openh264/codec/decoder/core/src/mv_pred.cpp
2014-02-24 00:27:33 -08:00

373 lines
13 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file mv_pred.c
*
* \brief Get MV predictor and update motion vector of mb cache
*
* \date 05/22/2009 Created
*
*************************************************************************************
*/
#include "mv_pred.h"
#include "ls_defines.h"
#include "mb_cache.h"
namespace WelsDec {
void PredPSkipMvFromNeighbor (PDqLayer pCurLayer, int16_t iMvp[2]) {
bool bTopAvail, bLeftTopAvail, bRightTopAvail, bLeftAvail;
int32_t iCurSliceIdc, iTopSliceIdc, iLeftTopSliceIdc, iRightTopSliceIdc, iLeftSliceIdc;
int32_t iLeftTopType, iRightTopType, iTopType, iLeftType;
int32_t iCurX, iCurY, iCurXy, iLeftXy, iTopXy, iLeftTopXy, iRightTopXy;
int8_t iLeftRef;
int8_t iTopRef;
int8_t iRightTopRef;
int8_t iLeftTopRef;
int8_t iDiagonalRef;
int8_t iMatchRef;
int16_t iMvA[2], iMvB[2], iMvC[2], iMvD[2];
iCurXy = pCurLayer->iMbXyIndex;
iCurX = pCurLayer->iMbX;
iCurY = pCurLayer->iMbY;
iCurSliceIdc = pCurLayer->pSliceIdc[iCurXy];
if (iCurX != 0) {
iLeftXy = iCurXy - 1;
iLeftSliceIdc = pCurLayer->pSliceIdc[iLeftXy];
bLeftAvail = (iLeftSliceIdc == iCurSliceIdc);
} else {
bLeftAvail = 0;
bLeftTopAvail = 0;
}
if (iCurY != 0) {
iTopXy = iCurXy - pCurLayer->iMbWidth;
iTopSliceIdc = pCurLayer->pSliceIdc[iTopXy];
bTopAvail = (iTopSliceIdc == iCurSliceIdc);
if (iCurX != 0) {
iLeftTopXy = iTopXy - 1;
iLeftTopSliceIdc = pCurLayer->pSliceIdc[iLeftTopXy];
bLeftTopAvail = (iLeftTopSliceIdc == iCurSliceIdc);
} else {
bLeftTopAvail = 0;
}
if (iCurX != (pCurLayer->iMbWidth - 1)) {
iRightTopXy = iTopXy + 1;
iRightTopSliceIdc = pCurLayer->pSliceIdc[iRightTopXy];
bRightTopAvail = (iRightTopSliceIdc == iCurSliceIdc);
} else {
bRightTopAvail = 0;
}
} else {
bTopAvail = 0;
bLeftTopAvail = 0;
bRightTopAvail = 0;
}
iLeftType = ((iCurX != 0 && bLeftAvail) ? pCurLayer->pMbType[iLeftXy] : 0);
iTopType = ((iCurY != 0 && bTopAvail) ? pCurLayer->pMbType[iTopXy] : 0);
iLeftTopType = ((iCurX != 0 && iCurY != 0 && bLeftTopAvail)
? pCurLayer->pMbType[iLeftTopXy] : 0);
iRightTopType = ((iCurX != pCurLayer->iMbWidth - 1 && iCurY != 0 && bRightTopAvail)
? pCurLayer->pMbType[iRightTopXy] : 0);
/*get neb mv&iRefIdxArray*/
/*left*/
if (bLeftAvail && IS_INTER (iLeftType)) {
ST32 (iMvA, LD32 (pCurLayer->pMv[0][iLeftXy][3]));
iLeftRef = pCurLayer->pRefIndex[0][iLeftXy][3];
} else {
ST32 (iMvA, 0);
if (0 == bLeftAvail) { //not available
iLeftRef = REF_NOT_AVAIL;
} else { //available but is intra mb type
iLeftRef = REF_NOT_IN_LIST;
}
}
if (REF_NOT_AVAIL == iLeftRef ||
(0 == iLeftRef && 0 == * (int32_t*)iMvA)) {
ST32 (iMvp, 0);
return;
}
/*top*/
if (bTopAvail && IS_INTER (iTopType)) {
ST32 (iMvB, LD32 (pCurLayer->pMv[0][iTopXy][12]));
iTopRef = pCurLayer->pRefIndex[0][iTopXy][12];
} else {
ST32 (iMvB, 0);
if (0 == bTopAvail) { //not available
iTopRef = REF_NOT_AVAIL;
} else { //available but is intra mb type
iTopRef = REF_NOT_IN_LIST;
}
}
if (REF_NOT_AVAIL == iTopRef ||
(0 == iTopRef && 0 == * (int32_t*)iMvB)) {
ST32 (iMvp, 0);
return;
}
/*right_top*/
if (bRightTopAvail && IS_INTER (iRightTopType)) {
ST32 (iMvC, LD32 (pCurLayer->pMv[0][iRightTopXy][12]));
iRightTopRef = pCurLayer->pRefIndex[0][iRightTopXy][12];
