openh264/codec/encoder/core/src/encoder_ext.cpp
2016-06-02 21:17:31 +08:00

4732 lines
202 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file encoder_ext.c
*
* \brief core encoder for SVC
*
* \date 7/24/2009 Created
*
*************************************************************************************
*/
#include "encoder.h"
#include "cpu.h"
#include "utils.h"
#include "svc_enc_golomb.h"
#include "au_set.h"
#include "picture_handle.h"
#include "svc_base_layer_md.h"
#include "svc_encode_slice.h"
#include "svc_mode_decision.h"
#include "decode_mb_aux.h"
#include "deblocking.h"
#include "ref_list_mgr_svc.h"
#include "ls_defines.h"
#include "crt_util_safe_x.h" // Safe CRT routines like utils for cross platforms
#include "slice_multi_threading.h"
#include "measure_time.h"
#include "svc_set_mb_syn.h"
namespace WelsEnc {
int32_t WelsCodeOnePicPartition (sWelsEncCtx* pCtx,
SFrameBSInfo* pFrameBsInfo,
SLayerBSInfo* pLayerBsInfo,
int32_t* pNalIdxInLayer,
int32_t* pLayerSize,
int32_t iFirstMbInPartition, // first mb inclusive in partition
int32_t iEndMbInPartition, // end mb exclusive in partition
int32_t iStartSliceIdx
);
int32_t WelsBitRateVerification (SLogContext* pLogCtx, SSpatialLayerConfig* pLayerParam, int32_t iLayerId) {
if ((pLayerParam->iSpatialBitrate <= 0)
|| (static_cast<float> (pLayerParam->iSpatialBitrate) < pLayerParam->fFrameRate)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "Invalid bitrate settings in layer %d, bitrate= %d at FrameRate(%f)", iLayerId,
pLayerParam->iSpatialBitrate, pLayerParam->fFrameRate);
return ENC_RETURN_UNSUPPORTED_PARA;
}
// deal with LEVEL_MAX_BR and MAX_BR setting
const int32_t iLevelMaxBitrate = (pLayerParam->uiLevelIdc != LEVEL_UNKNOWN) ? (g_ksLevelLimits[pLayerParam->uiLevelIdc -
1].uiMaxBR * CpbBrNalFactor) : UNSPECIFIED_BIT_RATE;
const int32_t iLevel52MaxBitrate = g_ksLevelLimits[LEVEL_NUMBER - 1].uiMaxBR * CpbBrNalFactor;
if (UNSPECIFIED_BIT_RATE != iLevelMaxBitrate) {
if ((pLayerParam->iMaxSpatialBitrate == UNSPECIFIED_BIT_RATE)
|| (pLayerParam->iMaxSpatialBitrate > iLevel52MaxBitrate)) {
pLayerParam->iMaxSpatialBitrate = iLevelMaxBitrate;
WelsLog (pLogCtx, WELS_LOG_INFO,
"Current MaxSpatialBitrate is invalid (UNSPECIFIED_BIT_RATE or larger than LEVEL5_2) but level setting is valid, set iMaxSpatialBitrate to %d from level (%d)",
pLayerParam->iMaxSpatialBitrate, pLayerParam->uiLevelIdc);
} else if (pLayerParam->iMaxSpatialBitrate > iLevelMaxBitrate) {
ELevelIdc iCurLevel = pLayerParam->uiLevelIdc;
WelsAdjustLevel (pLayerParam);
WelsLog (pLogCtx, WELS_LOG_INFO,
"LevelIdc is changed from (%d) to (%d) according to the iMaxSpatialBitrate(%d)",
iCurLevel, pLayerParam->uiLevelIdc, pLayerParam->iMaxSpatialBitrate);
}
} else if ((pLayerParam->iMaxSpatialBitrate != UNSPECIFIED_BIT_RATE)
&& (pLayerParam->iMaxSpatialBitrate > iLevel52MaxBitrate)) {
// no level limitation, just need to check if iMaxSpatialBitrate is too big from reasonable
WelsLog (pLogCtx, WELS_LOG_WARNING,
"No LevelIdc setting and iMaxSpatialBitrate (%d) is considered too big to be valid, changed to UNSPECIFIED_BIT_RATE",
pLayerParam->iMaxSpatialBitrate);
pLayerParam->iMaxSpatialBitrate = UNSPECIFIED_BIT_RATE;
}
// deal with iSpatialBitrate and iMaxSpatialBitrate setting
if (pLayerParam->iMaxSpatialBitrate != UNSPECIFIED_BIT_RATE) {
if (pLayerParam->iMaxSpatialBitrate == pLayerParam->iSpatialBitrate) {
WelsLog (pLogCtx, WELS_LOG_INFO,
"Setting MaxSpatialBitrate (%d) the same at SpatialBitrate (%d) will make the actual bit rate lower than SpatialBitrate",
pLayerParam->iMaxSpatialBitrate, pLayerParam->iSpatialBitrate);
} else if (pLayerParam->iMaxSpatialBitrate < pLayerParam->iSpatialBitrate) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"MaxSpatialBitrate (%d) should be larger than SpatialBitrate (%d), considering it as error setting",
pLayerParam->iMaxSpatialBitrate, pLayerParam->iSpatialBitrate);
return ENC_RETURN_UNSUPPORTED_PARA;
}
}
return ENC_RETURN_SUCCESS;
}
void CheckProfileSetting (SLogContext* pLogCtx, SWelsSvcCodingParam* pParam, int32_t iLayer, EProfileIdc uiProfileIdc) {
SSpatialLayerConfig* pLayerInfo = &pParam->sSpatialLayers[iLayer];
if (PRO_UNKNOWN == uiProfileIdc) {
pLayerInfo->uiProfileIdc = (((iLayer == SPATIAL_LAYER_0)
|| pParam->bSimulcastAVC) ? PRO_BASELINE : PRO_SCALABLE_BASELINE);
} else {
pLayerInfo->uiProfileIdc = uiProfileIdc;
if ((iLayer == SPATIAL_LAYER_0) && (uiProfileIdc != PRO_BASELINE)) {
WelsLog (pLogCtx, WELS_LOG_WARNING, "doesn't support profile(%d), change to baseline profile",
uiProfileIdc);
pLayerInfo->uiProfileIdc = PRO_BASELINE;
}
if (iLayer > SPATIAL_LAYER_0) {
if (pParam->bSimulcastAVC && (uiProfileIdc != PRO_BASELINE)) {
pLayerInfo->uiProfileIdc = PRO_BASELINE;
WelsLog (pLogCtx, WELS_LOG_WARNING, "doesn't support profile(%d) with bSimulcastAVC, change to baseline profile",
uiProfileIdc);
}
if ((uiProfileIdc != PRO_BASELINE) || (uiProfileIdc != PRO_SCALABLE_BASELINE)) {
pLayerInfo->uiProfileIdc = PRO_BASELINE;
WelsLog (pLogCtx, WELS_LOG_WARNING, "doesn't support profile(%d), change to baseline profile",
uiProfileIdc);
}
}
}
}
void CheckLevelSetting (SLogContext* pLogCtx, SWelsSvcCodingParam* pParam, int32_t iLayer, ELevelIdc uiLevelIdc) {
SSpatialLayerConfig* pLayerInfo = &pParam->sSpatialLayers[iLayer];
pLayerInfo->uiLevelIdc = uiLevelIdc;
if (uiLevelIdc > LEVEL_5_2) {
WelsLog (pLogCtx, WELS_LOG_INFO, "change unexpected levelidc(%d) setting to LEVEL_UNKNOWN", pLayerInfo->uiLevelIdc);
pLayerInfo->uiLevelIdc = LEVEL_UNKNOWN;
}
}
void CheckReferenceNumSetting (SLogContext* pLogCtx, SWelsSvcCodingParam* pParam, int32_t iNumRef) {
int32_t iRefUpperBound = (pParam->iUsageType == CAMERA_VIDEO_REAL_TIME) ?
MAX_REFERENCE_PICTURE_COUNT_NUM_CAMERA : MAX_REFERENCE_PICTURE_COUNT_NUM_SCREEN;
pParam->iNumRefFrame = iNumRef;
if ((iNumRef < MIN_REF_PIC_COUNT) || (iNumRef > iRefUpperBound)) {
pParam->iNumRefFrame = AUTO_REF_PIC_COUNT;
WelsLog (pLogCtx, WELS_LOG_WARNING,
"doesn't support the number of reference frame(%d) change to auto select mode", iNumRef);
}
}
int32_t SliceArgumentValidationFixedSliceMode (SLogContext* pLogCtx,
SSliceArgument* pSliceArgument, const RC_MODES kiRCMode,
const int32_t kiPicWidth, const int32_t kiPicHeight) {
int32_t iCpuCores = 0;
int32_t iIdx = 0;
const int32_t iMbWidth = (kiPicWidth + 15) >> 4;
const int32_t iMbHeight = (kiPicHeight + 15) >> 4;
const int32_t iMbNumInFrame = iMbWidth * iMbHeight;
bool bSingleMode = false;
pSliceArgument->uiSliceSizeConstraint = 0;
if (pSliceArgument->uiSliceNum == 0) {
WelsCPUFeatureDetect (&iCpuCores);
if (0 == iCpuCores) {
// cpuid not supported or doesn't expose the number of cores,
// use high level system API as followed to detect number of pysical/logic processor
iCpuCores = DynamicDetectCpuCores();
}
pSliceArgument->uiSliceNum = iCpuCores;
}
if (pSliceArgument->uiSliceNum <= 1) {
WelsLog (pLogCtx, WELS_LOG_INFO,
"SliceArgumentValidationFixedSliceMode(), uiSliceNum(%d) you set for SM_FIXEDSLCNUM_SLICE, now turn to SM_SINGLE_SLICE type!",
pSliceArgument->uiSliceNum);
bSingleMode = true;
}
// considering the coding efficient and performance,
// iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (iMbNumInFrame <= MIN_NUM_MB_PER_SLICE) {
WelsLog (pLogCtx, WELS_LOG_INFO,
"SliceArgumentValidationFixedSliceMode(), uiSliceNum(%d) you set for SM_FIXEDSLCNUM_SLICE, now turn to SM_SINGLE_SLICE type as CountMbNum less than MIN_NUM_MB_PER_SLICE!",
pSliceArgument->uiSliceNum);
bSingleMode = true;
}
if (bSingleMode) {
pSliceArgument->uiSliceMode = SM_SINGLE_SLICE;
pSliceArgument->uiSliceNum = 1;
for (iIdx = 0; iIdx < MAX_SLICES_NUM; iIdx++) {
pSliceArgument->uiSliceMbNum[iIdx] = 0;
}
return ENC_RETURN_SUCCESS;
}
if (pSliceArgument->uiSliceNum > MAX_SLICES_NUM) {
pSliceArgument->uiSliceNum = MAX_SLICES_NUM;
WelsLog (pLogCtx, WELS_LOG_WARNING,
"SliceArgumentValidationFixedSliceMode(), uiSliceNum exceed MAX_SLICES_NUM! So setting slice num eqaul to MAX_SLICES_NUM(%d)!",
pSliceArgument->uiSliceNum);
}
if (kiRCMode != RC_OFF_MODE) { // multiple slices verify with gom
//check uiSliceNum and set uiSliceMbNum with current uiSliceNum
if (!GomValidCheckSliceNum (iMbWidth, iMbHeight, &pSliceArgument->uiSliceNum)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"SliceArgumentValidationFixedSliceMode(), unsupported setting with Resolution and uiSliceNum combination under RC on! So uiSliceNum is changed to %d!",
pSliceArgument->uiSliceNum);
}
if (pSliceArgument->uiSliceNum <= 1 ||
!GomValidCheckSliceMbNum (iMbWidth, iMbHeight, pSliceArgument)) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"SliceArgumentValidationFixedSliceMode(), unsupported setting with Resolution and uiSliceNum (%d) combination under RC on! Consider setting single slice with this resolution!",
pSliceArgument->uiSliceNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
} else if (!CheckFixedSliceNumMultiSliceSetting (iMbNumInFrame, pSliceArgument)) {
//check uiSliceMbNum with current uiSliceNum
WelsLog (pLogCtx, WELS_LOG_ERROR,
"SliceArgumentValidationFixedSliceMode(), invalid uiSliceMbNum (%d) settings!,now turn to SM_SINGLE_SLICE type",
pSliceArgument->uiSliceMbNum[0]);
pSliceArgument->uiSliceMode = SM_SINGLE_SLICE;
pSliceArgument->uiSliceNum = 1;
for (iIdx = 0; iIdx < MAX_SLICES_NUM; iIdx++) {
pSliceArgument->uiSliceMbNum[iIdx] = 0;
}
}
return ENC_RETURN_SUCCESS;
}
/*!
* \brief validate checking in parameter configuration
* \pParam pParam SWelsSvcCodingParam*
* \return successful - 0; otherwise none 0 for failed
*/
int32_t ParamValidation (SLogContext* pLogCtx, SWelsSvcCodingParam* pCfg) {
const float fEpsn = 0.000001f;
int32_t i = 0;
assert (pCfg != NULL);
if ((pCfg->iUsageType != CAMERA_VIDEO_REAL_TIME) && (pCfg->iUsageType != SCREEN_CONTENT_REAL_TIME)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidation(),Invalid usage type = %d", pCfg->iUsageType);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCfg->iUsageType == SCREEN_CONTENT_REAL_TIME) {
if (pCfg->iSpatialLayerNum > 1) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidation(),Invalid the number of Spatial layer(%d)for screen content",
pCfg->iSpatialLayerNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCfg->bEnableAdaptiveQuant) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidation(), AdaptiveQuant(%d) is not supported yet for screen content, auto turned off",
pCfg->bEnableAdaptiveQuant);
pCfg->bEnableAdaptiveQuant = false;
}
if (pCfg->bEnableSceneChangeDetect == false) {
pCfg->bEnableSceneChangeDetect = true;
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidation(), screen change detection should be turned on, change bEnableSceneChangeDetect as true");
}
}
if (pCfg->iSpatialLayerNum > 1) {
for (i = pCfg->iSpatialLayerNum - 1; i > 0; i--) {
SSpatialLayerConfig* fDlpUp = &pCfg->sSpatialLayers[i];
SSpatialLayerConfig* fDlp = &pCfg->sSpatialLayers[i - 1];
if ((fDlp->iVideoWidth > fDlpUp->iVideoWidth) || (fDlp->iVideoHeight > fDlpUp->iVideoHeight)) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidation,Invalid resolution layer(%d) resolution(%d x %d) should be less than the upper spatial layer resolution(%d x %d) ",
i, fDlp->iVideoWidth, fDlp->iVideoHeight, fDlpUp->iVideoWidth, fDlpUp->iVideoHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
}
}
if (!CheckInRangeCloseOpen (pCfg->iLoopFilterDisableIdc, DEBLOCKING_IDC_0, DEBLOCKING_IDC_2 + 1) ||
!CheckInRangeCloseOpen (pCfg->iLoopFilterAlphaC0Offset, DEBLOCKING_OFFSET_MINUS, DEBLOCKING_OFFSET + 1) ||
!CheckInRangeCloseOpen (pCfg->iLoopFilterBetaOffset, DEBLOCKING_OFFSET_MINUS, DEBLOCKING_OFFSET + 1)) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidation, Invalid iLoopFilterDisableIdc(%d) or iLoopFilterAlphaC0Offset(%d) or iLoopFilterBetaOffset(%d)!",
pCfg->iLoopFilterDisableIdc, pCfg->iLoopFilterAlphaC0Offset, pCfg->iLoopFilterBetaOffset);
return ENC_RETURN_UNSUPPORTED_PARA;
}
for (i = 0; i < pCfg->iSpatialLayerNum; ++ i) {
SSpatialLayerInternal* fDlp = &pCfg->sDependencyLayers[i];
SSpatialLayerConfig* pConfig = &pCfg->sSpatialLayers[i];
if (fDlp->fOutputFrameRate > fDlp->fInputFrameRate || (fDlp->fInputFrameRate >= -fEpsn
&& fDlp->fInputFrameRate <= fEpsn)
|| (fDlp->fOutputFrameRate >= -fEpsn && fDlp->fOutputFrameRate <= fEpsn)) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"Invalid settings in input frame rate(%.6f) or output frame rate(%.6f) of layer #%d config file..",
fDlp->fInputFrameRate, fDlp->fOutputFrameRate, i);
return ENC_RETURN_INVALIDINPUT;
}
if (UINT_MAX == GetLogFactor (fDlp->fOutputFrameRate, fDlp->fInputFrameRate)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"AUTO CORRECT: Invalid settings in input frame rate(%.6f) and output frame rate(%.6f) of layer #%d config file: iResult of output frame rate divided by input frame rate should be power of 2(i.e,in/pOut=2^n). \n Auto correcting Output Framerate to Input Framerate %f!\n",
fDlp->fInputFrameRate, fDlp->fOutputFrameRate, i, fDlp->fInputFrameRate);
fDlp->fOutputFrameRate = fDlp->fInputFrameRate;
pConfig->fFrameRate = fDlp->fOutputFrameRate;
}
}
if ((pCfg->iRCMode != RC_OFF_MODE) && (pCfg->iRCMode != RC_QUALITY_MODE) && (pCfg->iRCMode != RC_BUFFERBASED_MODE)
&& (pCfg->iRCMode != RC_BITRATE_MODE) && (pCfg->iRCMode != RC_TIMESTAMP_MODE)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidation(),Invalid iRCMode = %d", pCfg->iRCMode);
return ENC_RETURN_UNSUPPORTED_PARA;
}
//bitrate setting validation
if (pCfg->iRCMode != RC_OFF_MODE) {
int32_t iTotalBitrate = 0;
if (pCfg->iTargetBitrate <= 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "Invalid bitrate settings in total configure, bitrate= %d", pCfg->iTargetBitrate);
return ENC_RETURN_INVALIDINPUT;
}
for (i = 0; i < pCfg->iSpatialLayerNum; ++ i) {
SSpatialLayerConfig* pSpatialLayer = &pCfg->sSpatialLayers[i];
iTotalBitrate += pSpatialLayer->iSpatialBitrate;
if (WelsBitRateVerification (pLogCtx, pSpatialLayer, i) != ENC_RETURN_SUCCESS)
return ENC_RETURN_INVALIDINPUT;
}
if (iTotalBitrate > pCfg->iTargetBitrate) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"Invalid settings in bitrate. the sum of each layer bitrate(%d) is larger than total bitrate setting(%d)",
iTotalBitrate, pCfg->iTargetBitrate);
return ENC_RETURN_INVALIDINPUT;
}
if ((pCfg->iRCMode == RC_QUALITY_MODE) || (pCfg->iRCMode == RC_BITRATE_MODE) || (pCfg->iRCMode == RC_TIMESTAMP_MODE))
if (!pCfg->bEnableFrameSkip)
WelsLog (pLogCtx, WELS_LOG_WARNING,
"bEnableFrameSkip = %d,bitrate can't be controlled for RC_QUALITY_MODE,RC_BITRATE_MODE and RC_TIMESTAMP_MODE without enabling skip frame.",
pCfg->bEnableFrameSkip);
if (pCfg->iRCMode == RC_QUALITY_MODE) {
pCfg->iMinQp = GOM_MIN_QP_MODE;
pCfg->iMaxQp = GOM_MAX_QP_MODE;
} else if (pCfg->iUsageType == SCREEN_CONTENT_REAL_TIME) {
pCfg->iMinQp = MIN_SCREEN_QP;
pCfg->iMaxQp = MAX_SCREEN_QP;
} else {
pCfg->iMinQp = WELS_CLIP3 (pCfg->iMinQp , GOM_MIN_QP_MODE, 51);
pCfg->iMaxQp = WELS_CLIP3 (pCfg->iMaxQp , 0, 51);
if (pCfg->iMaxQp <= pCfg->iMinQp)
pCfg->iMaxQp = 51;
}
}
// ref-frames validation
if (((pCfg->iUsageType == CAMERA_VIDEO_REAL_TIME) || (pCfg->iUsageType == SCREEN_CONTENT_REAL_TIME))
? WelsCheckRefFrameLimitationNumRefFirst (pLogCtx, pCfg)
: WelsCheckRefFrameLimitationLevelIdcFirst (pLogCtx, pCfg)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsCheckRefFrameLimitation failed");
return ENC_RETURN_INVALIDINPUT;
}
return ENC_RETURN_SUCCESS;
}
int32_t ParamValidationExt (SLogContext* pLogCtx, SWelsSvcCodingParam* pCodingParam) {
int8_t i = 0;
int32_t iIdx = 0;
assert (pCodingParam != NULL);
if (NULL == pCodingParam)
return ENC_RETURN_INVALIDINPUT;
if ((pCodingParam->iUsageType != CAMERA_VIDEO_REAL_TIME) && (pCodingParam->iUsageType != SCREEN_CONTENT_REAL_TIME)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(),Invalid usage type = %d", pCodingParam->iUsageType);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if ((pCodingParam->iUsageType == SCREEN_CONTENT_REAL_TIME) && (!pCodingParam->bIsLosslessLink
&& pCodingParam->bEnableLongTermReference)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), setting lossy link for LTR under screen, which is not supported yet! Auto disabled LTR!");
pCodingParam->bEnableLongTermReference = false;
}
if (pCodingParam->iSpatialLayerNum < 1 || pCodingParam->iSpatialLayerNum > MAX_DEPENDENCY_LAYER) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->iSpatialLayerNum: %d!",
pCodingParam->iSpatialLayerNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->iTemporalLayerNum < 1 || pCodingParam->iTemporalLayerNum > MAX_TEMPORAL_LEVEL) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->iTemporalLayerNum: %d!",
pCodingParam->iTemporalLayerNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiGopSize < 1 || pCodingParam->uiGopSize > MAX_GOP_SIZE) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->uiGopSize: %d!",
pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiIntraPeriod && pCodingParam->uiIntraPeriod < pCodingParam->uiGopSize) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidationExt(), uiIntraPeriod(%d) should be not less than that of uiGopSize(%d) or -1 specified!",
pCodingParam->uiIntraPeriod, pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiIntraPeriod && (pCodingParam->uiIntraPeriod & (pCodingParam->uiGopSize - 1)) != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidationExt(), uiIntraPeriod(%d) should be multiple of uiGopSize(%d) or -1 specified!",
pCodingParam->uiIntraPeriod, pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
//about iMultipleThreadIdc, bDeblockingParallelFlag, iLoopFilterDisableIdc, & uiSliceMode
// (1) Single Thread
// if (THREAD==1)//single thread
// no parallel_deblocking: bDeblockingParallelFlag = 0;
// (2) Multi Thread: see uiSliceMode decision
if (pCodingParam->iMultipleThreadIdc == 1) {
//now is single thread. no parallel deblocking, set flag=0
pCodingParam->bDeblockingParallelFlag = false;
} else {
pCodingParam->bDeblockingParallelFlag = true;
}
// eSpsPpsIdStrategy checkings
if (pCodingParam->iSpatialLayerNum > 1 && (!pCodingParam->bSimulcastAVC)
&& (SPS_LISTING & pCodingParam->eSpsPpsIdStrategy)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), eSpsPpsIdStrategy setting (%d) with multiple svc SpatialLayers (%d) not supported! eSpsPpsIdStrategy adjusted to CONSTANT_ID",
pCodingParam->eSpsPpsIdStrategy, pCodingParam->iSpatialLayerNum);
pCodingParam->eSpsPpsIdStrategy = CONSTANT_ID;
}
if (pCodingParam->iUsageType == SCREEN_CONTENT_REAL_TIME && (SPS_LISTING & pCodingParam->eSpsPpsIdStrategy)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), eSpsPpsIdStrategy setting (%d) with iUsageType (%d) not supported! eSpsPpsIdStrategy adjusted to CONSTANT_ID",
pCodingParam->eSpsPpsIdStrategy, pCodingParam->iUsageType);
pCodingParam->eSpsPpsIdStrategy = CONSTANT_ID;
}
if (pCodingParam->bSimulcastAVC && (SPS_LISTING & pCodingParam->eSpsPpsIdStrategy)) {
WelsLog (pLogCtx, WELS_LOG_INFO,
"ParamValidationExt(), eSpsPpsIdStrategy(%d) under bSimulcastAVC(%d) not supported yet, adjusted to INCREASING_ID",
pCodingParam->eSpsPpsIdStrategy, pCodingParam->bSimulcastAVC);
pCodingParam->eSpsPpsIdStrategy = INCREASING_ID;
}
if (pCodingParam->bSimulcastAVC && pCodingParam->bPrefixNalAddingCtrl) {
WelsLog (pLogCtx, WELS_LOG_INFO,
"ParamValidationExt(), bSimulcastAVC(%d) is not compatible with bPrefixNalAddingCtrl(%d) true, adjusted bPrefixNalAddingCtrl to false",
pCodingParam->eSpsPpsIdStrategy, pCodingParam->bSimulcastAVC);
pCodingParam->bPrefixNalAddingCtrl = false;
}
for (i = 0; i < pCodingParam->iSpatialLayerNum; ++ i) {
SSpatialLayerConfig* pSpatialLayer = &pCodingParam->sSpatialLayers[i];
const int32_t kiPicWidth = pSpatialLayer->iVideoWidth;
const int32_t kiPicHeight = pSpatialLayer->iVideoHeight;
uint32_t iMbWidth = 0;
uint32_t iMbHeight = 0;
int32_t iMbNumInFrame = 0;
uint32_t iMaxSliceNum = MAX_SLICES_NUM;
int32_t iReturn = 0;
if ((kiPicWidth <= 0) || (kiPicHeight <= 0) || (kiPicWidth * kiPicHeight > (MAX_MBS_PER_FRAME << 8))) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidationExt(), width > 0, height > 0, width * height <= %d, invalid %d x %d in dependency layer settings!",
(MAX_MBS_PER_FRAME << 8), kiPicWidth, kiPicHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if ((kiPicWidth & 0x0F) != 0 || (kiPicHeight & 0x0F) != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidationExt(), in layer #%d iWidth x iHeight(%d x %d) both should be multiple of 16, can not support with arbitrary size currently!",
i, kiPicWidth, kiPicHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pSpatialLayer->sSliceArgument.uiSliceMode >= SM_RESERVED) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMode (%d) settings!",
pSpatialLayer->sSliceArgument.uiSliceMode);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if ((pCodingParam->uiMaxNalSize != 0) && (pSpatialLayer->sSliceArgument.uiSliceMode != SM_SIZELIMITED_SLICE)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), current layer %d uiSliceMode (%d) settings may not fulfill MaxNalSize = %d", i,
pSpatialLayer->sSliceArgument.uiSliceMode, pCodingParam->uiMaxNalSize);
}
CheckProfileSetting (pLogCtx, pCodingParam, i, pSpatialLayer->uiProfileIdc);
CheckLevelSetting (pLogCtx, pCodingParam, i, pSpatialLayer->uiLevelIdc);
//check pSlice settings under multi-pSlice
if (kiPicWidth <= 16 && kiPicHeight <= 16) {
//only have one MB, set to single_slice
pSpatialLayer->sSliceArgument.uiSliceMode = SM_SINGLE_SLICE;
}
switch (pSpatialLayer->sSliceArgument.uiSliceMode) {
case SM_SINGLE_SLICE:
pSpatialLayer->sSliceArgument.uiSliceNum = 1;
pSpatialLayer->sSliceArgument.uiSliceSizeConstraint = 0;
for (iIdx = 0; iIdx < MAX_SLICES_NUM; iIdx++) {
pSpatialLayer->sSliceArgument.uiSliceMbNum[iIdx] = 0;
}
break;
case SM_FIXEDSLCNUM_SLICE: {
iReturn = SliceArgumentValidationFixedSliceMode (pLogCtx, &pSpatialLayer->sSliceArgument, pCodingParam->iRCMode,
kiPicWidth, kiPicHeight);
if (iReturn)
return ENC_RETURN_UNSUPPORTED_PARA;
}
break;
case SM_RASTER_SLICE: {
pSpatialLayer->sSliceArgument.uiSliceSizeConstraint = 0;
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
iMbNumInFrame = iMbWidth * iMbHeight;
iMaxSliceNum = MAX_SLICES_NUM;
if (pSpatialLayer->sSliceArgument.uiSliceMbNum[0] == 0) {
if (iMbHeight > iMaxSliceNum) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) settings more than MAX(%d)!",
iMbHeight, MAX_SLICES_NUM);
return ENC_RETURN_UNSUPPORTED_PARA;
}
pSpatialLayer->sSliceArgument.uiSliceNum = iMbHeight;
for (uint32_t j = 0; j < iMbHeight; j++) {
pSpatialLayer->sSliceArgument.uiSliceMbNum[j] = iMbWidth;
}
if (!CheckRowMbMultiSliceSetting (iMbWidth,
&pSpatialLayer->sSliceArgument)) { // verify interleave mode settings
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!",
pSpatialLayer->sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
break;
}
if (!CheckRasterMultiSliceSetting (iMbNumInFrame,
&pSpatialLayer->sSliceArgument)) { // verify interleave mode settings
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!",
pSpatialLayer->sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pSpatialLayer->sSliceArgument.uiSliceNum <= 0
|| pSpatialLayer->sSliceArgument.uiSliceNum > iMaxSliceNum) { // verify interleave mode settings
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) in SM_RASTER_SLICE settings!",
pSpatialLayer->sSliceArgument.uiSliceNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pSpatialLayer->sSliceArgument.uiSliceNum == 1) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), pSlice setting for SM_RASTER_SLICE now turn to SM_SINGLE_SLICE!");
pSpatialLayer->sSliceArgument.uiSliceMode = SM_SINGLE_SLICE;
break;
}
if ((pCodingParam->iRCMode != RC_OFF_MODE) && pSpatialLayer->sSliceArgument.uiSliceNum > 1) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), WARNING: GOM based RC do not support SM_RASTER_SLICE!");
}
// considering the coding efficient and performance, iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (iMbNumInFrame <= MIN_NUM_MB_PER_SLICE) {
pSpatialLayer->sSliceArgument.uiSliceMode = SM_SINGLE_SLICE;
pSpatialLayer->sSliceArgument.uiSliceNum = 1;
break;
}
}
break;
case SM_SIZELIMITED_SLICE: {
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
if (pSpatialLayer->sSliceArgument.uiSliceSizeConstraint <= 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid iSliceSize (%d) settings!",
pSpatialLayer->sSliceArgument.uiSliceSizeConstraint);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiMaxNalSize > 0) {
if (pCodingParam->uiMaxNalSize < (NAL_HEADER_ADD_0X30BYTES + MAX_MACROBLOCK_SIZE_IN_BYTE)) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"ParamValidationExt(), invalid uiMaxNalSize (%d) settings! should be larger than (NAL_HEADER_ADD_0X30BYTES + MAX_MACROBLOCK_SIZE_IN_BYTE)(%d)",
pCodingParam->uiMaxNalSize, (NAL_HEADER_ADD_0X30BYTES + MAX_MACROBLOCK_SIZE_IN_BYTE));
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pSpatialLayer->sSliceArgument.uiSliceSizeConstraint > (pCodingParam->uiMaxNalSize -
NAL_HEADER_ADD_0X30BYTES)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"ParamValidationExt(), slice mode = SM_SIZELIMITED_SLICE, uiSliceSizeConstraint = %d ,uiMaxNalsize = %d, will take uiMaxNalsize!",
pSpatialLayer->sSliceArgument.uiSliceSizeConstraint, pCodingParam->uiMaxNalSize);
pSpatialLayer->sSliceArgument.uiSliceSizeConstraint = pCodingParam->uiMaxNalSize - NAL_HEADER_ADD_0X30BYTES;
}
}
}
break;
default: {
WelsLog (pLogCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMode (%d) settings!",
pCodingParam->sSpatialLayers[0].sSliceArgument.uiSliceMode);
return ENC_RETURN_UNSUPPORTED_PARA;
}
break;
}
}
return ParamValidation (pLogCtx, pCodingParam);
}
void WelsEncoderApplyFrameRate (SWelsSvcCodingParam* pParam) {
SSpatialLayerInternal* pLayerParamInternal;
SSpatialLayerConfig* pLayerParam;
const float kfEpsn = 0.000001f;
const int32_t kiNumLayer = pParam->iSpatialLayerNum;
int32_t i;
const float kfMaxFrameRate = pParam->fMaxFrameRate;
float fRatio;
float fTargetOutputFrameRate;
//set input frame rate to each layer
for (i = 0; i < kiNumLayer; i++) {
pLayerParamInternal = & (pParam->sDependencyLayers[i]);
pLayerParam = & (pParam->sSpatialLayers[i]);
fRatio = pLayerParamInternal->fOutputFrameRate / pLayerParamInternal->fInputFrameRate;
if ((kfMaxFrameRate - pLayerParamInternal->fInputFrameRate) > kfEpsn
|| (kfMaxFrameRate - pLayerParamInternal->fInputFrameRate) < -kfEpsn) {
pLayerParamInternal->fInputFrameRate = kfMaxFrameRate;
fTargetOutputFrameRate = kfMaxFrameRate * fRatio;
pLayerParamInternal->fOutputFrameRate = (fTargetOutputFrameRate >= 6) ? fTargetOutputFrameRate :
(pLayerParamInternal->fInputFrameRate);
pLayerParam->fFrameRate = pLayerParamInternal->fOutputFrameRate;
//TODO:{Sijia} from design, there is no sense to have temporal layer when under 6fps even with such setting?
