openh264/codec/common/inc/WelsCircleQueue.h

181 lines
5.2 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2015, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file WelsCircleQueue.h
*
* \brief for the queue function needed in ThreadPool
*
* \date 9/27/2015 Created
*
*************************************************************************************
*/
#ifndef _WELS_CIRCLE_QUEUE_H_
#define _WELS_CIRCLE_QUEUE_H_
#include "typedefs.h"
#include <stdlib.h>
namespace WelsCommon {
template<typename TNodeType>
class CWelsCircleQueue {
public:
CWelsCircleQueue() {
m_iMaxNodeCount = 50;
m_pCurrentQueue = static_cast<TNodeType**> (malloc (m_iMaxNodeCount * sizeof (TNodeType*)));
//here using array to simulate list is to avoid the frequent malloc/free of Nodes which may cause fragmented memory
m_iCurrentListStart = m_iCurrentListEnd = 0;
};
~CWelsCircleQueue() {
free (m_pCurrentQueue);
};
int32_t size() {
return ((m_iCurrentListEnd >= m_iCurrentListStart)
? (m_iCurrentListEnd - m_iCurrentListStart)
: (m_iMaxNodeCount - m_iCurrentListStart + m_iCurrentListEnd));
}
int32_t push_back (TNodeType* pNode) {
if ((NULL != pNode) && (find (pNode))) { //not checking NULL for easier testing
return 1;
}
return InternalPushBack (pNode);
}
bool find (TNodeType* pNode) {
if (size() > 0) {
if (m_iCurrentListEnd > m_iCurrentListStart) {
for (int32_t idx = m_iCurrentListStart; idx < m_iCurrentListEnd; idx++) {
if (pNode == m_pCurrentQueue[idx]) {
return true;
}
}
} else {
for (int32_t idx = m_iCurrentListStart; idx < m_iMaxNodeCount; idx++) {
if (pNode == m_pCurrentQueue[idx]) {
return true;
}
}
for (int32_t idx = 0; idx < m_iCurrentListEnd; idx++) {
if (pNode == m_pCurrentQueue[idx]) {
return true;
}
}
}
}
return false;
}
void pop_front() {
if (size() > 0) {
m_pCurrentQueue[m_iCurrentListStart] = NULL;
m_iCurrentListStart = ((m_iCurrentListStart < (m_iMaxNodeCount - 1))
? (m_iCurrentListStart + 1)
: 0);
}
}
TNodeType* begin() {
if (size() > 0) {
return m_pCurrentQueue[m_iCurrentListStart];
}
return NULL;
}
TNodeType* GetIndexNode (const int32_t iIdx) {
if (size() > 0) {
if ((iIdx + m_iCurrentListStart) < m_iMaxNodeCount) {
return m_pCurrentQueue[m_iCurrentListStart + iIdx];
} else {
return m_pCurrentQueue[m_iCurrentListStart + iIdx - m_iMaxNodeCount];
}
}
return NULL;
}
private:
int32_t InternalPushBack (TNodeType* pNode) {
m_pCurrentQueue[m_iCurrentListEnd] = pNode;
m_iCurrentListEnd ++;
if (m_iCurrentListEnd == m_iMaxNodeCount) {
m_iCurrentListEnd = 0;
}
if (m_iCurrentListEnd == m_iCurrentListStart) {
int32_t ret = ExpandQueue();
if (ret) {
return 1;
}
}
return 0;
}
int32_t ExpandQueue() {
TNodeType** tmpCurrentTaskQueue = static_cast<TNodeType**> (malloc (m_iMaxNodeCount * 2 * sizeof (TNodeType*)));
if (tmpCurrentTaskQueue == NULL) {
return 1;
}
memcpy (tmpCurrentTaskQueue,
(m_pCurrentQueue + m_iCurrentListStart),
(m_iMaxNodeCount - m_iCurrentListStart)*sizeof (TNodeType*));
if (m_iCurrentListEnd > 0) {
memcpy (tmpCurrentTaskQueue + m_iMaxNodeCount - m_iCurrentListStart,
m_pCurrentQueue,
m_iCurrentListEnd * sizeof (TNodeType*));
}
free (m_pCurrentQueue);
m_pCurrentQueue = tmpCurrentTaskQueue;
m_iCurrentListEnd = m_iMaxNodeCount;
m_iCurrentListStart = 0;
m_iMaxNodeCount = m_iMaxNodeCount * 2;
return 0;
}
int32_t m_iCurrentListStart;
int32_t m_iCurrentListEnd;
int32_t m_iMaxNodeCount;
TNodeType** m_pCurrentQueue;
};
}
#endif