} else {
ST32 (iMvC, 0);
if (0 == bRightTopAvail) { //not available
iRightTopRef = REF_NOT_AVAIL;
} else { //available but is intra mb type
iRightTopRef = REF_NOT_IN_LIST;
}
}
/*left_top*/
if (bLeftTopAvail && IS_INTER (iLeftTopType)) {
ST32 (iMvD, LD32 (pCurLayer->pMv[0][iLeftTopXy][15]));
iLeftTopRef = pCurLayer->pRefIndex[0][iLeftTopXy][15];
} else {
ST32 (iMvD, 0);
if (0 == bLeftTopAvail) { //not available
iLeftTopRef = REF_NOT_AVAIL;
} else { //available but is intra mb type
iLeftTopRef = REF_NOT_IN_LIST;
}
}
iDiagonalRef = iRightTopRef;
if (REF_NOT_AVAIL == iDiagonalRef) {
iDiagonalRef = iLeftTopRef;
* (int32_t*)iMvC = * (int32_t*)iMvD;
}
if (REF_NOT_AVAIL == iTopRef && REF_NOT_AVAIL == iDiagonalRef && iLeftRef >= REF_NOT_IN_LIST) {
ST32 (iMvp, LD32 (iMvA));
return;
}
iMatchRef = (0 == iLeftRef) + (0 == iTopRef) + (0 == iDiagonalRef);
if (1 == iMatchRef) {
if (0 == iLeftRef) {
ST32 (iMvp, LD32 (iMvA));
} else if (0 == iTopRef) {
ST32 (iMvp, LD32 (iMvB));
} else {
ST32 (iMvp, LD32 (iMvC));
}
} else {
iMvp[0] = WelsMedian (iMvA[0], iMvB[0], iMvC[0]);
iMvp[1] = WelsMedian (iMvA[1], iMvB[1], iMvC[1]);
}
}
//basic iMVs prediction unit for iMVs partition width (4, 2, 1)
void PredMv (int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int32_t iPartWidth, int8_t iRef, int16_t iMVP[2]) {
const uint8_t kuiLeftIdx = g_kuiCache30ScanIdx[iPartIdx] - 1;
const uint8_t kuiTopIdx = g_kuiCache30ScanIdx[iPartIdx] - 6;
const uint8_t kuiRightTopIdx = kuiTopIdx + iPartWidth;
const uint8_t kuiLeftTopIdx = kuiTopIdx - 1;
const int8_t kiLeftRef = iRefIndex[0][kuiLeftIdx];
const int8_t kiTopRef = iRefIndex[0][ kuiTopIdx];
const int8_t kiRightTopRef = iRefIndex[0][kuiRightTopIdx];
const int8_t kiLeftTopRef = iRefIndex[0][ kuiLeftTopIdx];
int8_t iDiagonalRef = kiRightTopRef;
int8_t iMatchRef = 0;
int16_t iAMV[2], iBMV[2], iCMV[2];
ST32 (iAMV, LD32 (iMotionVector[0][ kuiLeftIdx]));
ST32 (iBMV, LD32 (iMotionVector[0][ kuiTopIdx]));
ST32 (iCMV, LD32 (iMotionVector[0][kuiRightTopIdx]));
if (REF_NOT_AVAIL == iDiagonalRef) {
iDiagonalRef = kiLeftTopRef;
ST32 (iCMV, LD32 (iMotionVector[0][kuiLeftTopIdx]));
}
iMatchRef = (iRef == kiLeftRef) + (iRef == kiTopRef) + (iRef == iDiagonalRef);
if (REF_NOT_AVAIL == kiTopRef && REF_NOT_AVAIL == iDiagonalRef && kiLeftRef >= REF_NOT_IN_LIST) {
ST32 (iMVP, LD32 (iAMV));
return;
}
if (1 == iMatchRef) {
if (iRef == kiLeftRef) {
ST32 (iMVP, LD32 (iAMV));
} else if (iRef == kiTopRef) {
ST32 (iMVP, LD32 (iBMV));
} else {
ST32 (iMVP, LD32 (iCMV));
}
} else {
iMVP[0] = WelsMedian (iAMV[0], iBMV[0], iCMV[0]);
iMVP[1] = WelsMedian (iAMV[1], iBMV[1], iCMV[1]);
}
}
void PredInter8x16Mv (int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVP[2]) {
if (0 == iPartIdx) {
const int8_t kiLeftRef = iRefIndex[0][6];
if (iRef == kiLeftRef) {
ST32 (iMVP, LD32 (&iMotionVector[0][6][0]));
return;
}
} else { // 1 == iPartIdx
int8_t iDiagonalRef = iRefIndex[0][5]; //top-right
int8_t index = 5;
if (REF_NOT_AVAIL == iDiagonalRef) {
iDiagonalRef = iRefIndex[0][2]; //top-left for 8*8 block(index 1)
index = 2;
}
if (iRef == iDiagonalRef) {
ST32 (iMVP, LD32 (&iMotionVector[0][index][0]));
return;
}
}
PredMv (iMotionVector, iRefIndex, iPartIdx, 2, iRef, iMVP);