}
}
}
int32_t WelsEncoderApplyBitRate (SLogContext* pLogCtx, SWelsSvcCodingParam* pParam, int iLayer) {
//TODO (Sijia): this is a temporary solution which keep the ratio between layers
//but it is also possible to fulfill the bitrate of lower layer first
SSpatialLayerConfig* pLayerParam;
const int32_t iNumLayers = pParam->iSpatialLayerNum;
int32_t i, iOrigTotalBitrate = 0;
if (iLayer == SPATIAL_LAYER_ALL) {
//read old BR
for (i = 0; i < iNumLayers; i++) {
iOrigTotalBitrate += pParam->sSpatialLayers[i].iSpatialBitrate;
}
//write new BR
float fRatio = 0.0;
for (i = 0; i < iNumLayers; i++) {
pLayerParam = & (pParam->sSpatialLayers[i]);
fRatio = pLayerParam->iSpatialBitrate / (static_cast<float> (iOrigTotalBitrate));
pLayerParam->iSpatialBitrate = static_cast<int32_t> (pParam->iTargetBitrate * fRatio);
if (WelsBitRateVerification (pLogCtx, pLayerParam, i) != ENC_RETURN_SUCCESS)
return ENC_RETURN_UNSUPPORTED_PARA;
}
} else {
return WelsBitRateVerification (pLogCtx, & (pParam->sSpatialLayers[iLayer]), iLayer);
}
return ENC_RETURN_SUCCESS;
}
int32_t WelsEncoderApplyBitVaryRang (SLogContext* pLogCtx, SWelsSvcCodingParam* pParam, int32_t iRang) {
SSpatialLayerConfig* pLayerParam;
const int32_t iNumLayers = pParam->iSpatialLayerNum;
for (int32_t i = 0; i < iNumLayers; i++) {
pLayerParam = & (pParam->sSpatialLayers[i]);
pLayerParam->iMaxSpatialBitrate = WELS_MIN ((int) (pLayerParam->iSpatialBitrate * (1 + iRang / 100.0)),
pLayerParam->iMaxSpatialBitrate);
if (WelsBitRateVerification (pLogCtx, pLayerParam, i) != ENC_RETURN_SUCCESS)
return ENC_RETURN_UNSUPPORTED_PARA;
WelsLog (pLogCtx, WELS_LOG_INFO,
"WelsEncoderApplyBitVaryRang:UpdateMaxBitrate layerId= %d,iMaxSpatialBitrate = %d", i, pLayerParam->iMaxSpatialBitrate);
}
return ENC_RETURN_SUCCESS;
}
/*!
* \brief acquire count number of layers and NALs based on configurable paramters dependency
* \pParam pCtx sWelsEncCtx*
* \pParam pParam SWelsSvcCodingParam*
* \pParam pCountLayers pointer of count number of layers indeed
* \pParam iCountNals pointer of count number of nals indeed
* \return 0 - successful; otherwise failed
*/
static inline int32_t AcquireLayersNals (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pParam, int32_t* pCountLayers,
int32_t* pCountNals) {
int32_t iCountNumLayers = 0;
int32_t iCountNumNals = 0;
int32_t iNumDependencyLayers = 0;
int32_t iDIndex = 0;
if (NULL == pParam || NULL == ppCtx || NULL == *ppCtx)
return 1;
iNumDependencyLayers = pParam->iSpatialLayerNum;
do {
SSpatialLayerConfig* pDLayer = &pParam->sSpatialLayers[iDIndex];
// pDLayer->ptr_cfg = pParam;
int32_t iOrgNumNals = iCountNumNals;
//Note: Sep. 2010
//Review this part and suggest no change, since the memory over-use
//(1) counts little to the overall performance
//(2) should not be critial even under mobile case
if (SM_SIZELIMITED_SLICE == pDLayer->sSliceArgument.uiSliceMode) {
iCountNumNals += MAX_SLICES_NUM;
// plus prefix NALs
if (iDIndex == 0)
iCountNumNals += MAX_SLICES_NUM;
// MAX_SLICES_NUM < MAX_LAYER_NUM_OF_FRAME ensured at svc_enc_slice_segment.h
if (iCountNumNals - iOrgNumNals > MAX_NAL_UNITS_IN_LAYER) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), num_of_slice(%d) > existing slice(%d) at (iDid= %d), max=%d",
iCountNumNals, iOrgNumNals, iDIndex, MAX_NAL_UNITS_IN_LAYER);
return 1;
}
} else { /*if ( SM_SINGLE_SLICE != pDLayer->sSliceArgument.uiSliceMode )*/
const int32_t kiNumOfSlice = GetInitialSliceNum ((pDLayer->iVideoWidth + 0x0f) >> 4,
(pDLayer->iVideoHeight + 0x0f) >> 4,
&pDLayer->sSliceArgument);
// NEED check iCountNals value in case multiple slices is used
iCountNumNals += kiNumOfSlice; // for pSlice VCL NALs
// plus prefix NALs
if (iDIndex == 0)
iCountNumNals += kiNumOfSlice;
assert (iCountNumNals - iOrgNumNals <= MAX_NAL_UNITS_IN_LAYER);
if (kiNumOfSlice > MAX_SLICES_NUM) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), num_of_slice(%d) > MAX_SLICES_NUM(%d) per (iDid= %d, qid= %d) settings!",
kiNumOfSlice, MAX_SLICES_NUM, iDIndex, 0);
return 1;
}
}
if (iCountNumNals - iOrgNumNals > MAX_NAL_UNITS_IN_LAYER) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), num_of_nals(%d) > MAX_NAL_UNITS_IN_LAYER(%d) per (iDid= %d, qid= %d) settings!",
(iCountNumNals - iOrgNumNals), MAX_NAL_UNITS_IN_LAYER, iDIndex, 0);
return 1;
}
iCountNumLayers ++;
++ iDIndex;
} while (iDIndex < iNumDependencyLayers);
if (NULL == (*ppCtx)->pFuncList || NULL == (*ppCtx)->pFuncList->pParametersetStrategy) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), pFuncList and pParametersetStrategy needed to be initialized first!");
return 1;
}
// count parasets
iCountNumNals += 1 + iNumDependencyLayers + (iCountNumLayers << 1) +
iCountNumLayers // plus iCountNumLayers for reserved application
+ (*ppCtx)->pFuncList->pParametersetStrategy->GetAllNeededParasetNum();
// to check number of layers / nals / slices dependencies, 12/8/2010
if (iCountNumLayers > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR, "AcquireLayersNals(), iCountNumLayers(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iCountNumLayers, MAX_LAYER_NUM_OF_FRAME);
return 1;
}
if (NULL != pCountLayers)
*pCountLayers = iCountNumLayers;
if (NULL != pCountNals)
*pCountNals = iCountNumNals;
return 0;
}
static void InitMbInfo (sWelsEncCtx* pEnc, SMB* pList, SDqLayer* pLayer, const int32_t kiDlayerId,
const int32_t kiMaxMbNum) {
int32_t iMbWidth = pLayer->iMbWidth;
int32_t iMbHeight = pLayer->iMbHeight;
int32_t iIdx;
int32_t iMbNum = iMbWidth * iMbHeight;
uint32_t uiNeighborAvail;
const int32_t kiOffset = (kiDlayerId & 0x01) * kiMaxMbNum;
SMVUnitXY (*pLayerMvUnitBlock4x4)[MB_BLOCK4x4_NUM] = (SMVUnitXY (*)[MB_BLOCK4x4_NUM]) (
&pEnc->pMvUnitBlock4x4[MB_BLOCK4x4_NUM * kiOffset]);
int8_t (*pLayerRefIndexBlock8x8)[MB_BLOCK8x8_NUM] = (int8_t (*)[MB_BLOCK8x8_NUM]) (
&pEnc->pRefIndexBlock4x4[MB_BLOCK8x8_NUM * kiOffset]);
for (iIdx = 0; iIdx < iMbNum; iIdx++) {
bool bLeft;
bool bTop;
bool bLeftTop;
bool bRightTop;
int32_t iLeftXY, iTopXY, iLeftTopXY, iRightTopXY;
uint16_t uiSliceIdc; //[0..65535] > 36864 of LEVEL5.2
pList[iIdx].iMbX = pEnc->pStrideTab->pMbIndexX[kiDlayerId][iIdx];
pList[iIdx].iMbY = pEnc->pStrideTab->pMbIndexY[kiDlayerId][iIdx];
pList[iIdx].iMbXY = iIdx;
uiSliceIdc = WelsMbToSliceIdc (pLayer, iIdx);
iLeftXY = iIdx - 1;
iTopXY = iIdx - iMbWidth;
iLeftTopXY = iTopXY - 1;
iRightTopXY = iTopXY + 1;
bLeft = (pList[iIdx].iMbX > 0) && (uiSliceIdc == WelsMbToSliceIdc (pLayer, iLeftXY));
bTop = (pList[iIdx].iMbY > 0) && (uiSliceIdc == WelsMbToSliceIdc (pLayer, iTopXY));
bLeftTop = (pList[iIdx].iMbX > 0) && (pList[iIdx].iMbY > 0) && (uiSliceIdc ==
WelsMbToSliceIdc (pLayer, iLeftTopXY));
bRightTop = (pList[iIdx].iMbX < (iMbWidth - 1)) && (pList[iIdx].iMbY > 0) && (uiSliceIdc ==
WelsMbToSliceIdc (pLayer, iRightTopXY));
uiNeighborAvail = 0;
if (bLeft) {
uiNeighborAvail |= LEFT_MB_POS;
}
if (bTop) {
uiNeighborAvail |= TOP_MB_POS;
}
if (bLeftTop) {
uiNeighborAvail |= TOPLEFT_MB_POS;
}
if (bRightTop) {
uiNeighborAvail |= TOPRIGHT_MB_POS;
}
pList[iIdx].uiSliceIdc = uiSliceIdc; // merge from svc_hd_opt_b for multiple slices coding
pList[iIdx].uiNeighborAvail = uiNeighborAvail;
uiNeighborAvail = 0;
if (pList[iIdx].iMbX >= BASE_MV_MB_NMB)
uiNeighborAvail |= LEFT_MB_POS;
if (pList[iIdx].iMbX <= (iMbWidth - 1 - BASE_MV_MB_NMB))
uiNeighborAvail |= RIGHT_MB_POS;
if (pList[iIdx].iMbY >= BASE_MV_MB_NMB)
uiNeighborAvail |= TOP_MB_POS;
if (pList[iIdx].iMbY <= (iMbHeight - 1 - BASE_MV_MB_NMB))
uiNeighborAvail |= BOTTOM_MB_POS;
pList[iIdx].sMv = pLayerMvUnitBlock4x4[iIdx];
pList[iIdx].pRefIndex = pLayerRefIndexBlock8x8[iIdx];
pList[iIdx].pSadCost = &pEnc->pSadCostMb[iIdx];
pList[iIdx].pIntra4x4PredMode = &pEnc->pIntra4x4PredModeBlocks[iIdx * INTRA_4x4_MODE_NUM];
pList[iIdx].pNonZeroCount = &pEnc->pNonZeroCountBlocks[iIdx * MB_LUMA_CHROMA_BLOCK4x4_NUM];
}
}
int32_t InitMbListD (sWelsEncCtx** ppCtx) {
int32_t iNumDlayer = (*ppCtx)->pSvcParam->iSpatialLayerNum;
int32_t iMbSize[MAX_DEPENDENCY_LAYER] = { 0 };
int32_t iOverallMbNum = 0;
int32_t iMbWidth = 0;
int32_t iMbHeight = 0;
int32_t i;
if (iNumDlayer > MAX_DEPENDENCY_LAYER)
return 1;
for (i = 0; i < iNumDlayer; i++) {
iMbWidth = ((*ppCtx)->pSvcParam->sSpatialLayers[i].iVideoWidth + 15) >> 4;
iMbHeight = ((*ppCtx)->pSvcParam->sSpatialLayers[i].iVideoHeight + 15) >> 4;
iMbSize[i] = iMbWidth * iMbHeight;
iOverallMbNum += iMbSize[i];
}
(*ppCtx)->ppMbListD = static_cast<SMB**> ((*ppCtx)->pMemAlign->WelsMallocz (iNumDlayer * sizeof (SMB*), "ppMbListD"));
(*ppCtx)->ppMbListD[0] = NULL;
WELS_VERIFY_RETURN_PROC_IF (1, (*ppCtx)->ppMbListD == NULL, FreeMemorySvc (ppCtx));
(*ppCtx)->ppMbListD[0] = static_cast<SMB*> ((*ppCtx)->pMemAlign->WelsMallocz (iOverallMbNum * sizeof (SMB),
"ppMbListD[0]"));
WELS_VERIFY_RETURN_PROC_IF (1, (*ppCtx)->ppMbListD[0] == NULL, FreeMemorySvc (ppCtx));
(*ppCtx)->ppDqLayerList[0]->sMbDataP = (*ppCtx)->ppMbListD[0];
InitMbInfo (*ppCtx, (*ppCtx)->ppMbListD[0], (*ppCtx)->ppDqLayerList[0], 0, iMbSize[iNumDlayer - 1]);
for (i = 1; i < iNumDlayer; i++) {
(*ppCtx)->ppMbListD[i] = (*ppCtx)->ppMbListD[i - 1] + iMbSize[i - 1];
(*ppCtx)->ppDqLayerList[i]->sMbDataP = (*ppCtx)->ppMbListD[i];
InitMbInfo (*ppCtx, (*ppCtx)->ppMbListD[i], (*ppCtx)->ppDqLayerList[i], i, iMbSize[iNumDlayer - 1]);
}
return 0;
}
void FreeSliceInLayer (SDqLayer* pDq, CMemoryAlign* pMa) {
int32_t iIdx = 0;
FreeSliceBuffer (pDq->sLayerInfo.pSliceInLayer, pDq->iMaxSliceNum, pMa, "pSliceInLayer");
for (; iIdx < MAX_THREADS_NUM; iIdx ++) {
FreeSliceBuffer (pDq->sSliceThreadInfo.pSliceInThread[iIdx],
pDq->sSliceThreadInfo.iMaxSliceNumInThread[iIdx],
pMa, "pSliceInLayer");
}
}
void FreeDqLayer (SDqLayer*& pDq, CMemoryAlign* pMa) {
if (NULL == pDq) {
return;
}
FreeSliceInLayer (pDq, pMa);
if (pDq->pNumSliceCodedOfPartition) {
pMa->WelsFree (pDq->pNumSliceCodedOfPartition, "pNumSliceCodedOfPartition");
pDq->pNumSliceCodedOfPartition = NULL;
}
if (pDq->pLastCodedMbIdxOfPartition) {
pMa->WelsFree (pDq->pLastCodedMbIdxOfPartition, "pLastCodedMbIdxOfPartition");
pDq->pLastCodedMbIdxOfPartition = NULL;
}
if (pDq->pLastMbIdxOfPartition) {
pMa->WelsFree (pDq->pLastMbIdxOfPartition, "pLastMbIdxOfPartition");
pDq->pLastMbIdxOfPartition = NULL;
}
if (pDq->pFeatureSearchPreparation) {
ReleaseFeatureSearchPreparation (pMa, pDq->pFeatureSearchPreparation->pFeatureOfBlock);
pMa->WelsFree (pDq->pFeatureSearchPreparation, "pFeatureSearchPreparation");
pDq->pFeatureSearchPreparation = NULL;
}
UninitSlicePEncCtx (pDq, pMa);
pDq->iMaxSliceNum = 0;
pMa->WelsFree (pDq, "pDqLayer");
pDq = NULL;
}
void FreeRefList (SRefList*& pRefList, CMemoryAlign* pMa, const int iMaxNumRefFrame) {
if (NULL == pRefList) {
return;
}
int32_t iRef = 0;
do {
if (pRefList->pRef[iRef] != NULL) {
FreePicture (pMa, &pRefList->pRef[iRef]);
}
++ iRef;
} while (iRef < 1 + iMaxNumRefFrame);
pMa->WelsFree (pRefList, "pRefList");
pRefList = NULL;
}
static inline int32_t InitSliceList (sWelsEncCtx** ppCtx,
SDqLayer* pDqLayer,
SSlice* pSliceList,
const int32_t kiMaxSliceNum,
const int32_t kiDlayerIndex,
CMemoryAlign* pMa) {
const int32_t kiMBWidth = pDqLayer->iMbWidth;
const int32_t kiMBHeight = pDqLayer->iMbHeight;
SSliceArgument* pSliceArgument = & (*ppCtx)->pSvcParam->sSpatialLayers[kiDlayerIndex].sSliceArgument;
int32_t iMaxSliceBufferSize = (*ppCtx)->iSliceBufferSize[kiDlayerIndex];
int32_t iSliceIdx = 0;
int32_t iRet = 0;
//SM_SINGLE_SLICE mode using single-thread bs writer pOut->sBsWrite
//even though multi-thread is on for other layers
bool bIndependenceBsBuffer = ((*ppCtx)->pSvcParam->iMultipleThreadIdc > 1 &&
SM_SINGLE_SLICE != pSliceArgument->uiSliceMode) ? true : false;
if (iMaxSliceBufferSize <= 0 || kiMBWidth <= 0 || kiMBHeight <= 0) {
return ENC_RETURN_UNEXPECTED;
}
while (iSliceIdx < kiMaxSliceNum) {
SSlice* pSlice = pSliceList + iSliceIdx;
if (NULL == pSlice)
return ENC_RETURN_MEMALLOCERR;
pSlice->uiSliceIdx = iSliceIdx;
iRet = InitSliceBsBuffer (pSlice,
& (*ppCtx)->pOut->sBsWrite,
bIndependenceBsBuffer,
iMaxSliceBufferSize,
pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
iRet = InitSliceMBInfo (pSliceArgument, pSlice,
kiMBWidth, kiMBHeight,
pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
iRet = AllocateSliceMBBuffer (pSlice, pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
++ iSliceIdx;
}
return ENC_RETURN_SUCCESS;
}
static inline int32_t InitSliceThreadInfo (sWelsEncCtx** ppCtx,
SDqLayer* pDqLayer,
const int32_t kiDlayerIndex,
CMemoryAlign* pMa) {
SSliceThreadInfo* pSliceThreadInfo = &pDqLayer->sSliceThreadInfo;
int32_t iThreadNum = (*ppCtx)->pSvcParam->iMultipleThreadIdc;
int32_t iMaxSliceNumInThread = 0;
int32_t iIdx = 0;
int32_t iRet = 0;
assert (iThreadNum > 0);
iMaxSliceNumInThread = ((*ppCtx)->iMaxSliceCount / iThreadNum + 1) * 2;
iMaxSliceNumInThread = WELS_MIN ((*ppCtx)->iMaxSliceCount, (int) iMaxSliceNumInThread);
while (iIdx < iThreadNum) {
pSliceThreadInfo->iMaxSliceNumInThread[iIdx] = iMaxSliceNumInThread;
pSliceThreadInfo->iEncodedSliceNumInThread[iIdx] = 0;
pSliceThreadInfo->pSliceInThread[iIdx] = (SSlice*)pMa->WelsMallocz (sizeof (SSlice) *
iMaxSliceNumInThread, "pSliceInThread");
if (NULL == pSliceThreadInfo->pSliceInThread[iIdx])
return ENC_RETURN_MEMALLOCERR;
iRet = InitSliceList (ppCtx,
pDqLayer,
pSliceThreadInfo->pSliceInThread[iIdx],
iMaxSliceNumInThread,
kiDlayerIndex,
pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
iIdx++;
}
for (; iIdx < MAX_THREADS_NUM; iIdx++) {
pSliceThreadInfo->iMaxSliceNumInThread[iIdx] = iMaxSliceNumInThread;
pSliceThreadInfo->iEncodedSliceNumInThread[iIdx] = 0;
pSliceThreadInfo->pSliceInThread[iIdx] = NULL;
}
return ENC_RETURN_SUCCESS;
}
static inline int32_t InitSliceInLayer (sWelsEncCtx** ppCtx,
SDqLayer* pDqLayer,
const int32_t kiDlayerIndex,
CMemoryAlign* pMa) {
//SWelsSvcCodingParam* pParam = (*ppCtx)->pSvcParam;
int32_t iRet = 0;
int32_t iMaxSliceNum = pDqLayer->iMaxSliceNum;
//if (pParam->iMultipleThreadIdc > 1) {
// to do, will add later, slice buffer allocated based on thread mode if() else ()
InitSliceThreadInfo (ppCtx,
pDqLayer,
kiDlayerIndex,
pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
//} else {
pDqLayer->sLayerInfo.pSliceInLayer = (SSlice*)pMa->WelsMallocz (sizeof (SSlice) * iMaxSliceNum, "pSliceInLayer");
if (NULL == pDqLayer->sLayerInfo.pSliceInLayer)
return ENC_RETURN_MEMALLOCERR;
InitSliceList (ppCtx,
pDqLayer,
pDqLayer->sLayerInfo.pSliceInLayer,
iMaxSliceNum,
kiDlayerIndex,
pMa);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
//}
return ENC_RETURN_SUCCESS;
}
/*!
