SAFE_FREE_P
#define WELS_SAFE_FREE_P(pPtr, fFreeFunc) \
do{ \
if ( NULL != (pPtr) ){ \
fFreeFunc( (pPtr) ); \
(pPtr) = NULL; \
} \
}while( 0 );
#endif//#if WELS_SAFE_FREE_P
/*
* Description: to safe free an array ptr with free function pointer
* arr: pointer to an array, something like "**p";
* num: number of elements in array
* free_fn: free function pointer
*/
#ifndef WELS_SAFE_FREE_ARR
#define WELS_SAFE_FREE_ARR(pArray, iNum, fFreeFunc) \
do{ \
if ( NULL != (pArray) ){ \
int32_t iIdx = 0; \
while( iIdx < iNum ){ \
if ( NULL != (pArray)[iIdx] ){ \
fFreeFunc( (pArray)[iIdx] ); \
(pArray)[iIdx] = NULL; \
} \
++ iIdx; \
} \
fFreeFunc((pArray)); \
(pArray) = NULL; \
} \
}while( 0 );
#endif//#if WELS_SAFE_FREE_ARR
static inline int32_t WELS_LOG2 (uint32_t v) {
int32_t r = 0;
while (v >>= 1) {
++r;
}
return r;
}
#define CLIP3_QP_0_51(q) WELS_CLIP3(q, 0, 51) // ((q) < (0) ? (0) : ((q) > (51) ? (51) : (q)))
#define CALC_BI_STRIDE(width,bitcount) ((((width * bitcount) + 31) & ~31) >> 3)
#ifdef WORDS_BIGENDIAN
static inline uint32_t ENDIAN_FIX (uint32_t x) {
return x;
}
#else
#if defined(_MSC_VER) && defined(_M_IX86)
static inline uint32_t ENDIAN_FIX (uint32_t x) {
__asm {
mov eax, x
bswap eax
mov x, eax
}
return x;
}
#else // GCC
static inline uint32_t ENDIAN_FIX (uint32_t x) {
#ifdef X86_ARCH
__asm__ __volatile__ ("bswap %0":"+r" (x));
#else
x = ((x & 0xff000000) >> 24) | ((x & 0xff0000) >> 8) |
((x & 0xff00) << 8) | ((x & 0xff) << 24);
#endif
return x;
}
#endif
#endif
#ifndef BUTTERFLY1x2
#define BUTTERFLY1x2(b) (((b)<<8) | (b))
#endif//BUTTERFLY1x2
#ifndef BUTTERFLY2x4
#define BUTTERFLY2x4(wd) (((uint32_t)(wd)<<16) |(wd))
#endif//BUTTERFLY2x4
#ifndef BUTTERFLY4x8
#define BUTTERFLY4x8(dw) (((uint64_t)(dw)<<32) | (dw))
#endif//BUTTERFLY4x8
static inline int32_t WELS_MEDIAN (int32_t x, int32_t y, int32_t z) {
int32_t t = (x - y) & ((x - y) >> 31);
x -= t;
y += t;
y -= (y - z) & ((y - z) >> 31);
y += (x - y) & ((x - y) >> 31);
return y;
}
static inline BOOL_T WELS_POWER2_IF (uint32_t v) {
return (v && ! (v & (v - 1)));
}
#endif//WELS_MACRO_UTILIZATIONS_H__