}
void PredInter16x8Mv (int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVP[2]) {
if (0 == iPartIdx) {
const int8_t kiTopRef = iRefIndex[0][1];
if (iRef == kiTopRef) {
ST32 (iMVP, LD32 (&iMotionVector[0][1][0]));
return;
}
} else { // 8 == iPartIdx
const int8_t kiLeftRef = iRefIndex[0][18];
if (iRef == kiLeftRef) {
ST32 (iMVP, LD32 (&iMotionVector[0][18][0]));
return;
}
}
PredMv (iMotionVector, iRefIndex, iPartIdx, 4, iRef, iMVP);
}
//update iMVs and iRefIndex cache for current MB, only for P_16*16 (SKIP inclusive)
/* can be further optimized */
void UpdateP16x16MotionInfo (PDqLayer pCurDqLayer, int8_t iRef, int16_t iMVs[2]) {
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32 (iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 16; i += 4) {
//mb
const uint8_t kuiScan4Idx = g_kuiScan4[i];
const uint8_t kuiScan4IdxPlus4 = 4 + kuiScan4Idx;
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2);
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4IdxPlus4], kiMV32);
}
}
//update iRefIndex and iMVs of Mb, only for P16x8
/*need further optimization, mb_cache not work */
void UpdateP16x8MotionInfo (PDqLayer pCurDqLayer, int16_t iMotionVector[LIST_A][30][MV_A],
int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVs[2]) {
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32 (iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 2; i++, iPartIdx += 4) {
const uint8_t kuiScan4Idx = g_kuiScan4[iPartIdx];
const uint8_t kuiScan4IdxPlus4 = 4 + kuiScan4Idx;
const uint8_t kuiCacheIdx = g_kuiCache30ScanIdx[iPartIdx];
const uint8_t kuiCacheIdxPlus6 = 6 + kuiCacheIdx;
//mb
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2);
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4IdxPlus4], kiMV32);
//cache
ST16 (&iRefIndex[0][kuiCacheIdx ], kiRef2);
ST16 (&iRefIndex[0][kuiCacheIdxPlus6], kiRef2);
ST32 (iMotionVector[0][ kuiCacheIdx ], kiMV32);
ST32 (iMotionVector[0][1 + kuiCacheIdx ], kiMV32);
ST32 (iMotionVector[0][ kuiCacheIdxPlus6], kiMV32);
ST32 (iMotionVector[0][1 + kuiCacheIdxPlus6], kiMV32);
}
}
//update iRefIndex and iMVs of both Mb and Mb_cache, only for P8x16
void UpdateP8x16MotionInfo (PDqLayer pCurDqLayer, int16_t iMotionVector[LIST_A][30][MV_A],
int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVs[2]) {
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32 (iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 2; i++, iPartIdx += 8) {
const uint8_t kuiScan4Idx = g_kuiScan4[iPartIdx];
const uint8_t kuiCacheIdx = g_kuiCache30ScanIdx[iPartIdx];
const uint8_t kuiScan4IdxPlus4 = 4 + kuiScan4Idx;
const uint8_t kuiCacheIdxPlus6 = 6 + kuiCacheIdx;
//mb
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2);
ST16 (&pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4Idx ], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32);
ST32 (pCurDqLayer->pMv[0][iMbXy][1 + kuiScan4IdxPlus4], kiMV32);
//cache
ST16 (&iRefIndex[0][kuiCacheIdx ], kiRef2);
ST16 (&iRefIndex[0][kuiCacheIdxPlus6], kiRef2);
ST32 (iMotionVector[0][ kuiCacheIdx ], kiMV32);
ST32 (iMotionVector[0][1 + kuiCacheIdx ], kiMV32);
ST32 (iMotionVector[0][ kuiCacheIdxPlus6], kiMV32);
ST32 (iMotionVector[0][1 + kuiCacheIdxPlus6], kiMV32);
}
}
} // namespace WelsDec