* \brief initialize ppDqLayerList and slicepEncCtx_list due to count number of layers available
* \pParam pCtx sWelsEncCtx*
* \return 0 - successful; otherwise failed
*/
static inline int32_t InitDqLayers (sWelsEncCtx** ppCtx, SExistingParasetList* pExistingParasetList) {
SWelsSvcCodingParam* pParam = NULL;
SWelsSPS* pSps = NULL;
SSubsetSps* pSubsetSps = NULL;
SWelsPPS* pPps = NULL;
CMemoryAlign* pMa = NULL;
int32_t iDlayerCount = 0;
int32_t iDlayerIndex = 0;
int32_t iSpsId = 0;
uint32_t iPpsId = 0;
uint32_t iNumRef = 0;
int32_t iResult = 0;
if (NULL == ppCtx || NULL == *ppCtx)
return 1;
pMa = (*ppCtx)->pMemAlign;
pParam = (*ppCtx)->pSvcParam;
iDlayerCount = pParam->iSpatialLayerNum;
iNumRef = pParam->iMaxNumRefFrame;
const int32_t kiFeatureStrategyIndex = FME_DEFAULT_FEATURE_INDEX;
const int32_t kiMe16x16 = ME_DIA_CROSS;
const int32_t kiMe8x8 = ME_DIA_CROSS_FME;
const int32_t kiNeedFeatureStorage = (pParam->iUsageType != SCREEN_CONTENT_REAL_TIME) ? 0 :
((kiFeatureStrategyIndex << 16) + ((kiMe16x16 & 0x00FF) << 8) + (kiMe8x8 & 0x00FF));
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SRefList* pRefList = NULL;
uint32_t i = 0;
const int32_t kiWidth = pParam->sSpatialLayers[iDlayerIndex].iVideoWidth;
const int32_t kiHeight = pParam->sSpatialLayers[iDlayerIndex].iVideoHeight;
int32_t iPicWidth = WELS_ALIGN (kiWidth, MB_WIDTH_LUMA) + (PADDING_LENGTH << 1); // with iWidth of horizon
int32_t iPicChromaWidth = iPicWidth >> 1;
iPicWidth = WELS_ALIGN (iPicWidth,
32); // 32(or 16 for chroma below) to match original imp. here instead of iCacheLineSize
iPicChromaWidth = WELS_ALIGN (iPicChromaWidth, 16);
WelsGetEncBlockStrideOffset ((*ppCtx)->pStrideTab->pStrideEncBlockOffset[iDlayerIndex], iPicWidth, iPicChromaWidth);
// pRef list
pRefList = (SRefList*)pMa->WelsMallocz (sizeof (SRefList), "pRefList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pRefList), FreeMemorySvc (ppCtx))
do {
pRefList->pRef[i] = AllocPicture (pMa, kiWidth, kiHeight, true,
(iDlayerIndex == iDlayerCount - 1) ? kiNeedFeatureStorage : 0); // to use actual size of current layer
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pRefList->pRef[i]), FreeRefList (pRefList, pMa, iNumRef))
++ i;
} while (i < 1 + iNumRef);
pRefList->pNextBuffer = pRefList->pRef[0];
(*ppCtx)->ppRefPicListExt[iDlayerIndex] = pRefList;
++ iDlayerIndex;
}
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SDqLayer* pDqLayer = NULL;
SSpatialLayerConfig* pDlayer = &pParam->sSpatialLayers[iDlayerIndex];
SSpatialLayerInternal* pParamInternal = &pParam->sDependencyLayers[iDlayerIndex];
const int32_t kiMbW = (pDlayer->iVideoWidth + 0x0f) >> 4;
const int32_t kiMbH = (pDlayer->iVideoHeight + 0x0f) >> 4;
pParamInternal->iCodingIndex = 0;
pParamInternal->iFrameIndex = 0;
pParamInternal->iFrameNum = 0;
pParamInternal->iPOC = 0;
pParamInternal->bEncCurFrmAsIdrFlag = true; // make sure first frame is IDR
// pDq layers list
pDqLayer = (SDqLayer*)pMa->WelsMallocz (sizeof (SDqLayer), "pDqLayer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pDqLayer), FreeDqLayer (pDqLayer, pMa))
// for dynamic slicing mode
if (SM_SIZELIMITED_SLICE == pDlayer->sSliceArgument.uiSliceMode) {
const int32_t iSize = pParam->iMultipleThreadIdc * sizeof (int32_t);
pDqLayer->pNumSliceCodedOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pNumSliceCodedOfPartition");
pDqLayer->pLastCodedMbIdxOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pLastCodedMbIdxOfPartition");
pDqLayer->pLastMbIdxOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pLastMbIdxOfPartition");
WELS_VERIFY_RETURN_PROC_IF (1,
(NULL == pDqLayer->pNumSliceCodedOfPartition ||
NULL == pDqLayer->pLastCodedMbIdxOfPartition ||
NULL == pDqLayer->pLastMbIdxOfPartition),
FreeDqLayer (pDqLayer, pMa))
}
pDqLayer->bNeedAdjustingSlicing = false;
pDqLayer->iMbWidth = kiMbW;
pDqLayer->iMbHeight = kiMbH;
int32_t iMaxSliceNum = 1;
const int32_t kiSliceNum = GetInitialSliceNum (kiMbW, kiMbH, &pDlayer->sSliceArgument);
if (iMaxSliceNum < kiSliceNum)
iMaxSliceNum = kiSliceNum;
pDqLayer->iMaxSliceNum = iMaxSliceNum;
iResult = InitSliceInLayer (ppCtx, pDqLayer, iDlayerIndex, pMa);
if (iResult) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "InitDqLayers(), InitSliceInLayer failed(%d)!", iResult);
FreeDqLayer (pDqLayer, pMa);
return iResult;
}
//deblocking parameters initialization
//target-layer deblocking
pDqLayer->iLoopFilterDisableIdc = pParam->iLoopFilterDisableIdc;
pDqLayer->iLoopFilterAlphaC0Offset = (pParam->iLoopFilterAlphaC0Offset) << 1;
pDqLayer->iLoopFilterBetaOffset = (pParam->iLoopFilterBetaOffset) << 1;
//parallel deblocking
pDqLayer->bDeblockingParallelFlag = pParam->bDeblockingParallelFlag;
//deblocking parameter adjustment
if (SM_SINGLE_SLICE == pDlayer->sSliceArgument.uiSliceMode) {
//iLoopFilterDisableIdc: will be 0 or 1 under single_slice
if (2 == pParam->iLoopFilterDisableIdc) {
pDqLayer->iLoopFilterDisableIdc = 0;
}
//bDeblockingParallelFlag
pDqLayer->bDeblockingParallelFlag = false;
} else {
//multi-pSlice
if (0 == pDqLayer->iLoopFilterDisableIdc) {
pDqLayer->bDeblockingParallelFlag = false;
}
}
//
if (kiNeedFeatureStorage && iDlayerIndex == iDlayerCount - 1) {
pDqLayer->pFeatureSearchPreparation = static_cast<SFeatureSearchPreparation*> (pMa->WelsMallocz (sizeof (
SFeatureSearchPreparation), "pFeatureSearchPreparation"));
WELS_VERIFY_RETURN_PROC_IF (1, NULL == pDqLayer->pFeatureSearchPreparation, FreeMemorySvc (ppCtx));
int32_t iReturn = RequestFeatureSearchPreparation (pMa, pDlayer->iVideoWidth, pDlayer->iVideoHeight,
kiNeedFeatureStorage,
pDqLayer->pFeatureSearchPreparation);
WELS_VERIFY_RETURN_PROC_IF (1, ENC_RETURN_SUCCESS != iReturn, FreeMemorySvc (ppCtx));
} else {
pDqLayer->pFeatureSearchPreparation = NULL;
}
(*ppCtx)->ppDqLayerList[iDlayerIndex] = pDqLayer;
++ iDlayerIndex;
}
// for dynamically malloc for parameter sets memory instead of maximal items for standard to reduce size, 3/18/2010
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pFuncList), FreeMemorySvc (ppCtx))
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pFuncList->pParametersetStrategy), FreeMemorySvc (ppCtx))
const int32_t kiNeededSpsNum = (*ppCtx)->pFuncList->pParametersetStrategy->GetNeededSpsNum();
const int32_t kiNeededSubsetSpsNum = (*ppCtx)->pFuncList->pParametersetStrategy->GetNeededSubsetSpsNum();
(*ppCtx)->pSpsArray = (SWelsSPS*)pMa->WelsMallocz (kiNeededSpsNum * sizeof (SWelsSPS), "pSpsArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSpsArray), FreeMemorySvc (ppCtx))
if (kiNeededSubsetSpsNum > 0) {
(*ppCtx)->pSubsetArray = (SSubsetSps*)pMa->WelsMallocz (kiNeededSubsetSpsNum * sizeof (SSubsetSps), "pSubsetArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSubsetArray), FreeMemorySvc (ppCtx))
} else {
(*ppCtx)->pSubsetArray = NULL;
}
// PPS
const int32_t kiNeededPpsNum = (*ppCtx)->pFuncList->pParametersetStrategy->GetNeededPpsNum();
(*ppCtx)->pPPSArray = (SWelsPPS*)pMa->WelsMallocz (kiNeededPpsNum * sizeof (SWelsPPS), "pPPSArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pPPSArray), FreeMemorySvc (ppCtx))
(*ppCtx)->pFuncList->pParametersetStrategy->LoadPrevious (pExistingParasetList, (*ppCtx)->pSpsArray,
(*ppCtx)->pSubsetArray, (*ppCtx)->pPPSArray);
(*ppCtx)->pDqIdcMap = (SDqIdc*)pMa->WelsMallocz (iDlayerCount * sizeof (SDqIdc), "pDqIdcMap");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pDqIdcMap), FreeMemorySvc (ppCtx))
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SDqIdc* pDqIdc = & (*ppCtx)->pDqIdcMap[iDlayerIndex];
const bool bUseSubsetSps = (!pParam->bSimulcastAVC) && (iDlayerIndex > BASE_DEPENDENCY_ID);
SSpatialLayerConfig* pDlayerParam = &pParam->sSpatialLayers[iDlayerIndex];
bool bSvcBaselayer = (!pParam->bSimulcastAVC) && (iDlayerCount > BASE_DEPENDENCY_ID)
&& (iDlayerIndex == BASE_DEPENDENCY_ID);
pDqIdc->uiSpatialId = iDlayerIndex;
iSpsId = (*ppCtx)->pFuncList->pParametersetStrategy->GenerateNewSps (*ppCtx, bUseSubsetSps, iDlayerIndex,
iDlayerCount, iSpsId, pSps, pSubsetSps, bSvcBaselayer);
WELS_VERIFY_RETURN_IF (ENC_RETURN_UNSUPPORTED_PARA, (0 > iSpsId))
if (!bUseSubsetSps) {
pSps = & ((*ppCtx)->pSpsArray[iSpsId]);
} else {
pSubsetSps = & ((*ppCtx)->pSubsetArray[iSpsId]);
}
iPpsId = (*ppCtx)->pFuncList->pParametersetStrategy->InitPps ((*ppCtx), iSpsId, pSps, pSubsetSps, iPpsId, true,
bUseSubsetSps, pParam->iEntropyCodingModeFlag != 0);
pPps = & ((*ppCtx)->pPPSArray[iPpsId]);
// Not using FMO in SVC coding so far, come back if need FMO
{
iResult = InitSlicePEncCtx ((*ppCtx)->ppDqLayerList[iDlayerIndex],
(*ppCtx)->pMemAlign,
false,
pSps->iMbWidth,
pSps->iMbHeight,
& (pDlayerParam->sSliceArgument),
pPps);
if (iResult) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "InitDqLayers(), InitSlicePEncCtx failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return iResult;
}
}
pDqIdc->iSpsId = iSpsId;
pDqIdc->iPpsId = iPpsId;
if ((pParam->bSimulcastAVC) || (bUseSubsetSps))
++ iSpsId;
++ iPpsId;
if (bUseSubsetSps) {
++ (*ppCtx)->iSubsetSpsNum;
} else {
++ (*ppCtx)->iSpsNum;
}
++ (*ppCtx)->iPpsNum;
++ iDlayerIndex;
}
(*ppCtx)->pFuncList->pParametersetStrategy->UpdateParaSetNum ((*ppCtx));
return ENC_RETURN_SUCCESS;
}
int32_t AllocStrideTables (sWelsEncCtx** ppCtx, const int32_t kiNumSpatialLayers) {
CMemoryAlign* pMa = (*ppCtx)->pMemAlign;
SWelsSvcCodingParam* pParam = (*ppCtx)->pSvcParam;
SStrideTables* pPtr = NULL;
int16_t* pTmpRow = NULL, *pRowX = NULL, *pRowY = NULL, *p = NULL;
uint8_t* pBase = NULL;
uint8_t* pBaseDec = NULL, *pBaseEnc = NULL, *pBaseMbX = NULL, *pBaseMbY = NULL;
struct {
int32_t iMbWidth;
int32_t iCountMbNum; // count number of SMB in each spatial
int32_t iSizeAllMbAlignCache; // cache line size aligned in each spatial
} sMbSizeMap[MAX_DEPENDENCY_LAYER] = {{ 0 }};
int32_t iLineSizeY[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iLineSizeUV[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iMapSpatialIdx[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iSizeDec = 0;
int32_t iSizeEnc = 0;
int32_t iCountLayersNeedCs[2] = {0};
const int32_t kiUnit1Size = 24 * sizeof (int32_t);
int32_t iUnit2Size = 0;
int32_t iNeedAllocSize = 0;
int32_t iRowSize = 0;
int16_t iMaxMbWidth = 0;
int16_t iMaxMbHeight = 0;
int32_t i = 0;
int32_t iSpatialIdx = 0;
int32_t iTemporalIdx = 0;
int32_t iCntTid = 0;
if (kiNumSpatialLayers <= 0 || kiNumSpatialLayers > MAX_DEPENDENCY_LAYER)
return 1;
pPtr = (SStrideTables*)pMa->WelsMallocz (sizeof (SStrideTables), "SStrideTables");
if (NULL == pPtr)
return 1;
(*ppCtx)->pStrideTab = pPtr;
iCntTid = pParam->iTemporalLayerNum > 1 ? 2 : 1;
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
const int32_t kiTmpWidth = (pParam->sSpatialLayers[iSpatialIdx].iVideoWidth + 15) >> 4;
const int32_t kiTmpHeight = (pParam->sSpatialLayers[iSpatialIdx].iVideoHeight + 15) >> 4;
int32_t iNumMb = kiTmpWidth * kiTmpHeight;
sMbSizeMap[iSpatialIdx].iMbWidth = kiTmpWidth;
sMbSizeMap[iSpatialIdx].iCountMbNum = iNumMb;
iNumMb *= sizeof (int16_t);
sMbSizeMap[iSpatialIdx].iSizeAllMbAlignCache = iNumMb;
iUnit2Size += iNumMb;
++ iSpatialIdx;
}
// Adaptive size_cs, size_fdec by implementation dependency
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
SSpatialLayerConfig* fDlp = &pParam->sSpatialLayers[iSpatialIdx];
const int32_t kiWidthPad = WELS_ALIGN (fDlp->iVideoWidth, 16) + (PADDING_LENGTH << 1);
iLineSizeY[iSpatialIdx][kbBaseTemporalFlag] = WELS_ALIGN (kiWidthPad, 32);
iLineSizeUV[iSpatialIdx][kbBaseTemporalFlag] = WELS_ALIGN ((kiWidthPad >> 1), 16);
iMapSpatialIdx[iCountLayersNeedCs[kbBaseTemporalFlag]][kbBaseTemporalFlag] = iSpatialIdx;
++ iCountLayersNeedCs[kbBaseTemporalFlag];
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iSizeDec = kiUnit1Size * (iCountLayersNeedCs[0] + iCountLayersNeedCs[1]);
iSizeEnc = kiUnit1Size * kiNumSpatialLayers;
iNeedAllocSize = iSizeDec + iSizeEnc + (iUnit2Size << 1);
pBase = (uint8_t*)pMa->WelsMallocz (iNeedAllocSize, "pBase");
if (NULL == pBase) {
return 1;
}
pBaseDec = pBase; // iCountLayersNeedCs
pBaseEnc = pBaseDec + iSizeDec; // iNumSpatialLayers
pBaseMbX = pBaseEnc + iSizeEnc; // iNumSpatialLayers
pBaseMbY = pBaseMbX + iUnit2Size; // iNumSpatialLayers
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < iCountLayersNeedCs[kbBaseTemporalFlag]) {
const int32_t kiActualSpatialIdx = iMapSpatialIdx[iSpatialIdx][kbBaseTemporalFlag];
const int32_t kiLumaWidth = iLineSizeY[kiActualSpatialIdx][kbBaseTemporalFlag];
const int32_t kiChromaWidth = iLineSizeUV[kiActualSpatialIdx][kbBaseTemporalFlag];
WelsGetEncBlockStrideOffset ((int32_t*)pBaseDec, kiLumaWidth, kiChromaWidth);
pPtr->pStrideDecBlockOffset[kiActualSpatialIdx][kbBaseTemporalFlag] = (int32_t*)pBaseDec;
pBaseDec += kiUnit1Size;
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
int32_t iMatchIndex = 0;
bool bInMap = false;
bool bMatchFlag = false;
i = 0;
while (i < iCountLayersNeedCs[kbBaseTemporalFlag]) {
const int32_t kiActualIdx = iMapSpatialIdx[i][kbBaseTemporalFlag];
if (kiActualIdx == iSpatialIdx) {
bInMap = true;
break;
}
if (!bMatchFlag) {
iMatchIndex = kiActualIdx;
bMatchFlag = true;
}
++ i;
}
if (bInMap) {
++ iSpatialIdx;
continue;
}
// not in spatial map and assign match one to it
pPtr->pStrideDecBlockOffset[iSpatialIdx][kbBaseTemporalFlag] =
pPtr->pStrideDecBlockOffset[iMatchIndex][kbBaseTemporalFlag];
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
const int32_t kiAllocMbSize = sMbSizeMap[iSpatialIdx].iSizeAllMbAlignCache;
pPtr->pStrideEncBlockOffset[iSpatialIdx] = (int32_t*)pBaseEnc;
pPtr->pMbIndexX[iSpatialIdx] = (int16_t*)pBaseMbX;
pPtr->pMbIndexY[iSpatialIdx] = (int16_t*)pBaseMbY;
pBaseEnc += kiUnit1Size;
pBaseMbX += kiAllocMbSize;
pBaseMbY += kiAllocMbSize;
++ iSpatialIdx;
}
while (iSpatialIdx < MAX_DEPENDENCY_LAYER) {
pPtr->pStrideDecBlockOffset[iSpatialIdx][0] = NULL;
pPtr->pStrideDecBlockOffset[iSpatialIdx][1] = NULL;
pPtr->pStrideEncBlockOffset[iSpatialIdx] = NULL;
pPtr->pMbIndexX[iSpatialIdx] = NULL;
pPtr->pMbIndexY[iSpatialIdx] = NULL;
++ iSpatialIdx;
}
// initialize pMbIndexX and pMbIndexY tables as below
iMaxMbWidth = sMbSizeMap[kiNumSpatialLayers - 1].iMbWidth;
iMaxMbWidth = WELS_ALIGN (iMaxMbWidth, 4); // 4 loops for int16_t required introduced as below
iRowSize = iMaxMbWidth * sizeof (int16_t);
pTmpRow = (int16_t*)pMa->WelsMallocz (iRowSize, "pTmpRow");
if (NULL == pTmpRow) {
return 1;
}
pRowX = pTmpRow;
pRowY = pRowX;
// initialize pRowX & pRowY
i = 0;
p = pRowX;
while (i < iMaxMbWidth) {
*p = i;
* (p + 1) = 1 + i;
* (p + 2) = 2 + i;
* (p + 3) = 3 + i;
p += 4;
i += 4;
}
iSpatialIdx = kiNumSpatialLayers;
while (--iSpatialIdx >= 0) {
int16_t* pMbIndexX = pPtr->pMbIndexX[iSpatialIdx];
const int32_t kiMbWidth = sMbSizeMap[iSpatialIdx].iMbWidth;
const int32_t kiMbHeight = sMbSizeMap[iSpatialIdx].iCountMbNum / kiMbWidth;
const int32_t kiLineSize = kiMbWidth * sizeof (int16_t);
i = 0;
while (i < kiMbHeight) {
memcpy (pMbIndexX, pRowX, kiLineSize); // confirmed_safe_unsafe_usage
pMbIndexX += kiMbWidth;
++ i;
}
}
memset (pRowY, 0, iRowSize);
iMaxMbHeight = sMbSizeMap[kiNumSpatialLayers - 1].iCountMbNum / sMbSizeMap[kiNumSpatialLayers - 1].iMbWidth;
i = 0;
for (;;) {
ENFORCE_STACK_ALIGN_1D (int16_t, t, 4, 16)
int32_t t32 = 0;
int16_t j = 0;
for (iSpatialIdx = kiNumSpatialLayers - 1; iSpatialIdx >= 0; -- iSpatialIdx) {
const int32_t kiMbWidth = sMbSizeMap[iSpatialIdx].iMbWidth;
const int32_t kiMbHeight = sMbSizeMap[iSpatialIdx].iCountMbNum / kiMbWidth;
const int32_t kiLineSize = kiMbWidth * sizeof (int16_t);
int16_t* pMbIndexY = pPtr->pMbIndexY[iSpatialIdx] + i * kiMbWidth;
if (i < kiMbHeight) {
memcpy (pMbIndexY, pRowY, kiLineSize); // confirmed_safe_unsafe_usage
}
}
++ i;
if (i >= iMaxMbHeight)
break;
t32 = i | (i << 16);
ST32 (t , t32);
ST32 (t + 2, t32);
p = pRowY;
while (j < iMaxMbWidth) {
ST64 (p, LD64 (t));
p += 4;
j += 4;
}
}
pMa->WelsFree (pTmpRow, "pTmpRow");
pTmpRow = NULL;
return 0;
}
int32_t RequestMemoryVaaScreen (SVAAFrameInfo* pVaa, CMemoryAlign* pMa, const int32_t iNumRef,
const int32_t iCountMax8x8BNum) {
SVAAFrameInfoExt* pVaaExt = static_cast<SVAAFrameInfoExt*> (pVaa);
pVaaExt->pVaaBlockStaticIdc[0] = (static_cast<uint8_t*> (pMa->WelsMallocz (iNumRef * iCountMax8x8BNum * sizeof (
uint8_t), "pVaa->pVaaBlockStaticIdc[0]")));
if (NULL == pVaaExt->pVaaBlockStaticIdc[0]) {
return 1;
}
for (int32_t idx = 1; idx < iNumRef; idx++) {
pVaaExt->pVaaBlockStaticIdc[idx] = pVaaExt->pVaaBlockStaticIdc[idx - 1] + iCountMax8x8BNum;
}
return 0;
}
void ReleaseMemoryVaaScreen (SVAAFrameInfo* pVaa, CMemoryAlign* pMa, const int32_t iNumRef) {
SVAAFrameInfoExt* pVaaExt = static_cast<SVAAFrameInfoExt*> (pVaa);
if (pVaaExt && pMa && pVaaExt->pVaaBlockStaticIdc[0]) {
pMa->WelsFree (pVaaExt->pVaaBlockStaticIdc[0], "pVaa->pVaaBlockStaticIdc[0]");
for (int32_t idx = 0; idx < iNumRef; idx++) {
pVaaExt->pVaaBlockStaticIdc[idx] = NULL;
}
}
}
/*!
* \brief request specific memory for SVC
* \pParam pEncCtx sWelsEncCtx*
* \return successful - 0; otherwise none 0 for failed
*/
void GetMvMvdRange (SWelsSvcCodingParam* pParam, int32_t& iMvRange, int32_t& iMvdRange) {
ELevelIdc iMinLevelIdc = LEVEL_5_2;
int32_t iMinMv = 0;
int32_t iMaxMv = 0;
int32_t iFixMvRange = pParam->iUsageType ? EXPANDED_MV_RANGE : CAMERA_STARTMV_RANGE;
int32_t iFixMvdRange = (pParam->iUsageType ? EXPANDED_MVD_RANGE : ((pParam->iSpatialLayerNum == 1) ? CAMERA_MVD_RANGE :
CAMERA_HIGHLAYER_MVD_RANGE));
for (int32_t iLayer = 0; iLayer < pParam->iSpatialLayerNum; iLayer++) {
if (pParam->sSpatialLayers[iLayer].uiLevelIdc < iMinLevelIdc)
iMinLevelIdc = pParam->sSpatialLayers[iLayer].uiLevelIdc;
}
iMinMv = (g_ksLevelLimits[iMinLevelIdc - 1].iMinVmv) >> 2;
iMaxMv = (g_ksLevelLimits[iMinLevelIdc - 1].iMaxVmv) >> 2;
iMvRange = WELS_MIN (WELS_ABS (iMinMv), iMaxMv);
iMvRange = WELS_MIN (iMvRange, iFixMvRange);
iMvdRange = (iMvRange + 1) << 1;
iMvdRange = WELS_MIN (iMvdRange, iFixMvdRange);
}
int32_t RequestMemorySvc (sWelsEncCtx** ppCtx, SExistingParasetList* pExistingParasetList) {
SWelsSvcCodingParam* pParam = (*ppCtx)->pSvcParam;
CMemoryAlign* pMa = (*ppCtx)->pMemAlign;
SSpatialLayerConfig* pFinalSpatial = NULL;
int32_t iCountBsLen = 0;
int32_t iCountNals = 0;
int32_t iMaxPicWidth = 0;
int32_t iMaxPicHeight = 0;
int32_t iCountMaxMbNum = 0;
int32_t iIndex = 0;
int32_t iCountLayers = 0;
int32_t iResult = 0;
float fCompressRatioThr = .5f;
const int32_t kiNumDependencyLayers = pParam->iSpatialLayerNum;
int32_t iVclLayersBsSizeCount = 0;
int32_t iNonVclLayersBsSizeCount = 0;
int32_t iTargetSpatialBsSize = 0;
if (kiNumDependencyLayers < 1 || kiNumDependencyLayers > MAX_DEPENDENCY_LAYER) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc() failed due to invalid iNumDependencyLayers(%d)!",
kiNumDependencyLayers);
FreeMemorySvc (ppCtx);
return 1;
}
if (pParam->uiGopSize == 0 || (pParam->uiIntraPeriod && ((pParam->uiIntraPeriod % pParam->uiGopSize) != 0))) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING,
"RequestMemorySvc() failed due to invalid uiIntraPeriod(%d) (=multipler of uiGopSize(%d)!",
pParam->uiIntraPeriod, pParam->uiGopSize);
FreeMemorySvc (ppCtx);
return 1;
}
pFinalSpatial = &pParam->sSpatialLayers[kiNumDependencyLayers - 1];
iMaxPicWidth = pFinalSpatial->iVideoWidth;
iMaxPicHeight = pFinalSpatial->iVideoHeight;
iCountMaxMbNum = ((15 + iMaxPicWidth) >> 4) * ((15 + iMaxPicHeight) >> 4);
iResult = AcquireLayersNals (ppCtx, pParam, &iCountLayers, &iCountNals);
if (iResult) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), AcquireLayersNals failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return 1;
}
const int32_t kiSpsSize = (*ppCtx)->pFuncList->pParametersetStrategy->GetNeededSpsNum() * SPS_BUFFER_SIZE;
const int32_t kiPpsSize = (*ppCtx)->pFuncList->pParametersetStrategy->GetNeededPpsNum() * PPS_BUFFER_SIZE;
iNonVclLayersBsSizeCount = SSEI_BUFFER_SIZE + kiSpsSize + kiPpsSize;
bool bDynamicSlice = false;
uint32_t uiMaxSliceNumEstimation = 0;
int32_t iSliceBufferSize = 0;
int32_t iMaxSliceBufferSize = 0;
int32_t iTotalLength = 0;
int32_t iLayerBsSize = 0;
iIndex = 0;
while (iIndex < pParam->iSpatialLayerNum) {
SSpatialLayerConfig* fDlp = &pParam->sSpatialLayers[iIndex];
fCompressRatioThr = COMPRESS_RATIO_THR;
iLayerBsSize = WELS_ROUND (((3 * fDlp->iVideoWidth * fDlp->iVideoHeight) >> 1) * fCompressRatioThr) +
MAX_MACROBLOCK_SIZE_IN_BYTE_x2;
iLayerBsSize = WELS_ALIGN (iLayerBsSize, 4); // 4 bytes alinged
iVclLayersBsSizeCount += iLayerBsSize;
SSliceArgument* pSliceArgument = & (fDlp->sSliceArgument);
if (pSliceArgument->uiSliceMode == SM_SIZELIMITED_SLICE) {
bDynamicSlice = true;
uiMaxSliceNumEstimation = WELS_MIN (AVERSLICENUM_CONSTRAINT,
(iLayerBsSize / pSliceArgument->uiSliceSizeConstraint) + 1);
(*ppCtx)->iMaxSliceCount = WELS_MAX ((*ppCtx)->iMaxSliceCount, (int) uiMaxSliceNumEstimation);
iSliceBufferSize = (WELS_MAX (pSliceArgument->uiSliceSizeConstraint,
iLayerBsSize / uiMaxSliceNumEstimation) << 1) + MAX_MACROBLOCK_SIZE_IN_BYTE_x2;
} else {
(*ppCtx)->iMaxSliceCount = WELS_MAX ((*ppCtx)->iMaxSliceCount, (int) pSliceArgument->uiSliceNum);
iSliceBufferSize = ((iLayerBsSize / pSliceArgument->uiSliceNum) << 1) + MAX_MACROBLOCK_SIZE_IN_BYTE_x2;
}
iMaxSliceBufferSize = WELS_MAX (iMaxSliceBufferSize, iSliceBufferSize);
(*ppCtx)->iSliceBufferSize[iIndex] = iSliceBufferSize;
++ iIndex;
}
iTargetSpatialBsSize = iLayerBsSize;
iCountBsLen = iNonVclLayersBsSizeCount + iVclLayersBsSizeCount;
iMaxSliceBufferSize = WELS_MIN (iMaxSliceBufferSize, iTargetSpatialBsSize);
iTotalLength = iCountBsLen;
pParam->iNumRefFrame = WELS_CLIP3 (pParam->iNumRefFrame, MIN_REF_PIC_COUNT,
(pParam->iUsageType == CAMERA_VIDEO_REAL_TIME ? MAX_REFERENCE_PICTURE_COUNT_NUM_CAMERA :
MAX_REFERENCE_PICTURE_COUNT_NUM_SCREEN));
// Output
(*ppCtx)->pOut = (SWelsEncoderOutput*)pMa->WelsMallocz (sizeof (SWelsEncoderOutput), "SWelsEncoderOutput");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->pBsBuffer = (uint8_t*)pMa->WelsMallocz (iCountBsLen, "pOut->pBsBuffer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut->pBsBuffer), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->uiSize = iCountBsLen;
(*ppCtx)->pOut->sNalList = (SWelsNalRaw*)pMa->WelsMallocz (iCountNals * sizeof (SWelsNalRaw), "pOut->sNalList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut->sNalList), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->pNalLen = (int32_t*)pMa->WelsMallocz (iCountNals * sizeof (int32_t), "pOut->pNalLen");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut->pNalLen), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->iCountNals = iCountNals;
(*ppCtx)->pOut->iNalIndex = 0;
(*ppCtx)->pOut->iLayerBsIndex = 0;
(*ppCtx)->pFrameBs = (uint8_t*)pMa->WelsMalloc (iTotalLength, "pFrameBs");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pFrameBs), FreeMemorySvc (ppCtx))
(*ppCtx)->iFrameBsSize = iTotalLength;
(*ppCtx)->iPosBsBuffer = 0;
// for pSlice bs buffers
if (pParam->iMultipleThreadIdc > 1
&& RequestMtResource (ppCtx, pParam, iCountBsLen, iMaxSliceBufferSize, bDynamicSlice)) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), RequestMtResource failed!");
FreeMemorySvc (ppCtx);
return 1;
}
(*ppCtx)->pReferenceStrategy = IWelsReferenceStrategy::CreateReferenceStrategy ((*ppCtx), pParam->iUsageType,
pParam->bEnableLongTermReference);
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pReferenceStrategy), FreeMemorySvc (ppCtx))
(*ppCtx)->pIntra4x4PredModeBlocks = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * INTRA_4x4_MODE_NUM, "pIntra4x4PredModeBlocks"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pIntra4x4PredModeBlocks), FreeMemorySvc (ppCtx))
(*ppCtx)->pNonZeroCountBlocks = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * MB_LUMA_CHROMA_BLOCK4x4_NUM, "pNonZeroCountBlocks"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pNonZeroCountBlocks), FreeMemorySvc (ppCtx))
(*ppCtx)->pMvUnitBlock4x4 = static_cast<SMVUnitXY*>
(pMa->WelsMallocz (iCountMaxMbNum * 2 * MB_BLOCK4x4_NUM * sizeof (SMVUnitXY), "pMvUnitBlock4x4"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pMvUnitBlock4x4), FreeMemorySvc (ppCtx))
(*ppCtx)->pRefIndexBlock4x4 = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * 2 * MB_BLOCK8x8_NUM * sizeof (int8_t), "pRefIndexBlock4x4"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pRefIndexBlock4x4), FreeMemorySvc (ppCtx))
(*ppCtx)->pSadCostMb = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pSadCostMb"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSadCostMb), FreeMemorySvc (ppCtx))
(*ppCtx)->iGlobalQp = 26; // global qp in default
(*ppCtx)->pLtr = (SLTRState*)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SLTRState), "SLTRState");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pLtr), FreeMemorySvc (ppCtx))
int32_t i = 0;
for (i = 0; i < kiNumDependencyLayers; i++) {
ResetLtrState (& (*ppCtx)->pLtr[i]);
}
// stride tables
if (AllocStrideTables (ppCtx, kiNumDependencyLayers)) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), AllocStrideTables failed!");
FreeMemorySvc (ppCtx);
return 1;
}
//Rate control module memory allocation
// only malloc once for RC pData, 12/14/2009
(*ppCtx)->pWelsSvcRc = (SWelsSvcRc*)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SWelsSvcRc), "pWelsSvcRc");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pWelsSvcRc), FreeMemorySvc (ppCtx))
//End of Rate control module memory allocation
//pVaa memory allocation
if (pParam->iUsageType == SCREEN_CONTENT_REAL_TIME) {
(*ppCtx)->pVaa = (SVAAFrameInfoExt*)pMa->WelsMallocz (sizeof (SVAAFrameInfoExt), "pVaa");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa), FreeMemorySvc (ppCtx))
if (RequestMemoryVaaScreen ((*ppCtx)->pVaa, pMa, (*ppCtx)->pSvcParam->iMaxNumRefFrame, iCountMaxMbNum << 2)) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), RequestMemoryVaaScreen failed!");
FreeMemorySvc (ppCtx);
return 1;
}
} else {
(*ppCtx)->pVaa = (SVAAFrameInfo*)pMa->WelsMallocz (sizeof (SVAAFrameInfo), "pVaa");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa), FreeMemorySvc (ppCtx))
}
if ((*ppCtx)->pSvcParam->bEnableAdaptiveQuant) { //malloc mem
(*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureUnit = static_cast<SMotionTextureUnit*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (SMotionTextureUnit), "pVaa->sAdaptiveQuantParam.pMotionTextureUnit"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureUnit), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int8_t), "pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp),
FreeMemorySvc (ppCtx))
}
(*ppCtx)->pVaa->pVaaBackgroundMbFlag = (int8_t*)pMa->WelsMallocz (iCountMaxMbNum * sizeof (int8_t),
"pVaa->pVaaBackgroundMbFlag");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->pVaaBackgroundMbFlag), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSad8x8 = static_cast<int32_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (int32_t), "pVaa->sVaaCalcInfo.sad8x8"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSad8x8), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSsd16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSsd16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSsd16x16), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSum16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSum16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSum16x16), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSumOfSquare16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSumOfSquare16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSumOfSquare16x16), FreeMemorySvc (ppCtx))
if ((*ppCtx)->pSvcParam->bEnableBackgroundDetection) { //BGD control
(*ppCtx)->pVaa->sVaaCalcInfo.pSumOfDiff8x8 = static_cast<int32_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSumOfDiff8x8"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSumOfDiff8x8), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pMad8x8 = static_cast<uint8_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (uint8_t), "pVaa->sVaaCalcInfo.pMad8x8"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pMad8x8), FreeMemorySvc (ppCtx))
}
//End of pVaa memory allocation
(*ppCtx)->ppRefPicListExt = (SRefList**)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SRefList*),
"ppRefPicListExt");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->ppRefPicListExt), FreeMemorySvc (ppCtx))
(*ppCtx)->ppDqLayerList = (SDqLayer**)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SDqLayer*), "ppDqLayerList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->ppDqLayerList), FreeMemorySvc (ppCtx))
iResult = InitDqLayers (ppCtx, pExistingParasetList);
if (iResult) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), InitDqLayers failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return iResult;
}
if (InitMbListD (ppCtx)) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_WARNING, "RequestMemorySvc(), InitMbListD failed!");
FreeMemorySvc (ppCtx);
return 1;
}
int32_t iMvdRange = 0;
GetMvMvdRange (pParam, (*ppCtx)->iMvRange, iMvdRange);
const uint32_t kuiMvdInterTableSize = (iMvdRange << 2); //intepel*4=qpel
const uint32_t kuiMvdInterTableStride = 1 + (kuiMvdInterTableSize << 1);//qpel_mv_range*2=(+/-);
const uint32_t kuiMvdCacheAlignedSize = kuiMvdInterTableStride * sizeof (uint16_t);
(*ppCtx)->iMvdCostTableSize = kuiMvdInterTableSize;
(*ppCtx)->iMvdCostTableStride = kuiMvdInterTableStride;
(*ppCtx)->pMvdCostTable = (uint16_t*)pMa->WelsMallocz (52 * kuiMvdCacheAlignedSize, "pMvdCostTable");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pMvdCostTable), FreeMemorySvc (ppCtx))
MvdCostInit ((*ppCtx)->pMvdCostTable, kuiMvdInterTableStride); //should put to a better place?
if ((*ppCtx)->ppRefPicListExt[0] != NULL && (*ppCtx)->ppRefPicListExt[0]->pRef[0] != NULL)
(*ppCtx)->pDecPic = (*ppCtx)->ppRefPicListExt[0]->pRef[0];
else
(*ppCtx)->pDecPic = NULL; // error here
(*ppCtx)->pSps = & (*ppCtx)->pSpsArray[0];
(*ppCtx)->pPps = & (*ppCtx)->pPPSArray[0];
return 0;
}
/*!
* \brief free memory in SVC core encoder
* \pParam pEncCtx sWelsEncCtx*
* \return none
*/
void FreeMemorySvc (sWelsEncCtx** ppCtx) {
if (NULL != *ppCtx) {
sWelsEncCtx* pCtx = *ppCtx;
CMemoryAlign* pMa = pCtx->pMemAlign;
SWelsSvcCodingParam* pParam = pCtx->pSvcParam;
int32_t ilayer = 0;
// SStrideTables
if (NULL != pCtx->pStrideTab) {
if (NULL != pCtx->pStrideTab->pStrideDecBlockOffset[0][1]) {
pMa->WelsFree (pCtx->pStrideTab->pStrideDecBlockOffset[0][1], "pBase");
pCtx->pStrideTab->pStrideDecBlockOffset[0][1] = NULL;
}
pMa->WelsFree (pCtx->pStrideTab, "SStrideTables");
pCtx->pStrideTab = NULL;
}
// pDq idc map
if (NULL != pCtx->pDqIdcMap) {
pMa->WelsFree (pCtx->pDqIdcMap, "pDqIdcMap");
pCtx->pDqIdcMap = NULL;
}
if (NULL != pCtx->pOut) {
// bs pBuffer
if (NULL != pCtx->pOut->pBsBuffer) {
pMa->WelsFree (pCtx->pOut->pBsBuffer, "pOut->pBsBuffer");
pCtx->pOut->pBsBuffer = NULL;
}
// NALs list
if (NULL != pCtx->pOut->sNalList) {
pMa->WelsFree (pCtx->pOut->sNalList, "pOut->sNalList");
pCtx->pOut->sNalList = NULL;
}
// NALs len
if (NULL != pCtx->pOut->pNalLen) {
pMa->WelsFree (pCtx->pOut->pNalLen, "pOut->pNalLen");
pCtx->pOut->pNalLen = NULL;
}
pMa->WelsFree (pCtx->pOut, "SWelsEncoderOutput");
pCtx->pOut = NULL;
}
if (pParam != NULL && pParam->iMultipleThreadIdc > 1)
ReleaseMtResource (ppCtx);
if (NULL != pCtx->pReferenceStrategy) {
WELS_DELETE_OP (pCtx->pReferenceStrategy);
}
// frame bitstream pBuffer
if (NULL != pCtx->pFrameBs) {
pMa->WelsFree (pCtx->pFrameBs, "pFrameBs");
pCtx->pFrameBs = NULL;
}
// pSpsArray
if (NULL != pCtx->pSpsArray) {
pMa->WelsFree (pCtx->pSpsArray, "pSpsArray");
pCtx->pSpsArray = NULL;
}
// pPPSArray
if (NULL != pCtx->pPPSArray) {
pMa->WelsFree (pCtx->pPPSArray, "pPPSArray");
pCtx->pPPSArray = NULL;
}
// subset_sps_array
if (NULL != pCtx->pSubsetArray) {
pMa->WelsFree (pCtx->pSubsetArray, "pSubsetArray");
pCtx->pSubsetArray = NULL;
}
if (NULL != pCtx->pIntra4x4PredModeBlocks) {
pMa->WelsFree (pCtx->pIntra4x4PredModeBlocks, "pIntra4x4PredModeBlocks");
pCtx->pIntra4x4PredModeBlocks = NULL;
}
if (NULL != pCtx->pNonZeroCountBlocks) {
pMa->WelsFree (pCtx->pNonZeroCountBlocks, "pNonZeroCountBlocks");
pCtx->pNonZeroCountBlocks = NULL;
}
if (NULL != pCtx->pMvUnitBlock4x4) {
pMa->WelsFree (pCtx->pMvUnitBlock4x4, "pMvUnitBlock4x4");
pCtx->pMvUnitBlock4x4 = NULL;
}
if (NULL != pCtx->pRefIndexBlock4x4) {
pMa->WelsFree (pCtx->pRefIndexBlock4x4, "pRefIndexBlock4x4");
pCtx->pRefIndexBlock4x4 = NULL;
}
if (NULL != pCtx->ppMbListD) {
if (NULL != pCtx->ppMbListD[0]) {
pMa->WelsFree (pCtx->ppMbListD[0], "ppMbListD[0]");
(*ppCtx)->ppMbListD[0] = NULL;
}
pMa->WelsFree (pCtx->ppMbListD, "ppMbListD");
pCtx->ppMbListD = NULL;
}
if (NULL != pCtx->pSadCostMb) {
pMa->WelsFree (pCtx->pSadCostMb, "pSadCostMb");
pCtx->pSadCostMb = NULL;
}
// SLTRState
if (NULL != pCtx->pLtr) {
pMa->WelsFree (pCtx->pLtr, "SLTRState");
pCtx->pLtr = NULL;
}
// pDq layers list
ilayer = 0;
if (NULL != pCtx->ppDqLayerList && pParam != NULL) {
while (ilayer < pParam->iSpatialLayerNum) {
SDqLayer* pDq = pCtx->ppDqLayerList[ilayer];
// pDq layers
if (NULL != pDq) {
FreeDqLayer (pDq, pMa);
pCtx->ppDqLayerList[ilayer] = NULL;
}
++ ilayer;
}
pMa->WelsFree (pCtx->ppDqLayerList, "ppDqLayerList");
pCtx->ppDqLayerList = NULL;
}
// reference picture list extension
if (NULL != pCtx->ppRefPicListExt && pParam != NULL) {
ilayer = 0;
while (ilayer < pParam->iSpatialLayerNum) {
FreeRefList (pCtx->ppRefPicListExt[ilayer], pMa, pParam->iMaxNumRefFrame);
pCtx->ppRefPicListExt[ilayer] = NULL;
++ ilayer;
}
pMa->WelsFree (pCtx->ppRefPicListExt, "ppRefPicListExt");
pCtx->ppRefPicListExt = NULL;
}
// VAA
if (NULL != pCtx->pVaa) {
if (pCtx->pSvcParam->bEnableAdaptiveQuant) { //free mem
pMa->WelsFree (pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureUnit, "pVaa->sAdaptiveQuantParam.pMotionTextureUnit");
pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureUnit = NULL;
pMa->WelsFree (pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp,
"pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp");
pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp = NULL;
}
pMa->WelsFree (pCtx->pVaa->pVaaBackgroundMbFlag, "pVaa->pVaaBackgroundMbFlag");
pCtx->pVaa->pVaaBackgroundMbFlag = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSad8x8, "pVaa->sVaaCalcInfo.sad8x8");
pCtx->pVaa->sVaaCalcInfo.pSad8x8 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSsd16x16, "pVaa->sVaaCalcInfo.pSsd16x16");
pCtx->pVaa->sVaaCalcInfo.pSsd16x16 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSum16x16, "pVaa->sVaaCalcInfo.pSum16x16");
pCtx->pVaa->sVaaCalcInfo.pSum16x16 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSumOfSquare16x16, "pVaa->sVaaCalcInfo.pSumOfSquare16x16");
pCtx->pVaa->sVaaCalcInfo.pSumOfSquare16x16 = NULL;
if (pCtx->pSvcParam->bEnableBackgroundDetection) { //BGD control
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSumOfDiff8x8, "pVaa->sVaaCalcInfo.pSumOfDiff8x8");
pCtx->pVaa->sVaaCalcInfo.pSumOfDiff8x8 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pMad8x8, "pVaa->sVaaCalcInfo.pMad8x8");
pCtx->pVaa->sVaaCalcInfo.pMad8x8 = NULL;
}
if (pCtx->pSvcParam->iUsageType == SCREEN_CONTENT_REAL_TIME)
ReleaseMemoryVaaScreen (pCtx->pVaa, pMa, pCtx->pSvcParam->iMaxNumRefFrame);
pMa->WelsFree (pCtx->pVaa, "pVaa");
pCtx->pVaa = NULL;
}
// rate control module memory free
if (NULL != pCtx->pWelsSvcRc) {
WelsRcFreeMemory (pCtx);
pMa->WelsFree (pCtx->pWelsSvcRc, "pWelsSvcRc");
pCtx->pWelsSvcRc = NULL;
}
/* MVD cost tables for Inter */
if (NULL != pCtx->pMvdCostTable) {
pMa->WelsFree (pCtx->pMvdCostTable, "pMvdCostTable");
pCtx->pMvdCostTable = NULL;
}
FreeCodingParam (&pCtx->pSvcParam, pMa);
if (NULL != pCtx->pFuncList) {
if (NULL != pCtx->pFuncList->pParametersetStrategy) {
WELS_DELETE_OP (pCtx->pFuncList->pParametersetStrategy);
}
pMa->WelsFree (pCtx->pFuncList, "SWelsFuncPtrList");
pCtx->pFuncList = NULL;
}
#if defined(MEMORY_MONITOR)
assert (pMa->WelsGetMemoryUsage() == 0); // ensure all memory free well
#endif//MEMORY_MONITOR
if ((*ppCtx)->pMemAlign != NULL) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_INFO, "FreeMemorySvc(), verify memory usage (%d bytes) after free..",
(*ppCtx)->pMemAlign->WelsGetMemoryUsage());
WELS_DELETE_OP ((*ppCtx)->pMemAlign);
}
free (*ppCtx);
*ppCtx = NULL;
}
}
int32_t InitSliceSettings (SLogContext* pLogCtx, SWelsSvcCodingParam* pCodingParam,
const int32_t kiCpuCores, int16_t* pMaxSliceCount) {
int32_t iSpatialIdx = 0, iSpatialNum = pCodingParam->iSpatialLayerNum;
uint16_t iMaxSliceCount = 0;
do {
SSpatialLayerConfig* pDlp = &pCodingParam->sSpatialLayers[iSpatialIdx];
SSliceArgument* pSliceArgument = &pDlp->sSliceArgument;
int32_t iReturn = 0;
switch (pSliceArgument->uiSliceMode) {
case SM_SIZELIMITED_SLICE:
iMaxSliceCount = AVERSLICENUM_CONSTRAINT;
break; // go through for SM_SIZELIMITED_SLICE?
case SM_FIXEDSLCNUM_SLICE: {
iReturn = SliceArgumentValidationFixedSliceMode (pLogCtx, &pDlp->sSliceArgument, pCodingParam->iRCMode,
pDlp->iVideoWidth, pDlp->iVideoHeight);
if (iReturn)
return ENC_RETURN_UNSUPPORTED_PARA;
if (pSliceArgument->uiSliceNum > iMaxSliceCount) {
iMaxSliceCount = pSliceArgument->uiSliceNum;
}
}
break;
case SM_SINGLE_SLICE:
if (pSliceArgument->uiSliceNum > iMaxSliceCount)
iMaxSliceCount = pSliceArgument->uiSliceNum;
break;
case SM_RASTER_SLICE:
if (pSliceArgument->uiSliceNum > iMaxSliceCount)
iMaxSliceCount = pSliceArgument->uiSliceNum;
break;
default:
break;
}
++ iSpatialIdx;
} while (iSpatialIdx < iSpatialNum);
pCodingParam->iMultipleThreadIdc = WELS_MIN (kiCpuCores, iMaxSliceCount);
if (pCodingParam->iLoopFilterDisableIdc == 0
&& pCodingParam->iMultipleThreadIdc != 1) // Loop filter requested to be enabled, with threading enabled
pCodingParam->iLoopFilterDisableIdc =
2; // Disable loop filter on slice boundaries since that's not allowed with multithreading
*pMaxSliceCount = iMaxSliceCount;
return ENC_RETURN_SUCCESS;
}
/*!
* \brief log output for cpu features/capabilities
*/
void OutputCpuFeaturesLog (SLogContext* pLogCtx, uint32_t uiCpuFeatureFlags, uint32_t uiCpuCores,
int32_t iCacheLineSize) {
// welstracer output
WelsLog (pLogCtx, WELS_LOG_INFO, "WELS CPU features/capacities (0x%x) detected: \t"
"HTT: %c, "
"MMX: %c, "
"MMXEX: %c, "
"SSE: %c, "
"SSE2: %c, "
"SSE3: %c, "
"SSSE3: %c, "
"SSE4.1: %c, "
"SSE4.2: %c, "
"AVX: %c, "
"FMA: %c, "
"X87-FPU: %c, "
"3DNOW: %c, "
"3DNOWEX: %c, "
"ALTIVEC: %c, "
"CMOV: %c, "
"MOVBE: %c, "
"AES: %c, "
"NUMBER OF LOGIC PROCESSORS ON CHIP: %d, "
"CPU CACHE LINE SIZE (BYTES): %d",
uiCpuFeatureFlags,
(uiCpuFeatureFlags & WELS_CPU_HTT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MMX) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MMXEXT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE2) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE3) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSSE3) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE41) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE42) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_AVX) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_FMA) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_FPU) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_3DNOW) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_3DNOWEXT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_ALTIVEC) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_CMOV) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MOVBE) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_AES) ? 'Y' : 'N',
uiCpuCores,
iCacheLineSize);
}
/*
*
* status information output
*/
#if defined(STAT_OUTPUT)
void StatOverallEncodingExt (sWelsEncCtx* pCtx) {
int8_t i = 0;
int8_t j = 0;
for (i = 0; i < pCtx->pSvcParam->iSpatialLayerNum; i++) {
fprintf (stdout, "\nDependency layer : %d\n", i);
fprintf (stdout, "Quality layer : %d\n", j);
{
const int32_t iCount = pCtx->sStatData[i][j].sSliceData.iSliceCount[I_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceCount[P_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceCount[B_SLICE];
#if defined(MB_TYPES_CHECK)
if (iCount > 0) {
int32_t iCountNumIMb = pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra16x16] + pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][7];
int32_t iCountNumPMb = pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][7] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][PSkip];
int32_t count_p_mbL0 = pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10];
int32_t iMbCount = iCountNumIMb + iCountNumPMb;
if (iMbCount > 0) {
fprintf (stderr,
"SVC: overall Slices MBs: %d Avg\nI4x4: %.3f%% I16x16: %.3f%% IBL: %.3f%%\nP16x16: %.3f%% P16x8: %.3f%% P8x16: %.3f%% P8x8: %.3f%% SUBP8x8: %.3f%% PSKIP: %.3f%%\nILP(All): %.3f%% ILP(PL0): %.3f%% BLSKIP(PL0): %.3f%% RP(PL0): %.3f%%\n",
iMbCount,
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra4x4]) / iMbCount),
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra16x16]) / iMbCount),
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][7] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][7]) / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][PSkip] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][11] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][11] / count_p_mbL0),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][8] / count_p_mbL0),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][9] / count_p_mbL0)
);
}
}
#endif //#if defined(MB_TYPES_CHECK)
if (iCount > 0) {
fprintf (stdout, "SVC: overall PSNR Y: %2.3f U: %2.3f V: %2.3f kb/s: %.1f fps: %.3f\n\n",
(pCtx->sStatData[i][j].sQualityStat.rYPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rYPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rYPsnr[B_SLICE]) / (float) (iCount),
(pCtx->sStatData[i][j].sQualityStat.rUPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rUPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rUPsnr[B_SLICE]) / (float) (iCount),
(pCtx->sStatData[i][j].sQualityStat.rVPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rVPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rVPsnr[B_SLICE]) / (float) (iCount),
1.0f * pCtx->pSvcParam->sDependencyLayers[i].fOutputFrameRate * (pCtx->sStatData[i][j].sSliceData.iSliceSize[I_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceSize[P_SLICE] + pCtx->sStatData[i][j].sSliceData.iSliceSize[B_SLICE]) / (float) (
iCount + pCtx->pWelsSvcRc[i].iSkipFrameNum) / 1000,
1.0f * pCtx->pSvcParam->sDependencyLayers[i].fOutputFrameRate);
}
}
}
}
#endif
int32_t GetMultipleThreadIdc (SLogContext* pLogCtx, SWelsSvcCodingParam* pCodingParam, int16_t& iSliceNum,
int32_t& iCacheLineSize, uint32_t& uiCpuFeatureFlags) {
// for cpu features detection, Only detect once??
int32_t uiCpuCores =
0; // number of logic processors on physical processor package, zero logic processors means HTT not supported
uiCpuFeatureFlags = WelsCPUFeatureDetect (&uiCpuCores); // detect cpu capacity features
#ifdef X86_ASM
if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_128)
iCacheLineSize = 128;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_64)
iCacheLineSize = 64;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_32)
iCacheLineSize = 32;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_16)
iCacheLineSize = 16;
OutputCpuFeaturesLog (pLogCtx, uiCpuFeatureFlags, uiCpuCores, iCacheLineSize);
#else
iCacheLineSize = 16; // 16 bytes aligned in default
#endif//X86_ASM
if (0 == pCodingParam->iMultipleThreadIdc && uiCpuCores == 0) {
// cpuid not supported or doesn't expose the number of cores,
// use high level system API as followed to detect number of pysical/logic processor
uiCpuCores = DynamicDetectCpuCores();
}
if (0 == pCodingParam->iMultipleThreadIdc)
pCodingParam->iMultipleThreadIdc = (uiCpuCores > 0) ? uiCpuCores : 1;
// So far so many cpu cores up to MAX_THREADS_NUM mean for server platforms,
// for client application here it is constrained by maximal to MAX_THREADS_NUM
pCodingParam->iMultipleThreadIdc = WELS_CLIP3 (pCodingParam->iMultipleThreadIdc, 1, MAX_THREADS_NUM);
uiCpuCores = pCodingParam->iMultipleThreadIdc;
if (InitSliceSettings (pLogCtx, pCodingParam, uiCpuCores, &iSliceNum)) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "GetMultipleThreadIdc(), InitSliceSettings failed.");
return 1;
}
return 0;
}
/*!
* \brief uninitialize Wels encoder core library
* \pParam pEncCtx sWelsEncCtx*
* \return none
*/
void WelsUninitEncoderExt (sWelsEncCtx** ppCtx) {
if (NULL == ppCtx || NULL == *ppCtx)
return;
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_INFO,
"WelsUninitEncoderExt(), pCtx= %p, iMultipleThreadIdc= %d.",
(void*) (*ppCtx), (*ppCtx)->pSvcParam->iMultipleThreadIdc);
#if defined(STAT_OUTPUT)
StatOverallEncodingExt (*ppCtx);
#endif
if ((*ppCtx)->pSvcParam->iMultipleThreadIdc > 1 && (*ppCtx)->pSliceThreading != NULL) {
const int32_t iThreadCount = (*ppCtx)->pSvcParam->iMultipleThreadIdc;
int32_t iThreadIdx = 0;
while (iThreadIdx < iThreadCount) {
int res = 0;
if ((*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx]) {
WelsEventSignal (& (*ppCtx)->pSliceThreading->pExitEncodeEvent[iThreadIdx]);
WelsEventSignal (& (*ppCtx)->pSliceThreading->pThreadMasterEvent[iThreadIdx]);
res = WelsThreadJoin ((*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx]); // waiting thread exit
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_INFO, "WelsUninitEncoderExt(), pthread_join(pThreadHandles%d) return %d..",
iThreadIdx,
res);
(*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx] = 0;
}
++ iThreadIdx;
}
}
if ((*ppCtx)->pVpp) {
(*ppCtx)->pVpp->FreeSpatialPictures (*ppCtx);
WELS_DELETE_OP ((*ppCtx)->pVpp);
}
FreeMemorySvc (ppCtx);
*ppCtx = NULL;
}
/*!
* \brief initialize Wels avc encoder core library
* \pParam ppCtx sWelsEncCtx**
* \pParam pParam SWelsSvcCodingParam*
* \return successful - 0; otherwise none 0 for failed
*/
int32_t WelsInitEncoderExt (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pCodingParam, SLogContext* pLogCtx,
SExistingParasetList* pExistingParasetList) {
sWelsEncCtx* pCtx = NULL;
int32_t iRet = 0;
int16_t iSliceNum = 1; // number of slices used
int32_t iCacheLineSize = 16; // on chip cache line size in byte
uint32_t uiCpuFeatureFlags = 0;
if (NULL == ppCtx || NULL == pCodingParam) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), NULL == ppCtx(0x%p) or NULL == pCodingParam(0x%p).",
(void*)ppCtx, (void*)pCodingParam);
return 1;
}
iRet = ParamValidationExt (pLogCtx, pCodingParam);
if (iRet != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), ParamValidationExt failed return %d.", iRet);
return iRet;
}
iRet = pCodingParam->DetermineTemporalSettings();
if (iRet != ENC_RETURN_SUCCESS) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"WelsInitEncoderExt(), DetermineTemporalSettings failed return %d (check in/out frame rate and temporal layer setting! -- in/out = 2^x, x <= temppral_layer_num)",
iRet);
return iRet;
}
iRet = GetMultipleThreadIdc (pLogCtx, pCodingParam, iSliceNum, iCacheLineSize, uiCpuFeatureFlags);
if (iRet != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), GetMultipleThreadIdc failed return %d.", iRet);
return iRet;
}
*ppCtx = NULL;
pCtx = static_cast<sWelsEncCtx*> (malloc (sizeof (sWelsEncCtx)));
WELS_VERIFY_RETURN_IF (1, (NULL == pCtx))
memset (pCtx, 0, sizeof (sWelsEncCtx));
pCtx->sLogCtx = *pLogCtx;
pCtx->pMemAlign = new CMemoryAlign (iCacheLineSize);
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pCtx->pMemAlign), WelsUninitEncoderExt (&pCtx))
iRet = AllocCodingParam (&pCtx->pSvcParam, pCtx->pMemAlign);
if (iRet != 0) {
WelsUninitEncoderExt (&pCtx);
return iRet;
}
memcpy (pCtx->pSvcParam, pCodingParam, sizeof (SWelsSvcCodingParam)); // confirmed_safe_unsafe_usage
pCtx->pFuncList = (SWelsFuncPtrList*)pCtx->pMemAlign->WelsMallocz (sizeof (SWelsFuncPtrList), "SWelsFuncPtrList");
if (NULL == pCtx->pFuncList) {
WelsUninitEncoderExt (&pCtx);
return 1;
}
InitFunctionPointers (pCtx, pCtx->pSvcParam, uiCpuFeatureFlags);
pCtx->iActiveThreadsNum = pCodingParam->iMultipleThreadIdc;
pCtx->iMaxSliceCount = iSliceNum;
iRet = RequestMemorySvc (&pCtx, pExistingParasetList);
if (iRet != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), RequestMemorySvc failed return %d.", iRet);
WelsUninitEncoderExt (&pCtx);
return iRet;
}
if (pCodingParam->iEntropyCodingModeFlag)
WelsCabacInit (pCtx);
WelsRcInitModule (pCtx, pCtx->pSvcParam->iRCMode);
pCtx->pVpp = CWelsPreProcess::CreatePreProcess (pCtx);
if (pCtx->pVpp == NULL) {
iRet = 1;
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), pOut of memory in case new CWelsPreProcess().");
WelsUninitEncoderExt (&pCtx);
return iRet;
}
if ((iRet = pCtx->pVpp->AllocSpatialPictures (pCtx, pCtx->pSvcParam)) != 0) {
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), pVPP alloc spatial pictures failed");
WelsUninitEncoderExt (&pCtx);
return iRet;
}
#if defined(MEMORY_MONITOR)
WelsLog (pLogCtx, WELS_LOG_INFO, "WelsInitEncoderExt() exit, overall memory usage: %llu bytes",
static_cast<unsigned long long> (sizeof (sWelsEncCtx) /* requested size from malloc() or new operator */
+ pCtx->pMemAlign->WelsGetMemoryUsage()) /* requested size from CMemoryAlign::WelsMalloc() */
);
#endif//MEMORY_MONITOR
pCtx->iStatisticsLogInterval = STATISTICS_LOG_INTERVAL_MS;
pCtx->uiLastTimestamp = -1;
*ppCtx = pCtx;
WelsLog (pLogCtx, WELS_LOG_DEBUG, "WelsInitEncoderExt(), pCtx= 0x%p.", (void*)pCtx);
return 0;
}
/*!
* \brief get temporal level due to configuration and coding context
*/
int32_t GetTemporalLevel (SSpatialLayerInternal* fDlp, const int32_t kiFrameNum, const int32_t kiGopSize) {
const int32_t kiCodingIdx = kiFrameNum & (kiGopSize - 1);
return fDlp->uiCodingIdx2TemporalId[kiCodingIdx];
}
void DynslcUpdateMbNeighbourInfoListForAllSlices (SDqLayer* pCurDq, SMB* pMbList) {
SSliceCtx* pSliceCtx = &pCurDq->sSliceEncCtx;
const int32_t kiMbWidth = pSliceCtx->iMbWidth;
const int32_t kiEndMbInSlice = pSliceCtx->iMbNumInFrame - 1;
int32_t iIdx = 0;
do {
SMB* pMb = &pMbList[iIdx];
UpdateMbNeighbor (pCurDq, pMb, kiMbWidth, WelsMbToSliceIdc (pCurDq, pMb->iMbXY));
++ iIdx;
} while (iIdx <= kiEndMbInSlice);
}
/*
* TUNE back if number of picture partition decision algorithm based on past if available
*/
int32_t PicPartitionNumDecision (sWelsEncCtx* pCtx) {
int32_t iPartitionNum = 1;
if (pCtx->pSvcParam->iMultipleThreadIdc > 1) {
iPartitionNum = pCtx->pSvcParam->iMultipleThreadIdc;
}
return iPartitionNum;
}
void WelsInitCurrentQBLayerMltslc (sWelsEncCtx* pCtx) {
//pData init
SDqLayer* pCurDq = pCtx->pCurDqLayer;
//mb_neighbor
DynslcUpdateMbNeighbourInfoListForAllSlices (pCurDq, pCurDq->sMbDataP);
}
void UpdateSlicepEncCtxWithPartition (SDqLayer* pCurDq, int32_t iPartitionNum) {
SSliceCtx* pSliceCtx = &pCurDq->sSliceEncCtx;
SSlice* pSliceInLayer = pCurDq->sLayerInfo.pSliceInLayer;
const int32_t kiMbNumInFrame = pSliceCtx->iMbNumInFrame;
int32_t iCountMbNumPerPartition = kiMbNumInFrame;
int32_t iAssignableMbLeft = kiMbNumInFrame;
int32_t iFirstMbIdx = 0;
int32_t i/*, j*/;
if (iPartitionNum <= 0)
iPartitionNum = 1;
else if (iPartitionNum > AVERSLICENUM_CONSTRAINT)
iPartitionNum = AVERSLICENUM_CONSTRAINT; // AVERSLICENUM_CONSTRAINT might be variable, however not fixed by MACRO
iCountMbNumPerPartition /= iPartitionNum;
pSliceCtx->iSliceNumInFrame = iPartitionNum;
i = 0;
while (i < iPartitionNum) {
if (i + 1 == iPartitionNum) {
pSliceInLayer[i].iCountMbNumInSlice = iAssignableMbLeft;
} else {
pSliceInLayer[i].iCountMbNumInSlice = iCountMbNumPerPartition;
}
pSliceInLayer[i].sSliceHeaderExt.sSliceHeader.iFirstMbInSlice = iFirstMbIdx;
WelsSetMemMultiplebytes_c (pSliceCtx->pOverallMbMap + iFirstMbIdx, i,
pSliceInLayer[i].iCountMbNumInSlice, sizeof (uint16_t));
// for next partition(or pSlice)
iFirstMbIdx += pSliceInLayer[i].iCountMbNumInSlice;
iAssignableMbLeft -= pSliceInLayer[i].iCountMbNumInSlice;
++ i;
}
}
void WelsInitCurrentDlayerMltslc (sWelsEncCtx* pCtx, int32_t iPartitionNum) {
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = &pCurDq->sSliceEncCtx;
UpdateSlicepEncCtxWithPartition (pCurDq, iPartitionNum);
if (I_SLICE == pCtx->eSliceType) { //check if uiSliceSizeConstraint too small
#define byte_complexIMBat26 (60)
uint8_t iCurDid = pCtx->uiDependencyId;
uint32_t uiFrmByte = 0;
if (pCtx->pSvcParam->iRCMode != RC_OFF_MODE) {
//RC case
uiFrmByte = (
((uint32_t) (pCtx->pSvcParam->sSpatialLayers[iCurDid].iSpatialBitrate)
/ (uint32_t) (pCtx->pSvcParam->sDependencyLayers[iCurDid].fInputFrameRate)) >> 3);
} else {
//fixed QP case
const int32_t iTtlMbNumInFrame = pSliceCtx->iMbNumInFrame;
int32_t iQDeltaTo26 = (26 - pCtx->pSvcParam->sSpatialLayers[iCurDid].iDLayerQp);
uiFrmByte = (iTtlMbNumInFrame * byte_complexIMBat26);
if (iQDeltaTo26 > 0) {
//smaller QP than 26
uiFrmByte = (uint32_t) (uiFrmByte * ((float)iQDeltaTo26 / 4));
} else if (iQDeltaTo26 < 0) {
//larger QP than 26
iQDeltaTo26 = ((-iQDeltaTo26) >> 2); //delta mod 4
uiFrmByte = (uiFrmByte >> (iQDeltaTo26)); //if delta 4, byte /2
}
}
//MINPACKETSIZE_CONSTRAINT
if (pSliceCtx->uiSliceSizeConstraint
<
(uint32_t) (uiFrmByte//suppose 16 byte per mb at average
/ (pSliceCtx->iMaxSliceNumConstraint))
) {
WelsLog (& (pCtx->sLogCtx),
WELS_LOG_WARNING,
"Set-SliceConstraint(%d) too small for current resolution (MB# %d) under QP/BR!",
pSliceCtx->uiSliceSizeConstraint,
pSliceCtx->iMbNumInFrame
);
}
}
WelsInitCurrentQBLayerMltslc (pCtx);
}
/*!
* \brief initialize current layer
*/
void WelsInitCurrentLayer (sWelsEncCtx* pCtx,
const int32_t kiWidth,
const int32_t kiHeight) {
SWelsSvcCodingParam* pParam = pCtx->pSvcParam;
SPicture* pEncPic = pCtx->pEncPic;
SPicture* pDecPic = pCtx->pDecPic;
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSlice* pBaseSlice = &pCurDq->sLayerInfo.pSliceInLayer[0];
SSlice* pSlice = NULL;
const uint8_t kiCurDid = pCtx->uiDependencyId;
const bool kbUseSubsetSpsFlag = (!pParam->bSimulcastAVC) && (kiCurDid > BASE_DEPENDENCY_ID);
SSpatialLayerConfig* fDlp = &pParam->sSpatialLayers[kiCurDid];
SNalUnitHeaderExt* pNalHdExt = &pCurDq->sLayerInfo.sNalHeaderExt;
SNalUnitHeader* pNalHd = &pNalHdExt->sNalUnitHeader;
SDqIdc* pDqIdc = &pCtx->pDqIdcMap[kiCurDid];
int32_t iIdx = 0;
int32_t iSliceCount = 0;
SSpatialLayerInternal* pParamInternal = &pParam->sDependencyLayers[kiCurDid];
if (NULL == pCurDq)
return;
pCurDq->pDecPic = pDecPic;
if (fDlp->sSliceArgument.uiSliceMode == SM_SIZELIMITED_SLICE) // need get extra slices for update
iSliceCount = GetInitialSliceNum (pCurDq->iMbWidth, pCurDq->iMbHeight, &fDlp->sSliceArgument);
else
iSliceCount = GetCurrentSliceNum (pCurDq);
assert (iSliceCount > 0);
int32_t iCurPpsId = pDqIdc->iPpsId;
int32_t iCurSpsId = pDqIdc->iSpsId;
iCurPpsId = pCtx->pFuncList->pParametersetStrategy->GetCurrentPpsId (iCurPpsId,
WELS_ABS (pCtx->uiIdrPicId - 1) % MAX_PPS_COUNT);
pBaseSlice->sSliceHeaderExt.sSliceHeader.iPpsId = iCurPpsId;
pCurDq->sLayerInfo.pPpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pPps = &pCtx->pPPSArray[iCurPpsId];
pBaseSlice->sSliceHeaderExt.sSliceHeader.iSpsId = iCurSpsId;
if (kbUseSubsetSpsFlag) {
pCurDq->sLayerInfo.pSubsetSpsP = &pCtx->pSubsetArray[iCurSpsId];
pCurDq->sLayerInfo.pSpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps = &pCurDq->sLayerInfo.pSubsetSpsP->pSps;
} else {
pCurDq->sLayerInfo.pSubsetSpsP = NULL;
pCurDq->sLayerInfo.pSpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps = &pCtx->pSpsArray[iCurSpsId];
}
pBaseSlice->bSliceHeaderExtFlag = (NAL_UNIT_CODED_SLICE_EXT == pCtx->eNalType);
pSlice = pBaseSlice;
iIdx = 1;
while (iIdx < iSliceCount) {
++ pSlice;
pSlice->sSliceHeaderExt.sSliceHeader.iPpsId = pBaseSlice->sSliceHeaderExt.sSliceHeader.iPpsId;
pSlice->sSliceHeaderExt.sSliceHeader.pPps = pBaseSlice->sSliceHeaderExt.sSliceHeader.pPps;
pSlice->sSliceHeaderExt.sSliceHeader.iSpsId = pBaseSlice->sSliceHeaderExt.sSliceHeader.iSpsId;
pSlice->sSliceHeaderExt.sSliceHeader.pSps = pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps;
pSlice->bSliceHeaderExtFlag = pBaseSlice->bSliceHeaderExtFlag;
++ iIdx;
}
memset (pNalHdExt, 0, sizeof (SNalUnitHeaderExt));
pNalHd->uiNalRefIdc = pCtx->eNalPriority;
pNalHd->eNalUnitType = pCtx->eNalType;
pNalHdExt->uiDependencyId = kiCurDid;
pNalHdExt->bDiscardableFlag = (pCtx->bNeedPrefixNalFlag) ? (pNalHd->uiNalRefIdc == NRI_PRI_LOWEST) : false;
pNalHdExt->bIdrFlag = (pParamInternal->iFrameNum == 0)
&& ((pCtx->eNalType == NAL_UNIT_CODED_SLICE_IDR)
|| (pCtx->eSliceType == I_SLICE));
pNalHdExt->uiTemporalId = pCtx->uiTemporalId;
// pEncPic pData
pCurDq->pEncData[0] = pEncPic->pData[0];
pCurDq->pEncData[1] = pEncPic->pData[1];
pCurDq->pEncData[2] = pEncPic->pData[2];
pCurDq->iEncStride[0] = pEncPic->iLineSize[0];
pCurDq->iEncStride[1] = pEncPic->iLineSize[1];
pCurDq->iEncStride[2] = pEncPic->iLineSize[2];
// cs pData
pCurDq->pCsData[0] = pDecPic->pData[0];
pCurDq->pCsData[1] = pDecPic->pData[1];
pCurDq->pCsData[2] = pDecPic->pData[2];
pCurDq->iCsStride[0] = pDecPic->iLineSize[0];
pCurDq->iCsStride[1] = pDecPic->iLineSize[1];
pCurDq->iCsStride[2] = pDecPic->iLineSize[2];
if (pCurDq->pRefLayer != NULL) {
pCurDq->bBaseLayerAvailableFlag = true;
} else {
pCurDq->bBaseLayerAvailableFlag = false;
}
if (pCtx->pTaskManage) {
pCtx->pTaskManage->InitFrame (kiCurDid);
}
}
static inline void SetFastCodingFunc (SWelsFuncPtrList* pFuncList) {
pFuncList->pfIntraFineMd = WelsMdIntraFinePartitionVaa;
pFuncList->sSampleDealingFuncs.pfMdCost = pFuncList->sSampleDealingFuncs.pfSampleSad;
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3 = pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3Sad;
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3 = pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3Sad;
}
static inline void SetNormalCodingFunc (SWelsFuncPtrList* pFuncList) {
pFuncList->pfIntraFineMd = WelsMdIntraFinePartition;
pFuncList->sSampleDealingFuncs.pfMdCost = pFuncList->sSampleDealingFuncs.pfSampleSatd;
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3Satd;
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3Satd;
pFuncList->sSampleDealingFuncs.pfIntra4x4Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra4x4Combined3Satd;
}
bool SetMeMethod (const uint8_t uiMethod, PSearchMethodFunc& pSearchMethodFunc) {
switch (uiMethod) {
case ME_DIA:
pSearchMethodFunc = WelsDiamondSearch;
break;
case ME_CROSS:
pSearchMethodFunc = WelsMotionCrossSearch;
break;
case ME_DIA_CROSS:
pSearchMethodFunc = WelsDiamondCrossSearch;
break;
case ME_DIA_CROSS_FME:
pSearchMethodFunc = WelsDiamondCrossFeatureSearch;
break;
case ME_FULL:
pSearchMethodFunc = WelsDiamondSearch;
return false;
default:
pSearchMethodFunc = WelsDiamondSearch;
return false;
}
return true;
}
void PreprocessSliceCoding (sWelsEncCtx* pCtx) {
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
//const bool kbBaseAvail = pCurLayer->bBaseLayerAvailableFlag;
const bool kbHighestSpatialLayer =
(pCtx->pSvcParam->iSpatialLayerNum == (pCurLayer->sLayerInfo.sNalHeaderExt.uiDependencyId + 1));
SWelsFuncPtrList* pFuncList = pCtx->pFuncList;
SLogContext* pLogCtx = & (pCtx->sLogCtx);
/* function pointers conditional assignment under sWelsEncCtx, layer_mb_enc_rec (in stack) is exclusive */
if ((pCtx->pSvcParam->iUsageType == CAMERA_VIDEO_REAL_TIME && kbHighestSpatialLayer) ||
(pCtx->pSvcParam->iUsageType == SCREEN_CONTENT_REAL_TIME && P_SLICE == pCtx->eSliceType
&& kbHighestSpatialLayer) //TODO: here is for sync with the origin code, consider the design again with more tests
) {
SetFastCodingFunc (pFuncList);
} else {
SetNormalCodingFunc (pFuncList);
}
if (P_SLICE == pCtx->eSliceType) {
for (int i = 0; i < BLOCK_STATIC_IDC_ALL; i++) {
pFuncList->pfMotionSearch[i] = WelsMotionEstimateSearch;
}
pFuncList->pfSearchMethod[BLOCK_16x16] =
pFuncList->pfSearchMethod[BLOCK_16x8] =
pFuncList->pfSearchMethod[BLOCK_8x16] =
pFuncList->pfSearchMethod[BLOCK_8x8] =
pFuncList->pfSearchMethod[BLOCK_4x4] =
pFuncList->pfSearchMethod[BLOCK_8x4] =
pFuncList->pfSearchMethod[BLOCK_4x8] = WelsDiamondSearch;
pFuncList->pfFirstIntraMode = WelsMdFirstIntraMode;
pFuncList->sSampleDealingFuncs.pfMeCost = pCtx->pFuncList->sSampleDealingFuncs.pfSampleSatd;
pFuncList->pfSetScrollingMv = SetScrollingMvToMdNull;
if (kbHighestSpatialLayer) {
pFuncList->pfCalculateSatd = NotCalculateSatdCost;
pFuncList->pfInterFineMd = WelsMdInterFinePartitionVaa;
} else {
pFuncList->pfCalculateSatd = CalculateSatdCost;
pFuncList->pfInterFineMd = WelsMdInterFinePartition;
}
} else {
pFuncList->sSampleDealingFuncs.pfMeCost = NULL;
}
//to init at each frame will be needed when dealing with hybrid content (camera+screen)
if (pCtx->pSvcParam->iUsageType == SCREEN_CONTENT_REAL_TIME) {
if (P_SLICE == pCtx->eSliceType) {
//MD related func pointers
pFuncList->pfInterFineMd = WelsMdInterFinePartitionVaaOnScreen;
//ME related func pointers
SVAAFrameInfoExt* pVaaExt = static_cast<SVAAFrameInfoExt*> (pCtx->pVaa);
if (pVaaExt->sScrollDetectInfo.bScrollDetectFlag
&& (pVaaExt->sScrollDetectInfo.iScrollMvX | pVaaExt->sScrollDetectInfo.iScrollMvY)) {
pFuncList->pfSetScrollingMv = SetScrollingMvToMd;
} else {
pFuncList->pfSetScrollingMv = SetScrollingMvToMdNull;
}
pFuncList->pfMotionSearch[NO_STATIC] = WelsMotionEstimateSearch;
pFuncList->pfMotionSearch[COLLOCATED_STATIC] = WelsMotionEstimateSearchStatic;
pFuncList->pfMotionSearch[SCROLLED_STATIC] = WelsMotionEstimateSearchScrolled;
//ME16x16
if (!SetMeMethod (ME_DIA_CROSS, pFuncList->pfSearchMethod[BLOCK_16x16])) {
WelsLog (pLogCtx, WELS_LOG_WARNING, "SetMeMethod(BLOCK_16x16) ME_DIA_CROSS unsuccessful, switched to default search");
}
//ME8x8
SFeatureSearchPreparation* pFeatureSearchPreparation = pCurLayer->pFeatureSearchPreparation;
if (pFeatureSearchPreparation) {
pFeatureSearchPreparation->iHighFreMbCount = 0;
//calculate bFMESwitchFlag
SVAAFrameInfoExt* pVaaExt = static_cast<SVAAFrameInfoExt*> (pCtx->pVaa);
const int32_t kiMbSize = pCurLayer->iMbHeight * pCurLayer->iMbWidth;
pFeatureSearchPreparation->bFMESwitchFlag = CalcFMESwitchFlag (pFeatureSearchPreparation->uiFMEGoodFrameCount,
pFeatureSearchPreparation->iHighFreMbCount * 100 / kiMbSize, pCtx->pVaa->sVaaCalcInfo.iFrameSad / kiMbSize,
pVaaExt->sScrollDetectInfo.bScrollDetectFlag);
//PerformFMEPreprocess
SScreenBlockFeatureStorage* pScreenBlockFeatureStorage = pCurLayer->pRefPic->pScreenBlockFeatureStorage;
pFeatureSearchPreparation->pRefBlockFeature = pScreenBlockFeatureStorage;
if (pFeatureSearchPreparation->bFMESwitchFlag
&& !pScreenBlockFeatureStorage->bRefBlockFeatureCalculated) {
SPicture* pRef = (pCtx->pSvcParam->bEnableLongTermReference ? pCurLayer->pRefOri[0] : pCurLayer->pRefPic);
PerformFMEPreprocess (pFuncList, pRef, pFeatureSearchPreparation->pFeatureOfBlock,
pScreenBlockFeatureStorage);
}
//assign ME pointer
if (pFeatureSearchPreparation->bFMESwitchFlag && pScreenBlockFeatureStorage->bRefBlockFeatureCalculated
&& (!pScreenBlockFeatureStorage->iIs16x16)) {
if (!SetMeMethod (ME_DIA_CROSS_FME, pFuncList->pfSearchMethod[BLOCK_8x8])) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"SetMeMethod(BLOCK_8x8) ME_DIA_CROSS_FME unsuccessful, switched to default search");
}
}
//assign UpdateFMESwitch pointer
if (pFeatureSearchPreparation->bFMESwitchFlag) {
pFuncList->pfUpdateFMESwitch = UpdateFMESwitch;
} else {
pFuncList->pfUpdateFMESwitch = UpdateFMESwitchNull;
}
}//if (pFeatureSearchPreparation)
} else {
//reset some status when at I_SLICE
pCurLayer->pFeatureSearchPreparation->bFMESwitchFlag = true;
pCurLayer->pFeatureSearchPreparation->uiFMEGoodFrameCount = FMESWITCH_DEFAULT_GOODFRAME_NUM;
}
}
// update some layer dependent variable to save judgements in mb-level
pCurLayer->bSatdInMdFlag = ((pFuncList->sSampleDealingFuncs.pfMeCost == pFuncList->sSampleDealingFuncs.pfSampleSatd)
&& (pFuncList->sSampleDealingFuncs.pfMdCost == pFuncList->sSampleDealingFuncs.pfSampleSatd));
const int32_t kiCurDid = pCtx->uiDependencyId;
const int32_t kiCurTid = pCtx->uiTemporalId;
if (pCurLayer->bDeblockingParallelFlag && (pCurLayer->iLoopFilterDisableIdc != 1)
#if !defined(ENABLE_FRAME_DUMP)
&& (NRI_PRI_LOWEST != pCtx->eNalPriority)
&& (pCtx->pSvcParam->sDependencyLayers[kiCurDid].iHighestTemporalId == 0
|| kiCurTid < pCtx->pSvcParam->sDependencyLayers[kiCurDid].iHighestTemporalId)
#endif// !ENABLE_FRAME_DUMP
) {
pFuncList->pfDeblocking.pfDeblockingFilterSlice = DeblockingFilterSliceAvcbase;
} else {
pFuncList->pfDeblocking.pfDeblockingFilterSlice = DeblockingFilterSliceAvcbaseNull;
}
}
/*!
* \brief swap pDq layers between current pDq layer and reference pDq layer
*/
static inline void WelsSwapDqLayers (sWelsEncCtx* pCtx, const int32_t kiNextDqIdx) {
// swap and assign reference
SDqLayer* pTmpLayer = pCtx->ppDqLayerList[kiNextDqIdx];
SDqLayer* pRefLayer = pCtx->pCurDqLayer;
pCtx->pCurDqLayer = pTmpLayer;
pCtx->pCurDqLayer->pRefLayer = pRefLayer;
}
/*!
* \brief prefetch reference picture after WelsBuildRefList
*/
static inline void PrefetchReferencePicture (sWelsEncCtx* pCtx, const EVideoFrameType keFrameType) {
SSlice* pSliceBase = &pCtx->pCurDqLayer->sLayerInfo.pSliceInLayer[0];
const int32_t kiSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer);
int32_t iIdx = 0;
uint8_t uiRefIdx = -1;
assert (kiSliceCount > 0);
if (keFrameType != videoFrameTypeIDR) {
assert (pCtx->iNumRef0 > 0);
pCtx->pRefPic = pCtx->pRefList0[0]; // always get item 0 due to reordering done
pCtx->pCurDqLayer->pRefPic = pCtx->pRefPic;
uiRefIdx = 0; // reordered reference iIndex
} else { // safe for IDR coding
pCtx->pRefPic = NULL;
pCtx->pCurDqLayer->pRefPic = NULL;
}
iIdx = 0;
while (iIdx < kiSliceCount) {
pSliceBase->sSliceHeaderExt.sSliceHeader.uiRefIndex = uiRefIdx;
++ pSliceBase;
++ iIdx;
}
}
int32_t WelsWriteOneSPS (sWelsEncCtx* pCtx, const int32_t kiSpsIdx, int32_t& iNalSize) {
int iNal = pCtx->pOut->iNalIndex;
WelsLoadNal (pCtx->pOut, NAL_UNIT_SPS, NRI_PRI_HIGHEST);
WelsWriteSpsNal (&pCtx->pSpsArray[kiSpsIdx], &pCtx->pOut->sBsWrite,
pCtx->pFuncList->pParametersetStrategy->GetSpsIdOffsetList (PARA_SET_TYPE_AVCSPS));
WelsUnloadNal (pCtx->pOut);
int32_t iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,//available buffer to be written, so need to substract the used length
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pCtx->iPosBsBuffer += iNalSize;
return ENC_RETURN_SUCCESS;
}
int32_t WelsWriteOnePPS (sWelsEncCtx* pCtx, const int32_t kiPpsIdx, int32_t& iNalSize) {
//TODO
int32_t iNal = pCtx->pOut->iNalIndex;
/* generate picture parameter set */
WelsLoadNal (pCtx->pOut, NAL_UNIT_PPS, NRI_PRI_HIGHEST);
WelsWritePpsSyntax (&pCtx->pPPSArray[kiPpsIdx], &pCtx->pOut->sBsWrite,
pCtx->pFuncList->pParametersetStrategy);
WelsUnloadNal (pCtx->pOut);
int32_t iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pCtx->iPosBsBuffer += iNalSize;
return ENC_RETURN_SUCCESS;
}
/*!
* \brief write all parameter sets introduced in SVC extension
* \return writing results, success or error
*/
int32_t WelsWriteParameterSets (sWelsEncCtx* pCtx, int32_t* pNalLen, int32_t* pNumNal, int32_t* pTotalLength) {
int32_t iSize = 0;
int32_t iNal = 0;
int32_t iIdx = 0;
int32_t iId = 0;
int32_t iCountNal = 0;
int32_t iNalLength = 0;
int32_t iReturn = ENC_RETURN_SUCCESS;
if (NULL == pCtx || NULL == pNalLen || NULL == pNumNal || NULL == pCtx->pFuncList->pParametersetStrategy)
return ENC_RETURN_UNEXPECTED;
*pTotalLength = 0;
/* write all SPS */
iIdx = 0;
while (iIdx < pCtx->iSpsNum) {
pCtx->pFuncList->pParametersetStrategy->Update (pCtx->pSpsArray[iIdx].uiSpsId, PARA_SET_TYPE_AVCSPS);
/* generate sequence parameters set */
iId = pCtx->pFuncList->pParametersetStrategy->GetSpsIdx (iIdx);
WelsWriteOneSPS (pCtx, iId, iNalLength);
pNalLen[iCountNal] = iNalLength;
iSize += iNalLength;
++ iIdx;
++ iCountNal;
}
/* write all Subset SPS */
iIdx = 0;
while (iIdx < pCtx->iSubsetSpsNum) {
iNal = pCtx->pOut->iNalIndex;
pCtx->pFuncList->pParametersetStrategy->Update (pCtx->pSubsetArray[iIdx].pSps.uiSpsId, PARA_SET_TYPE_SUBSETSPS);
iId = iIdx;
/* generate Subset SPS */
WelsLoadNal (pCtx->pOut, NAL_UNIT_SUBSET_SPS, NRI_PRI_HIGHEST);
WelsWriteSubsetSpsSyntax (&pCtx->pSubsetArray[iId], &pCtx->pOut->sBsWrite,
pCtx->pFuncList->pParametersetStrategy->GetSpsIdOffsetList (PARA_SET_TYPE_SUBSETSPS));
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,//available buffer to be written, so need to substract the used length
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalLength);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pNalLen[iCountNal] = iNalLength;
pCtx->iPosBsBuffer += iNalLength;
iSize += iNalLength;
++ iIdx;
++ iCountNal;
}
pCtx->pFuncList->pParametersetStrategy->UpdatePpsList (pCtx);
iIdx = 0;
while (iIdx < pCtx->iPpsNum) {
pCtx->pFuncList->pParametersetStrategy->Update (pCtx->pPPSArray[iIdx].iPpsId, PARA_SET_TYPE_PPS);
WelsWriteOnePPS (pCtx, iIdx, iNalLength);
pNalLen[iCountNal] = iNalLength;
iSize += iNalLength;
++ iIdx;
++ iCountNal;
}
*pNumNal = iCountNal;
*pTotalLength = iSize;
return ENC_RETURN_SUCCESS;
}
static inline int32_t AddPrefixNal (sWelsEncCtx* pCtx,
SLayerBSInfo* pLayerBsInfo,
int32_t* pNalLen,
int32_t* pNalIdxInLayer,
const EWelsNalUnitType keNalType,
const EWelsNalRefIdc keNalRefIdc,
int32_t& iPayloadSize) {
int32_t iReturn = ENC_RETURN_SUCCESS;
iPayloadSize = 0;
if (keNalRefIdc != NRI_PRI_LOWEST) {
WelsLoadNal (pCtx->pOut, NAL_UNIT_PREFIX, keNalRefIdc);
WelsWriteSVCPrefixNal (&pCtx->pOut->sBsWrite, keNalRefIdc, (NAL_UNIT_CODED_SLICE_IDR == keNalType));
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&pNalLen[*pNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
iPayloadSize = pNalLen[*pNalIdxInLayer];
pCtx->iPosBsBuffer += iPayloadSize;
(*pNalIdxInLayer) ++;
} else { // No Prefix NAL Unit RBSP syntax here, but need add NAL Unit Header extension
WelsLoadNal (pCtx->pOut, NAL_UNIT_PREFIX, keNalRefIdc);
// No need write any syntax of prefix NAL Unit RBSP here
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&pNalLen[*pNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
iPayloadSize = pNalLen[*pNalIdxInLayer];
pCtx->iPosBsBuffer += iPayloadSize;
(*pNalIdxInLayer) ++;
}
return ENC_RETURN_SUCCESS;
}
int32_t WritePadding (sWelsEncCtx* pCtx, int32_t iLen, int32_t& iSize) {
int32_t i = 0;
int32_t iNal = 0;
SBitStringAux* pBs = NULL;
int32_t iNalLen;
iSize = 0;
iNal = pCtx->pOut->iNalIndex;
pBs = &pCtx->pOut->sBsWrite; // SBitStringAux instance for non VCL NALs decoding
if ((pBs->pEndBuf - pBs->pCurBuf) < iLen || iNal >= pCtx->pOut->iCountNals) {
#if GOM_TRACE_FLAG
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR,
"[RC] paddingcal pBuffer overflow, bufferlen=%lld, paddinglen=%d, iNalIdx= %d, iCountNals= %d",
static_cast<long long int> (pBs->pEndBuf - pBs->pCurBuf), iLen, iNal, pCtx->pOut->iCountNals);
#endif
return ENC_RETURN_MEMOVERFLOWFOUND;
}
WelsLoadNal (pCtx->pOut, NAL_UNIT_FILLER_DATA, NRI_PRI_LOWEST);
for (i = 0; i < iLen; i++) {
BsWriteBits (pBs, 8, 0xff);
}
BsRbspTrailingBits (pBs);
WelsUnloadNal (pCtx->pOut);
int32_t iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalLen);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pCtx->iPosBsBuffer += iNalLen;
iSize += iNalLen;
return ENC_RETURN_SUCCESS;
}
/*
* Force coding IDR as follows
*/
int32_t ForceCodingIDR (sWelsEncCtx* pCtx) {
if (NULL == pCtx)
return 1;
for (int32_t iDid = 0; iDid < pCtx->pSvcParam->iSpatialLayerNum; iDid++) {
SSpatialLayerInternal* pParamInternal = &pCtx->pSvcParam->sDependencyLayers[iDid];
pParamInternal->iCodingIndex = 0;
pParamInternal->iFrameIndex = 0;
pParamInternal->iFrameNum = 0;
pParamInternal->iPOC = 0;
pParamInternal->bEncCurFrmAsIdrFlag = true;
}
pCtx->bCheckWindowStatusRefreshFlag = false;
WelsLog (&pCtx->sLogCtx, WELS_LOG_INFO, "ForceCodingIDR at InputFrameCount=%d\n",
pCtx->sEncoderStatistics[0].uiInputFrameCount);
return 0;
}
int32_t WelsEncoderEncodeParameterSets (sWelsEncCtx* pCtx, void* pDst) {
if (NULL == pCtx || NULL == pDst) {
return ENC_RETURN_UNEXPECTED;
}
SFrameBSInfo* pFbi = (SFrameBSInfo*)pDst;
SLayerBSInfo* pLayerBsInfo = &pFbi->sLayerInfo[0];
int32_t iCountNal = 0;
int32_t iTotalLength = 0;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs;
pLayerBsInfo->pNalLengthInByte = pCtx->pOut->pNalLen;
InitBits (&pCtx->pOut->sBsWrite, pCtx->pOut->pBsBuffer, pCtx->pOut->uiSize);
pCtx->iPosBsBuffer = 0;
int32_t iReturn = WelsWriteParameterSets (pCtx, &pLayerBsInfo->pNalLengthInByte[0], &iCountNal, &iTotalLength);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeInvalid;
pLayerBsInfo->iSubSeqId = 0;
//pCtx->eLastNalPriority = NRI_PRI_HIGHEST;
pFbi->iLayerNum = 1;
pFbi->eFrameType = videoFrameTypeInvalid;
WelsEmms();
return ENC_RETURN_SUCCESS;
}
int32_t GetSubSequenceId (sWelsEncCtx* pCtx, EVideoFrameType eFrameType) {
int32_t iSubSeqId = 0;
if (eFrameType == videoFrameTypeIDR)
iSubSeqId = 0;
else if (eFrameType == videoFrameTypeI)
iSubSeqId = 1;
else if (eFrameType == videoFrameTypeP) {
if (pCtx->bCurFrameMarkedAsSceneLtr)
iSubSeqId = 2;
else
iSubSeqId = 3 + pCtx->uiTemporalId; //T0:3 T1:4 T2:5 T3:6
} else
iSubSeqId = 3 + MAX_TEMPORAL_LAYER_NUM;
return iSubSeqId;
}
// writing parasets for (simulcast) svc
int32_t WriteSsvcParaset (sWelsEncCtx* pCtx, const int32_t kiSpatialNum,
SLayerBSInfo*& pLayerBsInfo, int32_t& iLayerNum, int32_t& iFrameSize) {
int32_t iNonVclSize = 0, iCountNal = 0, iReturn = ENC_RETURN_SUCCESS;
iReturn = WelsWriteParameterSets (pCtx, &pLayerBsInfo->pNalLengthInByte[0], &iCountNal, &iNonVclSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeIDR;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, videoFrameTypeIDR);
//point to next pLayerBsInfo
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
//update for external countings
++ iLayerNum;
iFrameSize += iNonVclSize;
return iReturn;
}
// writing parasets for simulcast avc
int32_t WriteSavcParaset (sWelsEncCtx* pCtx, const int32_t iIdx,
SLayerBSInfo*& pLayerBsInfo, int32_t& iLayerNum, int32_t& iFrameSize) {
int32_t iNonVclSize = 0, iCountNal = 0, iReturn = ENC_RETURN_SUCCESS;
// write SPS
iNonVclSize = 0;
//writing one NAL
int32_t iNalSize = 0;
iCountNal = 0;
if (pCtx->pFuncList->pParametersetStrategy) {
pCtx->pFuncList->pParametersetStrategy->Update (pCtx->pSpsArray[iIdx].uiSpsId, PARA_SET_TYPE_AVCSPS);
}
iReturn = WelsWriteOneSPS (pCtx, iIdx, iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->pNalLengthInByte[iCountNal] = iNalSize;
iNonVclSize += iNalSize;
iCountNal = 1;
//finish writing one NAL
pLayerBsInfo->uiSpatialId = iIdx;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeIDR;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, videoFrameTypeIDR);
//point to next pLayerBsInfo
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
//update for external countings
++ iLayerNum;
// write PPS
//TODO: under new strategy, will PPS be correctly updated?
//writing one NAL
iNalSize = 0;
iCountNal = 0;
if (pCtx->pFuncList->pParametersetStrategy) {
pCtx->pFuncList->pParametersetStrategy->Update (pCtx->pPPSArray[iIdx].iPpsId, PARA_SET_TYPE_PPS);
}
iReturn = WelsWriteOnePPS (pCtx, iIdx, iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->pNalLengthInByte[iCountNal] = iNalSize;
iNonVclSize += iNalSize;
iCountNal = 1;
//finish writing one NAL
pLayerBsInfo->uiSpatialId = iIdx;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeIDR;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, videoFrameTypeIDR);
//point to next pLayerBsInfo
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
//update for external countings
++ iLayerNum;
// to check number of layers / nals / slices dependencies
if (iLayerNum > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR, "WriteSavcParaset(), iLayerNum(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iLayerNum, MAX_LAYER_NUM_OF_FRAME);
return 1;
}
iFrameSize += iNonVclSize;
return iReturn;
}
//cover the logic of simulcast avc + sps_pps_listing
int32_t WriteSavcParaset_Listing (sWelsEncCtx* pCtx, const int32_t kiSpatialNum,
SLayerBSInfo*& pLayerBsInfo, int32_t& iLayerNum, int32_t& iFrameSize) {
int32_t iNonVclSize = 0, iCountNal = 0, iReturn = ENC_RETURN_SUCCESS;
// write SPS
iNonVclSize = 0;
for (int32_t iSpatialId = 0; iSpatialId < kiSpatialNum; iSpatialId++) {
iCountNal = 0;
for (int32_t iIdx = 0; iIdx < pCtx->iSpsNum; iIdx++) {
//writing one NAL
int32_t iNalSize = 0;
iReturn = WelsWriteOneSPS (pCtx, iIdx, iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->pNalLengthInByte[iCountNal] = iNalSize;
iNonVclSize += iNalSize;
iCountNal ++;
//finish writing one NAL
}
pLayerBsInfo->uiSpatialId = iSpatialId;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeIDR;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, videoFrameTypeIDR);
//point to next pLayerBsInfo
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
//update for external countings
++ iLayerNum;
}
// write PPS
pCtx->pFuncList->pParametersetStrategy->UpdatePpsList (pCtx);
//TODO: under new strategy, will PPS be correctly updated?
for (int32_t iSpatialId = 0; iSpatialId < kiSpatialNum; iSpatialId++) {
iCountNal = 0;
for (int32_t iIdx = 0; iIdx < pCtx->iPpsNum; iIdx++) {
//writing one NAL
int32_t iNalSize = 0;
iReturn = WelsWriteOnePPS (pCtx, iIdx, iNalSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->pNalLengthInByte[iCountNal] = iNalSize;
iNonVclSize += iNalSize;
iCountNal ++;
//finish writing one NAL
}
pLayerBsInfo->uiSpatialId = iSpatialId;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
pLayerBsInfo->eFrameType = videoFrameTypeIDR;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, videoFrameTypeIDR);
//point to next pLayerBsInfo
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
//update for external countings
++ iLayerNum;
}
// to check number of layers / nals / slices dependencies
if (iLayerNum > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR, "WriteSavcParaset(), iLayerNum(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iLayerNum, MAX_LAYER_NUM_OF_FRAME);
return ENC_RETURN_UNEXPECTED;
}
iFrameSize += iNonVclSize;
return iReturn;
}
void StackBackEncoderStatus (sWelsEncCtx* pEncCtx,
EVideoFrameType keFrameType) {
SSpatialLayerInternal* pParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
// for bitstream writing
pEncCtx->iPosBsBuffer = 0; // reset bs pBuffer position
pEncCtx->pOut->iNalIndex = 0; // reset NAL index
pEncCtx->pOut->iLayerBsIndex = 0; // reset index of Layer Bs
InitBits (&pEncCtx->pOut->sBsWrite, pEncCtx->pOut->pBsBuffer, pEncCtx->pOut->uiSize);
if ((keFrameType == videoFrameTypeP) || (keFrameType == videoFrameTypeI)) {
pParamInternal->iFrameIndex --;
if (pParamInternal->iPOC != 0) {
pParamInternal->iPOC -= 2;
} else {
pParamInternal->iPOC = (1 << pEncCtx->pSps->iLog2MaxPocLsb) - 2;
}
LoadBackFrameNum (pEncCtx, pEncCtx->uiDependencyId);
pEncCtx->eNalType = NAL_UNIT_CODED_SLICE;
pEncCtx->eSliceType = P_SLICE;
//pEncCtx->eNalPriority = pEncCtx->eLastNalPriority; //not need this since eNalPriority will be updated at the beginning of coding a frame
} else if (keFrameType == videoFrameTypeIDR) {
pEncCtx->uiIdrPicId --;
//set the next frame to be IDR
ForceCodingIDR (pEncCtx);
} else { // B pictures are not supported now, any else?
assert (0);
}
// no need to stack back RC info since the info is still useful for later RQ model calculation
// no need to stack back MB slicing info for dynamic balancing, since the info is still refer-able
}
void ClearFrameBsInfo (sWelsEncCtx* pCtx, SFrameBSInfo* pFbi) {
pFbi->sLayerInfo[0].pBsBuf = pCtx->pFrameBs;
pFbi->sLayerInfo[0].pNalLengthInByte = pCtx->pOut->pNalLen;
for (int i = 0; i < pFbi->iLayerNum; i++) {
pFbi->sLayerInfo[i].iNalCount = 0;
pFbi->sLayerInfo[i].eFrameType = videoFrameTypeSkip;
}
pFbi->iLayerNum = 0;
pFbi->iFrameSizeInBytes = 0;
}
EVideoFrameType PrepareEncodeFrame (sWelsEncCtx* pCtx, SLayerBSInfo*& pLayerBsInfo, int32_t iSpatialNum ,
int8_t& iCurDid, int32_t& iCurTid,
int32_t& iLayerNum, int32_t& iFrameSize, long long uiTimeStamp) {
SWelsSvcCodingParam* pSvcParam = pCtx->pSvcParam;
SSpatialPicIndex* pSpatialIndexMap = &pCtx->sSpatialIndexMap[0];
bool bSkipFrameFlag = WelsRcCheckFrameStatus (pCtx, uiTimeStamp, iSpatialNum, iCurDid);
EVideoFrameType eFrameType = DecideFrameType (pCtx, iSpatialNum, iCurDid, bSkipFrameFlag);
if (eFrameType == videoFrameTypeSkip) {
if (pSvcParam->bSimulcastAVC) {
if (pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip)
pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip (pCtx, iCurDid);
WelsLog (& (pCtx->sLogCtx), WELS_LOG_DEBUG,
"[Rc] Frame timestamp = %lld, iDid = %d,skip one frame due to target_br, continual skipped %d frames",
uiTimeStamp, iCurDid, pCtx->pWelsSvcRc[iCurDid].iContinualSkipFrames);
}
else {
if (pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip) {
for (int32_t i = 0; i < iSpatialNum; i++) {
pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip (pCtx, (pSpatialIndexMap + i)->iDid);
}
}
WelsLog (& (pCtx->sLogCtx), WELS_LOG_DEBUG,
"[Rc] Frame timestamp = %lld, iDid = %d,skip one frame due to target_br, continual skipped %d frames",
uiTimeStamp, iCurDid, pCtx->pWelsSvcRc[iCurDid].iContinualSkipFrames);
}
} else {
SSpatialLayerInternal* pParamInternal = &pSvcParam->sDependencyLayers[iCurDid];
iCurTid = GetTemporalLevel (&pSvcParam->sDependencyLayers[iCurDid], pParamInternal->iCodingIndex,
pSvcParam->uiGopSize);
pCtx->uiTemporalId = iCurTid;
if (eFrameType == videoFrameTypeIDR) {
// write parameter sets bitstream or SEI/SSEI (if any) here
// TODO: use function pointer instead
if (! (SPS_LISTING & pCtx->pSvcParam->eSpsPpsIdStrategy)) {
if (pSvcParam->bSimulcastAVC) {
pCtx->iEncoderError = WriteSavcParaset (pCtx, iCurDid, pLayerBsInfo, iLayerNum, iFrameSize);
++ pCtx->uiIdrPicId;
} else {
pCtx->iEncoderError = WriteSsvcParaset (pCtx, iSpatialNum, pLayerBsInfo, iLayerNum, iFrameSize);
++ pCtx->uiIdrPicId;
}
} else {
pCtx->iEncoderError = WriteSavcParaset_Listing (pCtx, iSpatialNum, pLayerBsInfo, iLayerNum, iFrameSize);
++ pCtx->uiIdrPicId;
}
}
}
return eFrameType;
}
/*!
* \brief core svc encoding process
*
* \pParam pCtx sWelsEncCtx*, encoder context
* \pParam pFbi FrameBSInfo*
* \pParam pSrcPic Source Picture
* \return EFrameType (videoFrameTypeIDR/videoFrameTypeI/videoFrameTypeP)
*/
int32_t WelsEncoderEncodeExt (sWelsEncCtx* pCtx, SFrameBSInfo* pFbi, const SSourcePicture* pSrcPic) {
if (pCtx == NULL) {
return ENC_RETURN_MEMALLOCERR;
}
SLayerBSInfo* pLayerBsInfo = &pFbi->sLayerInfo[0];
SWelsSvcCodingParam* pSvcParam = pCtx->pSvcParam;
SSpatialPicIndex* pSpatialIndexMap = &pCtx->sSpatialIndexMap[0];
#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
SPicture* fsnr = NULL;
#endif//ENABLE_FRAME_DUMP || ENABLE_PSNR_CALC
SPicture* pEncPic = NULL; // to be decided later
int32_t iDidList[MAX_DEPENDENCY_LAYER] = {0};
int32_t iLayerNum = 0;
int32_t iLayerSize = 0;
int32_t iSpatialNum =
0; // available count number of spatial layers due to frame size changed in this given frame
int32_t iSpatialIdx = 0; // iIndex of spatial layers due to frame size changed in this given frame
int32_t iFrameSize = 0;
int32_t iNalIdxInLayer = 0;
int32_t iCountNal = 0;
EVideoFrameType eFrameType = videoFrameTypeInvalid;
int32_t iCurWidth = 0;
int32_t iCurHeight = 0;
EWelsNalUnitType eNalType = NAL_UNIT_UNSPEC_0;
EWelsNalRefIdc eNalRefIdc = NRI_PRI_LOWEST;
int8_t iCurDid = 0;
int32_t iCurTid = 0;
bool bAvcBased = false;
SLogContext* pLogCtx = & (pCtx->sLogCtx);
#if defined(ENABLE_PSNR_CALC)
float fSnrY = .0f, fSnrU = .0f, fSnrV = .0f;
#endif//ENABLE_PSNR_CALC
#if defined(_DEBUG)
int32_t i = 0, j = 0, k = 0;
#endif//_DEBUG
pCtx->iEncoderError = ENC_RETURN_SUCCESS;
pCtx->bCurFrameMarkedAsSceneLtr = false;
pFbi->eFrameType = videoFrameTypeSkip;
pFbi->iLayerNum = 0; // for initialization
pFbi->uiTimeStamp = GetTimestampForRc (pSrcPic->uiTimeStamp, pCtx->uiLastTimestamp,
pCtx->pSvcParam->sSpatialLayers[pCtx->pSvcParam->iSpatialLayerNum - 1].fFrameRate);
for (int32_t iNalIdx = 0; iNalIdx < MAX_LAYER_NUM_OF_FRAME; iNalIdx++) {
pFbi->sLayerInfo[iNalIdx].eFrameType = videoFrameTypeSkip;
}
// perform csc/denoise/downsample/padding, generate spatial layers
iSpatialNum = pCtx->pVpp->BuildSpatialPicList (pCtx, pSrcPic);
if (pCtx->pFuncList->pfRc.pfWelsUpdateMaxBrWindowStatus) {
pCtx->pFuncList->pfRc.pfWelsUpdateMaxBrWindowStatus (pCtx, iSpatialNum, pFbi->uiTimeStamp);
}
if (iSpatialNum < 1) {
for (int32_t iDidIdx = 0; iDidIdx < pSvcParam->iSpatialLayerNum; iDidIdx++) {
SSpatialLayerInternal* pParamInternal = &pSvcParam->sDependencyLayers[iDidIdx];
pParamInternal->iCodingIndex ++;
}
pFbi->eFrameType = videoFrameTypeSkip;
pLayerBsInfo->eFrameType = videoFrameTypeSkip;
WelsLog (& (pCtx->sLogCtx), WELS_LOG_DEBUG,
"[Rc] Frame timestamp = %lld, skip one frame due to preprocessing return (temporal layer settings or else)",
pSrcPic->uiTimeStamp);
return ENC_RETURN_SUCCESS;
}
InitBitStream (pCtx);
pLayerBsInfo->pBsBuf = pCtx->pFrameBs ;
pLayerBsInfo->pNalLengthInByte = pCtx->pOut->pNalLen;
iCurDid = pSpatialIndexMap->iDid;
pCtx->pCurDqLayer = pCtx->ppDqLayerList[iCurDid];
pCtx->pCurDqLayer->pRefLayer = NULL;
if (!pSvcParam->bSimulcastAVC) {
eFrameType = PrepareEncodeFrame (pCtx, pLayerBsInfo, iSpatialNum , iCurDid, iCurTid, iLayerNum, iFrameSize,
pFbi->uiTimeStamp);
if (eFrameType == videoFrameTypeSkip) {
pFbi->eFrameType = videoFrameTypeSkip;
pLayerBsInfo->eFrameType = videoFrameTypeSkip;
return ENC_RETURN_SUCCESS;
}
} else {
for (int32_t iDidIdx = 0; iDidIdx < pSvcParam->iSpatialLayerNum; iDidIdx++) {
SSpatialLayerInternal* pParamInternal = &pSvcParam->sDependencyLayers[iDidIdx];
int32_t iTemporalId = GetTemporalLevel (pParamInternal, pParamInternal->iCodingIndex,
pSvcParam->uiGopSize);
if (iTemporalId == INVALID_TEMPORAL_ID)
pParamInternal->iCodingIndex ++;
}
}
while (iSpatialIdx < iSpatialNum) {
iCurDid = (pSpatialIndexMap + iSpatialIdx)->iDid;
SSpatialLayerConfig* pParam = &pSvcParam->sSpatialLayers[iCurDid];
SSpatialLayerInternal* pParamInternal = &pSvcParam->sDependencyLayers[iCurDid];
int32_t iDecompositionStages = pSvcParam->sDependencyLayers[iCurDid].iDecompositionStages;
pCtx->pCurDqLayer = pCtx->ppDqLayerList[iCurDid];
pCtx->uiDependencyId = iCurDid;
if (pSvcParam->bSimulcastAVC) {
eFrameType = PrepareEncodeFrame (pCtx, pLayerBsInfo, iSpatialNum , iCurDid, iCurTid, iLayerNum, iFrameSize,
pFbi->uiTimeStamp);
if (eFrameType == videoFrameTypeSkip) {
pLayerBsInfo->eFrameType = videoFrameTypeSkip;
++iSpatialIdx;
continue;
}
}
InitFrameCoding (pCtx, eFrameType, iCurDid);
pCtx->pVpp->AnalyzeSpatialPic (pCtx, iCurDid);
pCtx->pEncPic = pEncPic = (pSpatialIndexMap + iSpatialIdx)->pSrc;
pCtx->pEncPic->iPictureType = pCtx->eSliceType;
pCtx->pEncPic->iFramePoc = pParamInternal->iPOC;
iCurWidth = pParam->iVideoWidth;
iCurHeight = pParam->iVideoHeight;
iDidList[iSpatialIdx] = iCurDid;
// Encoding this picture might mulitiple sQualityStat layers potentially be encoded as followed
switch (pParam->sSliceArgument.uiSliceMode) {
case SM_FIXEDSLCNUM_SLICE: {
if ((iCurDid > 0) && (pSvcParam->iMultipleThreadIdc > 1) &&
(pSvcParam->bUseLoadBalancing
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sSpatialLayers[iCurDid].sSliceArgument.uiSliceNum)
)
AdjustEnhanceLayer (pCtx, iCurDid);
break;
}
case SM_SIZELIMITED_SLICE: {
int32_t iPicIPartitionNum = PicPartitionNumDecision (pCtx);
// MT compatibility
pCtx->iActiveThreadsNum =
iPicIPartitionNum; // we try to active number of threads, equal to number of picture partitions
WelsInitCurrentDlayerMltslc (pCtx, iPicIPartitionNum);
break;
}
default: {
break;
}
}
/* coding each spatial layer, only one sQualityStat layer within spatial support */
int32_t iSliceCount = 1;
if (iLayerNum >= MAX_LAYER_NUM_OF_FRAME) { // check available layer_bs_info writing as follows
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), iLayerNum(%d) overflow(max:%d)!", iLayerNum,
MAX_LAYER_NUM_OF_FRAME);
return ENC_RETURN_UNSUPPORTED_PARA;
}
iNalIdxInLayer = 0;
bAvcBased = ((pSvcParam->bSimulcastAVC) || (iCurDid == BASE_DEPENDENCY_ID));
pCtx->bNeedPrefixNalFlag = ((!pSvcParam->bSimulcastAVC) && (bAvcBased &&
(pSvcParam->bPrefixNalAddingCtrl ||
(pSvcParam->iSpatialLayerNum > 1))));
if (eFrameType == videoFrameTypeP) {
eNalType = bAvcBased ? NAL_UNIT_CODED_SLICE : NAL_UNIT_CODED_SLICE_EXT;
} else if (eFrameType == videoFrameTypeIDR) {
eNalType = bAvcBased ? NAL_UNIT_CODED_SLICE_IDR : NAL_UNIT_CODED_SLICE_EXT;
}
if (iCurTid == 0 || pCtx->eSliceType == I_SLICE)
eNalRefIdc = NRI_PRI_HIGHEST;
else if (iCurTid == iDecompositionStages)
eNalRefIdc = NRI_PRI_LOWEST;
else if (1 + iCurTid == iDecompositionStages)
eNalRefIdc = NRI_PRI_LOW;
else // more details for other temporal layers?
eNalRefIdc = NRI_PRI_HIGHEST;
pCtx->eNalType = eNalType;
pCtx->eNalPriority = eNalRefIdc;
pCtx->pDecPic = pCtx->ppRefPicListExt[iCurDid]->pNextBuffer;
#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
fsnr = pCtx->pDecPic;
#endif//#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
pCtx->pDecPic->iPictureType = pCtx->eSliceType;
pCtx->pDecPic->iFramePoc = pParamInternal->iPOC;
WelsInitCurrentLayer (pCtx, iCurWidth, iCurHeight);
pCtx->pReferenceStrategy->MarkPic();
if (!pCtx->pReferenceStrategy->BuildRefList (pParamInternal->iPOC, 0)) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
"WelsEncoderEncodeExt(), WelsBuildRefList failed for P frames, pCtx->iNumRef0= %d. ForceCodingIDR!",
pCtx->iNumRef0);
eFrameType = videoFrameTypeIDR;
pCtx->iEncoderError = ENC_RETURN_CORRECTED;
break;
}
if (pCtx->eSliceType != I_SLICE) {
pCtx->pReferenceStrategy->AfterBuildRefList();
}
#ifdef LONG_TERM_REF_DUMP
DumpRef (pCtx);
#endif
if (pSvcParam->iRCMode != RC_OFF_MODE)
pCtx->pVpp->AnalyzePictureComplexity (pCtx, pCtx->pEncPic, ((pCtx->eSliceType == P_SLICE)
&& (pCtx->iNumRef0 > 0)) ? pCtx->pRefList0[0] : NULL,
iCurDid, (pCtx->eSliceType == P_SLICE) && pSvcParam->bEnableBackgroundDetection);
WelsUpdateRefSyntax (pCtx, pParamInternal->iPOC,
eFrameType); //get reordering syntax used for writing slice header and transmit to encoder.
PrefetchReferencePicture (pCtx, eFrameType); // update reference picture for current pDq layer
pCtx->pFuncList->pfRc.pfWelsRcPictureInit (pCtx, pFbi->uiTimeStamp);
PreprocessSliceCoding (pCtx); // MUST be called after pfWelsRcPictureInit() and WelsInitCurrentLayer()
//TODO Complexity Calculation here for screen content
iLayerSize = 0;
if (SM_SINGLE_SLICE == pParam->sSliceArgument.uiSliceMode) { // only one slice within a sQualityStat layer
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (pCtx->bNeedPrefixNalFlag) {
pCtx->iEncoderError = AddPrefixNal (pCtx, pLayerBsInfo, &pLayerBsInfo->pNalLengthInByte[0], &iNalIdxInLayer, eNalType,
eNalRefIdc,
iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iLayerSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, eNalType, eNalRefIdc);
pCtx->iEncoderError = WelsCodeOneSlice (pCtx, 0, eNalType);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
pCtx->iEncoderError = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iSliceSize = pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer];
iLayerSize += iSliceSize;
pCtx->iPosBsBuffer += iSliceSize;
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = iCurDid;
pLayerBsInfo->uiTemporalId = iCurTid;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->iNalCount = ++ iNalIdxInLayer;
pLayerBsInfo->eFrameType = eFrameType;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
}
// for dynamic slicing single threading..
else if ((SM_SIZELIMITED_SLICE == pParam->sSliceArgument.uiSliceMode) && (pSvcParam->iMultipleThreadIdc <= 1)) {
const int32_t kiLastMbInFrame = pCtx->pCurDqLayer->sSliceEncCtx.iMbNumInFrame;
pCtx->iEncoderError = WelsCodeOnePicPartition (pCtx, pFbi, pLayerBsInfo, &iNalIdxInLayer, &iLayerSize, 0,
kiLastMbInFrame, 0);
pLayerBsInfo->eFrameType = eFrameType;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
} else {
//other multi-slice uiSliceMode
// THREAD_FULLY_FIRE_MODE/THREAD_PICK_UP_MODE for any mode of non-SM_SIZELIMITED_SLICE
if ((SM_SIZELIMITED_SLICE != pParam->sSliceArgument.uiSliceMode) && (pSvcParam->iMultipleThreadIdc > 1)) {
iSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer);
if (iLayerNum + 1 >= MAX_LAYER_NUM_OF_FRAME) { // check available layer_bs_info for further writing as followed
WelsLog (pLogCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), iLayerNum(%d) overflow(max:%d) at iDid= %d uiSliceMode= %d, iSliceCount= %d!",
iLayerNum, MAX_LAYER_NUM_OF_FRAME, iCurDid, pParam->sSliceArgument.uiSliceMode, iSliceCount);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (iSliceCount <= 1) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), iSliceCount(%d) from GetCurrentSliceNum() is untrusted due stack/heap crupted!",
iSliceCount);
return ENC_RETURN_UNEXPECTED;
}
//note: the old codes are removed at commit: 3e0ee69
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = pCtx->uiDependencyId;
pLayerBsInfo->uiTemporalId = pCtx->uiTemporalId;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->iNalCount = 0;
pLayerBsInfo->eFrameType = eFrameType;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
pCtx->pTaskManage->ExecuteTasks();
if (pCtx->iEncoderError) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), multi-slice (mode %d) encoding error!",
pParam->sSliceArgument.uiSliceMode);
return pCtx->iEncoderError;
}
iLayerSize = AppendSliceToFrameBs (pCtx, pLayerBsInfo, iSliceCount);
}
// THREAD_FULLY_FIRE_MODE && SM_SIZELIMITED_SLICE
else if ((SM_SIZELIMITED_SLICE == pParam->sSliceArgument.uiSliceMode) && (pSvcParam->iMultipleThreadIdc > 1)) {
const int32_t kiPartitionCnt = pCtx->iActiveThreadsNum;
#if 0 //TODO: temporarily use this to keep old codes for a while, will remove old codes later
int32_t iRet = 0;
// to fire slice coding threads
iRet = FiredSliceThreads (pCtx, &pCtx->pSliceThreading->pThreadPEncCtx[0],
&pCtx->pSliceThreading->pReadySliceCodingEvent[0],
&pCtx->pSliceThreading->pThreadMasterEvent[0],
pFbi, kiPartitionCnt, &pCtx->pCurDqLayer->sSliceEncCtx, true);
if (iRet) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"[MT] WelsEncoderEncodeExt(), FiredSliceThreads return(%d) failed and exit encoding frame, iSliceCount= %d, uiSliceMode= %d, iMultipleThreadIdc= %d!!",
iRet, iSliceCount, pParam->sSliceArgument.uiSliceMode, pSvcParam->iMultipleThreadIdc);
return ENC_RETURN_UNEXPECTED;
}
WelsMultipleEventsWaitAllBlocking (kiPartitionCnt, &pCtx->pSliceThreading->pSliceCodedEvent[0],
&pCtx->pSliceThreading->pSliceCodedMasterEvent);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
#else
int32_t iEndMbIdx = pCtx->pCurDqLayer->sSliceEncCtx.iMbNumInFrame;
for (int32_t iIdx = kiPartitionCnt - 1; iIdx >= 0; --iIdx) {
const int32_t iFirstMbIdx =
pCtx->pCurDqLayer->sLayerInfo.pSliceInLayer[iIdx].sSliceHeaderExt.sSliceHeader.iFirstMbInSlice;
pCtx->pSliceThreading->pThreadPEncCtx[iIdx].iStartMbIndex = iFirstMbIdx;
pCtx->pSliceThreading->pThreadPEncCtx[iIdx].iEndMbIndex = iEndMbIdx;
iEndMbIdx = iFirstMbIdx;
}
//TODO: use a function to remove duplicate code here and ln3994
int32_t iLayerBsIdx = pCtx->pOut->iLayerBsIndex;
SLayerBSInfo* pLbi = &pFbi->sLayerInfo[iLayerBsIdx];
pLbi->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLbi->uiLayerType = VIDEO_CODING_LAYER;
pLbi->uiSpatialId = pCtx->uiDependencyId;
pLbi->uiTemporalId = pCtx->uiTemporalId;
pLbi->uiQualityId = 0;
pLbi->iNalCount = 0;
pLbi->eFrameType = eFrameType;
pLbi->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
int32_t iIdx = 0;
while (iIdx < kiPartitionCnt) {
pCtx->pSliceThreading->pThreadPEncCtx[iIdx].pFrameBsInfo = pFbi;
pCtx->pSliceThreading->pThreadPEncCtx[iIdx].iSliceIndex = iIdx;
SetOneSliceBsBufferUnderMultithread (pCtx, iIdx, iIdx);
++ iIdx;
}
pCtx->pTaskManage->ExecuteTasks();
if (pCtx->iEncoderError) {
WelsLog (pLogCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), multi-slice (mode %d) encoding error = %d!",
pParam->sSliceArgument.uiSliceMode, pCtx->iEncoderError);
return pCtx->iEncoderError;
}
#endif
iLayerSize = AppendSliceToFrameBs (pCtx, pLayerBsInfo, kiPartitionCnt);
} else { // for non-dynamic-slicing mode single threading branch..
const bool bNeedPrefix = pCtx->bNeedPrefixNalFlag;
int32_t iSliceIdx = 0;
iSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer);
while (iSliceIdx < iSliceCount) {
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (bNeedPrefix) {
pCtx->iEncoderError = AddPrefixNal (pCtx, pLayerBsInfo, &pLayerBsInfo->pNalLengthInByte[0], &iNalIdxInLayer, eNalType,
eNalRefIdc,
iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iLayerSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, eNalType, eNalRefIdc);
pCtx->iEncoderError = WelsCodeOneSlice (pCtx, iSliceIdx, eNalType);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
pCtx->iEncoderError = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer, &pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iSliceSize = pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer];
pCtx->iPosBsBuffer += iSliceSize;
iLayerSize += iSliceSize;
#if defined(SLICE_INFO_OUTPUT)
fprintf (stderr,
"@slice=%-6d sliceType:%c idc:%d size:%-6d\n",
iSliceIdx,
(pCtx->eSliceType == P_SLICE ? 'P' : 'I'),
eNalRefIdc,
iSliceSize);
#endif//SLICE_INFO_OUTPUT
++ iNalIdxInLayer;
++ iSliceIdx;
}
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = iCurDid;
pLayerBsInfo->uiTemporalId = iCurTid;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->iNalCount = iNalIdxInLayer;
pLayerBsInfo->eFrameType = eFrameType;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
}
}
if (NULL != pCtx->pFuncList->pfRc.pfWelsRcPostFrameSkipping
&& pCtx->pFuncList->pfRc.pfWelsRcPostFrameSkipping (pCtx, iCurDid, pFbi->uiTimeStamp)) {
StackBackEncoderStatus (pCtx, eFrameType);
ClearFrameBsInfo (pCtx, pFbi);
iFrameSize = 0;
iLayerSize = 0;
iLayerNum = 0;
if (pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip) {
pCtx->pFuncList->pfRc.pfWelsUpdateBufferWhenSkip (pCtx, iSpatialNum);
}
WelsRcPostFrameSkippedUpdate (pCtx, iCurDid);
pCtx->iEncoderError = ENC_RETURN_SUCCESS;
return ENC_RETURN_SUCCESS;
}
// deblocking filter
if (
(!pCtx->pCurDqLayer->bDeblockingParallelFlag) &&
#if !defined(ENABLE_FRAME_DUMP)
((eNalRefIdc != NRI_PRI_LOWEST) && (pSvcParam->sDependencyLayers[iCurDid].iHighestTemporalId == 0
|| iCurTid < pSvcParam->sDependencyLayers[iCurDid].iHighestTemporalId)) &&
#endif//!ENABLE_FRAME_DUMP
true
) {
PerformDeblockingFilter (pCtx);
}
pCtx->pFuncList->pfRc.pfWelsRcPictureInfoUpdate (pCtx, iLayerSize);
RcTraceFrameBits (pCtx, pFbi->uiTimeStamp);
pCtx->pDecPic->iFrameAverageQp = pCtx->pWelsSvcRc[iCurDid].iAverageFrameQp;
//update scc related
pCtx->pFuncList->pfUpdateFMESwitch (pCtx->pCurDqLayer);
// reference picture list update
if (eNalRefIdc != NRI_PRI_LOWEST) {
if (!pCtx->pReferenceStrategy->UpdateRefList()) {
WelsLog (pLogCtx, WELS_LOG_WARNING, "WelsEncoderEncodeExt(), WelsUpdateRefList failed. ForceCodingIDR!");
//the above is to set the next frame to be IDR
pCtx->iEncoderError = ENC_RETURN_CORRECTED;
break;
}
}
iFrameSize += iLayerSize;
//check MinCr
{
int32_t iImageSize = (pParam->iVideoWidth * pParam->iVideoHeight * 3) >> 1;
int32_t iMinCr = g_ksLevelLimits[pParam->uiLevelIdc - 1].uiMinCR;
if (iFrameSize > (iImageSize / iMinCr))
WelsLog (pLogCtx, WELS_LOG_WARNING,
"WelsEncoderEncodeExt()MinCr Checking,codec bitstream size is larger than Level limitation");
}
#ifdef ENABLE_FRAME_DUMP
if (iCurDid + 1 < pSvcParam->iSpatialLayerNum) {
DumpDependencyRec (fsnr, &pSvcParam->sDependencyLayers[iCurDid].sRecFileName[0], iCurDid,
pCtx->bDependencyRecFlag[iCurDid], pCtx->pCurDqLayer);
pCtx->bDependencyRecFlag[iCurDid] = true;
}
#endif//ENABLE_FRAME_DUMP
#if defined(ENABLE_PSNR_CALC)
fSnrY = WelsCalcPsnr (fsnr->pData[0],
fsnr->iLineSize[0],
pEncPic->pData[0],
pEncPic->iLineSize[0],
iCurWidth,
iCurHeight);
fSnrU = WelsCalcPsnr (fsnr->pData[1],
fsnr->iLineSize[1],
pEncPic->pData[1],
pEncPic->iLineSize[1],
(iCurWidth >> 1),
(iCurHeight >> 1));
fSnrV = WelsCalcPsnr (fsnr->pData[2],
fsnr->iLineSize[2],
pEncPic->pData[2],
pEncPic->iLineSize[2],
(iCurWidth >> 1),
(iCurHeight >> 1));
#endif//ENABLE_PSNR_CALC
#if defined(LAYER_INFO_OUTPUT)
fprintf (stderr, "%2s %5d: %-5d %2s T%1d D%1d Q%-2d QP%3d Y%2.2f U%2.2f V%2.2f %8d bits\n",
(iSpatialIdx == 0) ? "#AU" : " ",
pCtx->iPOC,
pCtx->iFrameNum,
(eFrameType == videoFrameTypeI || eFrameType == videoFrameTypeIDR) ? "I" : "P",
iCurTid,
iCurDid,
0,
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iAverageFrameQp,
fSnrY,
fSnrU,
fSnrV,
(iLayerSize << 3));
#endif//LAYER_INFO_OUTPUT
#if defined(STAT_OUTPUT)
#if defined(ENABLE_PSNR_CALC)
{
pCtx->sStatData[iCurDid][0].sQualityStat.rYPsnr[pCtx->eSliceType] += fSnrY;
pCtx->sStatData[iCurDid][0].sQualityStat.rUPsnr[pCtx->eSliceType] += fSnrU;
pCtx->sStatData[iCurDid][0].sQualityStat.rVPsnr[pCtx->eSliceType] += fSnrV;
}
#endif//ENABLE_PSNR_CALC
#if defined(MB_TYPES_CHECK) //091025, frame output
if (pCtx->eSliceType == P_SLICE) {
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Intra4x4] += pCtx->sPerInfo.iMbCount[P_SLICE][Intra4x4];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Intra16x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Intra16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter16x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter16x8] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter16x8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter8x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter8x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter8x8] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter8x8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][PSkip] += pCtx->sPerInfo.iMbCount[P_SLICE][PSkip];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][8] += pCtx->sPerInfo.iMbCount[P_SLICE][8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][9] += pCtx->sPerInfo.iMbCount[P_SLICE][9];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][10] += pCtx->sPerInfo.iMbCount[P_SLICE][10];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][11] += pCtx->sPerInfo.iMbCount[P_SLICE][11];
} else if (pCtx->eSliceType == I_SLICE) {
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][Intra4x4] += pCtx->sPerInfo.iMbCount[I_SLICE][Intra4x4];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][Intra16x16] += pCtx->sPerInfo.iMbCount[I_SLICE][Intra16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][7] += pCtx->sPerInfo.iMbCount[I_SLICE][7];
}
memset (pCtx->sPerInfo.iMbCount[P_SLICE], 0, 18 * sizeof (int32_t));
memset (pCtx->sPerInfo.iMbCount[I_SLICE], 0, 18 * sizeof (int32_t));
#endif//MB_TYPES_CHECK
{
++ pCtx->sStatData[iCurDid][0].sSliceData.iSliceCount[pCtx->eSliceType]; // for multiple slices coding
pCtx->sStatData[iCurDid][0].sSliceData.iSliceSize[pCtx->eSliceType] += (iLayerSize << 3); // bits
}
#endif//STAT_OUTPUT
iCountNal = pLayerBsInfo->iNalCount;
++ iLayerNum;
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + iCountNal;
if (pSvcParam->iPaddingFlag && pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize > 0) {
int32_t iPaddingNalSize = 0;
pCtx->iEncoderError = WritePadding (pCtx, pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize, iPaddingNalSize);
WELS_VERIFY_RETURN_IFNEQ (pCtx->iEncoderError, ENC_RETURN_SUCCESS)
#if GOM_TRACE_FLAG
WelsLog (pLogCtx, WELS_LOG_INFO, "[RC] dependency ID = %d,encoding_qp = %d Padding: %d", pCtx->uiDependencyId,
pCtx->iGlobalQp,
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize);
#endif
if (iPaddingNalSize <= 0)
return ENC_RETURN_UNEXPECTED;
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingBitrateStat += pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize;
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize = 0;
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = 1;
pLayerBsInfo->pNalLengthInByte[0] = iPaddingNalSize;
pLayerBsInfo->eFrameType = eFrameType;
pLayerBsInfo->iSubSeqId = GetSubSequenceId (pCtx, eFrameType);
++ pLayerBsInfo;
++ pCtx->pOut->iLayerBsIndex;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
pLayerBsInfo->pNalLengthInByte = (pLayerBsInfo - 1)->pNalLengthInByte + 1;
++ iLayerNum;
iFrameSize += iPaddingNalSize;
}
if ((pParam->sSliceArgument.uiSliceMode == SM_FIXEDSLCNUM_SLICE)
&& pSvcParam->bUseLoadBalancing
&& pSvcParam->iMultipleThreadIdc > 1 &&
pSvcParam->iMultipleThreadIdc >= pParam->sSliceArgument.uiSliceNum) {
CalcSliceComplexRatio (pCtx->pCurDqLayer);
#if defined(MT_DEBUG)
TrackSliceComplexities (pCtx, iCurDid);
#endif//#if defined(MT_DEBUG)
}
pCtx->eLastNalPriority[iCurDid] = eNalRefIdc;
++ iSpatialIdx;
if (iCurDid + 1 < pSvcParam->iSpatialLayerNum) {
//for next layer, note that iSpatialIdx has been ++ so it is pointer to next layer
WelsSwapDqLayers (pCtx, (pSpatialIndexMap + iSpatialIdx)->iDid);
}
if (pCtx->pVpp->UpdateSpatialPictures (pCtx, pSvcParam, iCurTid, iCurDid) != 0) {
ForceCodingIDR (pCtx);
WelsLog (pLogCtx, WELS_LOG_WARNING,
"WelsEncoderEncodeExt(), Logic Error Found in Preprocess updating. ForceCodingIDR!");
//the above is to set the next frame IDR
pFbi->eFrameType = eFrameType;
pLayerBsInfo->eFrameType = eFrameType;
return ENC_RETURN_CORRECTED;
}
if (pSvcParam->bEnableLongTermReference && ((pCtx->pLtr[pCtx->uiDependencyId].bLTRMarkingFlag
&& (pCtx->pLtr[pCtx->uiDependencyId].iLTRMarkMode == LTR_DIRECT_MARK)) || eFrameType == videoFrameTypeIDR)) {
pCtx->bRefOfCurTidIsLtr[iCurDid][iCurTid] = true;
}
if (pSvcParam->bSimulcastAVC)
++ pParamInternal->iCodingIndex;
}//end of (iSpatialIdx/iSpatialNum)
if (!pSvcParam->bSimulcastAVC) {
for (int32_t i = 0; i < pSvcParam->iSpatialLayerNum; i++) {
SSpatialLayerInternal* pParamInternal = &pSvcParam->sDependencyLayers[i];
pParamInternal->iCodingIndex ++;
}
}
if (ENC_RETURN_CORRECTED == pCtx->iEncoderError) {
pCtx->pVpp->UpdateSpatialPictures (pCtx, pSvcParam, iCurTid, (pSpatialIndexMap + iSpatialIdx)->iDid);
ForceCodingIDR (pCtx);
WelsLog (pLogCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), Logic Error Found in temporal level. ForceCodingIDR!");
//the above is to set the next frame IDR
pFbi->eFrameType = eFrameType;
pLayerBsInfo->eFrameType = eFrameType;
return ENC_RETURN_CORRECTED;
}
#if defined(MT_DEBUG)
TrackSliceConsumeTime (pCtx, iDidList, iSpatialNum);
#endif//MT_DEBUG
if (pSvcParam->iMultipleThreadIdc > 1 && iDidList[0] == BASE_DEPENDENCY_ID
&& (pSvcParam->sSpatialLayers[0].sSliceArgument.uiSliceMode == SM_FIXEDSLCNUM_SLICE)
&& pSvcParam->bUseLoadBalancing
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sSpatialLayers[0].sSliceArgument.uiSliceNum
&& ((pSvcParam->sSpatialLayers[iDidList[iSpatialNum - 1]].sSliceArgument.uiSliceMode == SM_FIXEDSLCNUM_SLICE))
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sSpatialLayers[iDidList[iSpatialNum -
1]].sSliceArgument.uiSliceNum) {
AdjustBaseLayer (pCtx);
}
#ifdef ENABLE_FRAME_DUMP
DumpRecFrame (fsnr, &pSvcParam->sDependencyLayers[pSvcParam->iSpatialLayerNum - 1].sRecFileName[0],
pSvcParam->iSpatialLayerNum - 1, pCtx->bRecFlag, pCtx->pCurDqLayer); // pDecPic: final reconstruction output
pCtx->bRecFlag = true;
#endif//ENABLE_FRAME_DUMP
// to check number of layers / nals / slices dependencies
if (iLayerNum > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), iLayerNum(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iLayerNum, MAX_LAYER_NUM_OF_FRAME);
return 1;
}
pFbi->iLayerNum = iLayerNum;
WelsLog (pLogCtx, WELS_LOG_DEBUG, "WelsEncoderEncodeExt() OutputInfo iLayerNum = %d,iFrameSize = %d",
iLayerNum, iFrameSize);
for (int32_t i = 0; i < iLayerNum; i++)
WelsLog (pLogCtx, WELS_LOG_DEBUG,
"WelsEncoderEncodeExt() OutputInfo iLayerId = %d,iNalType = %d,iNalCount = %d, first Nal Length=%d,uiSpatialId = %d,uiTemporalId = %d,iSubSeqId = %d",
i,
pFbi->sLayerInfo[i].uiLayerType, pFbi->sLayerInfo[i].iNalCount, pFbi->sLayerInfo[i].pNalLengthInByte[0],
pFbi->sLayerInfo[i].uiSpatialId, pFbi->sLayerInfo[i].uiTemporalId, pFbi->sLayerInfo[i].iSubSeqId);
WelsEmms();
pLayerBsInfo->eFrameType = eFrameType;
pFbi->iFrameSizeInBytes = iFrameSize;
pFbi->eFrameType = eFrameType;
for (int32_t k = 0; k < pFbi->iLayerNum; k++) {
if (pFbi->eFrameType != pFbi->sLayerInfo[k].eFrameType) {
pFbi->eFrameType = videoFrameTypeIPMixed;
}
}
#ifdef _DEBUG
if (pFbi->iLayerNum > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), iLayerNum(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
pFbi->iLayerNum, MAX_LAYER_NUM_OF_FRAME);
return ENC_RETURN_UNEXPECTED;
}
int32_t iTotalNal = 0;
for (int32_t k = 0; k < pFbi->iLayerNum; k++) {
iTotalNal += pFbi->sLayerInfo[k].iNalCount;
if ((pCtx->iActiveThreadsNum > 1) && (MAX_NAL_UNITS_IN_LAYER < pFbi->sLayerInfo[k].iNalCount)) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), iCountNumNals(%d) > MAX_NAL_UNITS_IN_LAYER(%d) under multi-thread(%d) NOT supported!",
pFbi->sLayerInfo[k].iNalCount, MAX_NAL_UNITS_IN_LAYER), pCtx->iActiveThreadsNum;
return ENC_RETURN_UNEXPECTED;
}
}
if (iTotalNal > pCtx->pOut->iCountNals) {
WelsLog (& pCtx->sLogCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), iTotalNal(%d) > iCountNals(%d)!",
iTotalNal, pCtx->pOut->iCountNals);
return ENC_RETURN_UNEXPECTED;
}
#endif
return ENC_RETURN_SUCCESS;
}
/*!
* \brief Wels SVC encoder parameters adjustment
* SVC adjustment results in new requirement in memory blocks adjustment
*/
int32_t WelsEncoderParamAdjust (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pNewParam) {
SWelsSvcCodingParam* pOldParam = NULL;
int32_t iReturn = ENC_RETURN_SUCCESS;
int8_t iIndexD = 0;
bool bNeedReset = false;
int16_t iSliceNum = 1; // number of slices used
int32_t iCacheLineSize = 16; // on chip cache line size in byte
uint32_t uiCpuFeatureFlags = 0;
if (NULL == ppCtx || NULL == *ppCtx || NULL == pNewParam) return 1;
/* Check validation in new parameters */
iReturn = ParamValidationExt (& (*ppCtx)->sLogCtx, pNewParam);
if (iReturn != ENC_RETURN_SUCCESS) return iReturn;
iReturn = GetMultipleThreadIdc (& (*ppCtx)->sLogCtx, pNewParam, iSliceNum, iCacheLineSize, uiCpuFeatureFlags);
if (iReturn != ENC_RETURN_SUCCESS) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR, "WelsEncoderParamAdjust(), GetMultipleThreadIdc failed return %d.",
iReturn);
return iReturn;
}
pOldParam = (*ppCtx)->pSvcParam;
if (pOldParam->iUsageType != pNewParam->iUsageType) {
WelsLog (& (*ppCtx)->sLogCtx, WELS_LOG_ERROR,
"WelsEncoderParamAdjust(), does not expect in-middle change of iUsgaeType from %d to %d", pOldParam->iUsageType,
pNewParam->iUsageType);
return ENC_RETURN_UNSUPPORTED_PARA;
}
/* Decide whether need reset for IDR frame based on adjusting prarameters changed */
/* Temporal levels, spatial settings and/ or quality settings changed need update parameter sets related. */
bNeedReset = (pOldParam == NULL) ||
(pOldParam->bSimulcastAVC != pNewParam->bSimulcastAVC) ||
(pOldParam->iSpatialLayerNum != pNewParam->iSpatialLayerNum) ||
(pOldParam->iPicWidth != pNewParam->iPicWidth
|| pOldParam->iPicHeight != pNewParam->iPicHeight) ||
(pOldParam->SUsedPicRect.iWidth != pNewParam->SUsedPicRect.iWidth
|| pOldParam->SUsedPicRect.iHeight != pNewParam->SUsedPicRect.iHeight) ||
(pOldParam->bEnableLongTermReference != pNewParam->bEnableLongTermReference) ||
(pOldParam->iLTRRefNum != pNewParam->iLTRRefNum) ||
(pOldParam->iMultipleThreadIdc != pNewParam->iMultipleThreadIdc) ||
(pOldParam->bEnableBackgroundDetection != pNewParam->bEnableBackgroundDetection) ||
(pOldParam->bEnableAdaptiveQuant != pNewParam->bEnableAdaptiveQuant) ||
(pOldParam->eSpsPpsIdStrategy != pNewParam->eSpsPpsIdStrategy);
if (pNewParam->iMaxNumRefFrame > pOldParam->iMaxNumRefFrame) {
bNeedReset = true;
}
if (!bNeedReset) { // Check its picture resolutions/quality settings respectively in each dependency layer
iIndexD = 0;
assert (pOldParam->iSpatialLayerNum == pNewParam->iSpatialLayerNum);
do {
const SSpatialLayerInternal* kpOldDlp = &pOldParam->sDependencyLayers[iIndexD];
const SSpatialLayerInternal* kpNewDlp = &pNewParam->sDependencyLayers[iIndexD];
float fT1 = .0f;
float fT2 = .0f;
// check frame size settings
if (pOldParam->sSpatialLayers[iIndexD].iVideoWidth != pNewParam->sSpatialLayers[iIndexD].iVideoWidth ||
pOldParam->sSpatialLayers[iIndexD].iVideoHeight != pNewParam->sSpatialLayers[iIndexD].iVideoHeight ||
kpOldDlp->iActualWidth != kpNewDlp->iActualWidth ||
kpOldDlp->iActualHeight != kpNewDlp->iActualHeight) {
bNeedReset = true;
break;
}
if (pOldParam->sSpatialLayers[iIndexD].sSliceArgument.uiSliceMode !=
pNewParam->sSpatialLayers[iIndexD].sSliceArgument.uiSliceMode
||
pOldParam->sSpatialLayers[iIndexD].sSliceArgument.uiSliceNum !=
pNewParam->sSpatialLayers[iIndexD].sSliceArgument.uiSliceNum) {
bNeedReset = true;
break;
}
// check frame rate
// we can not check whether corresponding fFrameRate is equal or not,
// only need to check d_max/d_min and max_fr/d_max whether it is equal or not
if (kpNewDlp->fInputFrameRate > EPSN && kpOldDlp->fInputFrameRate > EPSN)
fT1 = kpNewDlp->fOutputFrameRate / kpNewDlp->fInputFrameRate - kpOldDlp->fOutputFrameRate / kpOldDlp->fInputFrameRate;
if (kpNewDlp->fOutputFrameRate > EPSN && kpOldDlp->fOutputFrameRate > EPSN)
fT2 = pNewParam->fMaxFrameRate / kpNewDlp->fOutputFrameRate - pOldParam->fMaxFrameRate / kpOldDlp->fOutputFrameRate;
if (fT1 > EPSN || fT1 < -EPSN || fT2 > EPSN || fT2 < -EPSN) {
bNeedReset = true;
break;
}
++ iIndexD;
} while (iIndexD < pOldParam->iSpatialLayerNum);
}
if (bNeedReset) {
SLogContext sLogCtx = (*ppCtx)->sLogCtx;
int32_t iOldSpsPpsIdStrategy = pOldParam->eSpsPpsIdStrategy;
SParaSetOffsetVariable sTmpPsoVariable[PARA_SET_TYPE];
int32_t iTmpPpsIdList[MAX_DQ_LAYER_NUM * MAX_PPS_COUNT];
uint16_t uiTmpIdrPicId = (*ppCtx)->uiIdrPicId;//this is for LTR!
SEncoderStatistics sTempEncoderStatistics[MAX_DEPENDENCY_LAYER];
memcpy (sTempEncoderStatistics, (*ppCtx)->sEncoderStatistics, sizeof (sTempEncoderStatistics));
SExistingParasetList sExistingParasetList;
SExistingParasetList* pExistingParasetList = NULL;
if (((CONSTANT_ID != iOldSpsPpsIdStrategy) && (CONSTANT_ID != pNewParam->eSpsPpsIdStrategy))) {
(*ppCtx)->pFuncList->pParametersetStrategy->OutputCurrentStructure (sTmpPsoVariable, iTmpPpsIdList, (*ppCtx),
&sExistingParasetList);
if ((SPS_LISTING & iOldSpsPpsIdStrategy)
&& (SPS_LISTING & pNewParam->eSpsPpsIdStrategy)) {
pExistingParasetList = &sExistingParasetList;
}
}
WelsUninitEncoderExt (ppCtx);
/* Update new parameters */
if (WelsInitEncoderExt (ppCtx, pNewParam, &sLogCtx, pExistingParasetList))
return 1;
//if WelsInitEncoderExt succeed
//for LTR
(*ppCtx)->uiIdrPicId = uiTmpIdrPicId ;//this is for LTR!; //this is for LTR!
//for sEncoderStatistics
memcpy ((*ppCtx)->sEncoderStatistics, sTempEncoderStatistics, sizeof (sTempEncoderStatistics));
//load back the needed structure for eSpsPpsIdStrategy
if (((CONSTANT_ID != iOldSpsPpsIdStrategy) && (CONSTANT_ID != pNewParam->eSpsPpsIdStrategy))
|| ((SPS_PPS_LISTING == iOldSpsPpsIdStrategy)
&& (SPS_PPS_LISTING == pNewParam->eSpsPpsIdStrategy))) {
(*ppCtx)->pFuncList->pParametersetStrategy->LoadPreviousStructure (sTmpPsoVariable, iTmpPpsIdList);
}
} else {
/* maybe adjustment introduced in bitrate or little settings adjustment and so on.. */
pNewParam->iNumRefFrame = WELS_CLIP3 (pNewParam->iNumRefFrame, MIN_REF_PIC_COUNT,
(pNewParam->iUsageType == CAMERA_VIDEO_REAL_TIME ? MAX_REFERENCE_PICTURE_COUNT_NUM_CAMERA :
MAX_REFERENCE_PICTURE_COUNT_NUM_SCREEN));
pNewParam->iLoopFilterDisableIdc = WELS_CLIP3 (pNewParam->iLoopFilterDisableIdc, 0, 6);
pNewParam->iLoopFilterAlphaC0Offset = WELS_CLIP3 (pNewParam->iLoopFilterAlphaC0Offset, -6, 6);
pNewParam->iLoopFilterBetaOffset = WELS_CLIP3 (pNewParam->iLoopFilterBetaOffset, -6, 6);
pNewParam->fMaxFrameRate = WELS_CLIP3 (pNewParam->fMaxFrameRate, MIN_FRAME_RATE, MAX_FRAME_RATE);
// we can not use direct struct based memcpy due some fields need keep unchanged as before
pOldParam->fMaxFrameRate = pNewParam->fMaxFrameRate; // maximal frame rate [Hz / fps]
pOldParam->iComplexityMode = pNewParam->iComplexityMode; // color space of input sequence
pOldParam->uiIntraPeriod = pNewParam->uiIntraPeriod; // intra period (multiple of GOP size as desired)
pOldParam->eSpsPpsIdStrategy = pNewParam->eSpsPpsIdStrategy;
pOldParam->bPrefixNalAddingCtrl = pNewParam->bPrefixNalAddingCtrl;
pOldParam->iNumRefFrame = pNewParam->iNumRefFrame; // number of reference frame used
pOldParam->uiGopSize = pNewParam->uiGopSize;
if (pOldParam->iTemporalLayerNum != pNewParam->iTemporalLayerNum) {
pOldParam->iTemporalLayerNum = pNewParam->iTemporalLayerNum;
for (int32_t iIndexD = 0; iIndexD < MAX_DEPENDENCY_LAYER; iIndexD++)
pOldParam->sDependencyLayers[iIndexD].iCodingIndex = 0;
}
pOldParam->iDecompStages = pNewParam->iDecompStages;
/* denoise control */
pOldParam->bEnableDenoise = pNewParam->bEnableDenoise;
/* background detection control */
pOldParam->bEnableBackgroundDetection = pNewParam->bEnableBackgroundDetection;
/* adaptive quantization control */
pOldParam->bEnableAdaptiveQuant = pNewParam->bEnableAdaptiveQuant;
/* int32_t term reference control */
pOldParam->bEnableLongTermReference = pNewParam->bEnableLongTermReference;
pOldParam->iLtrMarkPeriod = pNewParam->iLtrMarkPeriod;
// keep below values unchanged as before
pOldParam->bEnableSSEI = pNewParam->bEnableSSEI;
pOldParam->bSimulcastAVC = pNewParam->bSimulcastAVC;
pOldParam->bEnableFrameCroppingFlag = pNewParam->bEnableFrameCroppingFlag; // enable frame cropping flag
/* Motion search */
/* Deblocking loop filter */
pOldParam->iLoopFilterDisableIdc =
pNewParam->iLoopFilterDisableIdc; // 0: on, 1: off, 2: on except for slice boundaries
pOldParam->iLoopFilterAlphaC0Offset = pNewParam->iLoopFilterAlphaC0Offset;// AlphaOffset: valid range [-6, 6], default 0
pOldParam->iLoopFilterBetaOffset =
pNewParam->iLoopFilterBetaOffset; // BetaOffset: valid range [-6, 6], default 0
/* Rate Control */
pOldParam->iRCMode = pNewParam->iRCMode;
pOldParam->iTargetBitrate =
pNewParam->iTargetBitrate; // overall target bitrate introduced in RC module
pOldParam->iPaddingFlag = pNewParam->iPaddingFlag;
/* Layer definition */
pOldParam->bPrefixNalAddingCtrl = pNewParam->bPrefixNalAddingCtrl;
// d
iIndexD = 0;
do {
SSpatialLayerInternal* pOldDlpInternal = &pOldParam->sDependencyLayers[iIndexD];
SSpatialLayerInternal* pNewDlpInternal = &pNewParam->sDependencyLayers[iIndexD];
SSpatialLayerConfig* pOldDlp = &pOldParam->sSpatialLayers[iIndexD];
SSpatialLayerConfig* pNewDlp = &pNewParam->sSpatialLayers[iIndexD];
pOldDlpInternal->fInputFrameRate = pNewDlpInternal->fInputFrameRate; // input frame rate
pOldDlpInternal->fOutputFrameRate = pNewDlpInternal->fOutputFrameRate; // output frame rate
pOldDlp->iSpatialBitrate = pNewDlp->iSpatialBitrate;
pOldDlp->iMaxSpatialBitrate = pNewDlp->iMaxSpatialBitrate;
pOldDlp->uiProfileIdc =
pNewDlp->uiProfileIdc; // value of profile IDC (0 for auto-detection)
pOldDlp->iDLayerQp = pNewDlp->iDLayerQp;
/* Derived variants below */
pOldDlpInternal->iTemporalResolution = pNewDlpInternal->iTemporalResolution;
pOldDlpInternal->iDecompositionStages = pNewDlpInternal->iDecompositionStages;
memcpy (pOldDlpInternal->uiCodingIdx2TemporalId, pNewDlpInternal->uiCodingIdx2TemporalId,
sizeof (pOldDlpInternal->uiCodingIdx2TemporalId)); // confirmed_safe_unsafe_usage
++ iIndexD;
} while (iIndexD < pOldParam->iSpatialLayerNum);
}
/* Any else initialization/reset for rate control here? */
return 0;
}
int32_t WelsEncoderApplyLTR (SLogContext* pLogCtx, sWelsEncCtx** ppCtx, SLTRConfig* pLTRValue) {
SWelsSvcCodingParam sConfig;
int32_t iNumRefFrame = 1;
int32_t iRet = 0;
memcpy (&sConfig, (*ppCtx)->pSvcParam, sizeof (SWelsSvcCodingParam));
sConfig.bEnableLongTermReference = pLTRValue->bEnableLongTermReference;
sConfig.iLTRRefNum = pLTRValue->iLTRRefNum;
int32_t uiGopSize = 1 << (sConfig.iTemporalLayerNum - 1);
if (sConfig.iUsageType == SCREEN_CONTENT_REAL_TIME) {
if (sConfig.bEnableLongTermReference) {
sConfig.iLTRRefNum = LONG_TERM_REF_NUM_SCREEN;//WELS_CLIP3 (sConfig.iLTRRefNum, 1, LONG_TERM_REF_NUM_SCREEN);
iNumRefFrame = WELS_MAX (1, WELS_LOG2 (uiGopSize)) + sConfig.iLTRRefNum;
} else {
sConfig.iLTRRefNum = 0;
iNumRefFrame = WELS_MAX (1, uiGopSize >> 1);
}
} else {
if (sConfig.bEnableLongTermReference) {
sConfig.iLTRRefNum = LONG_TERM_REF_NUM;//WELS_CLIP3 (sConfig.iLTRRefNum, 1, LONG_TERM_REF_NUM);
} else {
sConfig.iLTRRefNum = 0;
}
iNumRefFrame = ((uiGopSize >> 1) > 1) ? ((uiGopSize >> 1) + sConfig.iLTRRefNum) : (MIN_REF_PIC_COUNT +
sConfig.iLTRRefNum);
iNumRefFrame = WELS_CLIP3 (iNumRefFrame, MIN_REF_PIC_COUNT, MAX_REFERENCE_PICTURE_COUNT_NUM_CAMERA);
}
if (iNumRefFrame > sConfig.iMaxNumRefFrame) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
" CWelsH264SVCEncoder::SetOption LTR flag = %d and number = %d: Required number of reference increased to %d and iMaxNumRefFrame is adjusted (from %d)",
sConfig.bEnableLongTermReference, sConfig.iLTRRefNum, iNumRefFrame, sConfig.iMaxNumRefFrame);
sConfig.iMaxNumRefFrame = iNumRefFrame;
}
if (sConfig.iNumRefFrame < iNumRefFrame) {
WelsLog (pLogCtx, WELS_LOG_WARNING,
" CWelsH264SVCEncoder::SetOption LTR flag = %d and number = %d, Required number of reference increased from Old = %d to New = %d because of LTR setting",
sConfig.bEnableLongTermReference, sConfig.iLTRRefNum, sConfig.iNumRefFrame, iNumRefFrame);
sConfig.iNumRefFrame = iNumRefFrame;
}
WelsLog (pLogCtx, WELS_LOG_INFO, "CWelsH264SVCEncoder::SetOption enable LTR = %d,ltrnum = %d",
sConfig.bEnableLongTermReference, sConfig.iLTRRefNum);
iRet = WelsEncoderParamAdjust (ppCtx, &sConfig);
return iRet;
}
int32_t FrameBsRealloc (sWelsEncCtx* pCtx,
SFrameBSInfo* pFrameBsInfo,
SLayerBSInfo* pLayerBsInfo) {
CMemoryAlign* pMA = pCtx->pMemAlign;
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
int32_t iCountNals = pCtx->pOut->iCountNals;
int32_t iMaxSliceNumOld = pCurLayer->sSliceEncCtx.iMaxSliceNumConstraint;
int32_t iMaxSliceNum = iMaxSliceNumOld;
iCountNals += iMaxSliceNum * (pCtx->pSvcParam->iSpatialLayerNum + pCtx->bNeedPrefixNalFlag);
iMaxSliceNum *= SLICE_NUM_EXPAND_COEF;
SWelsNalRaw* pNalList = (SWelsNalRaw*)pMA->WelsMallocz (iCountNals * sizeof (SWelsNalRaw), "pOut->sNalList");
if (NULL == pNalList) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR, "CWelsH264SVCEncoder::DynSliceRealloc: pNalList is NULL");
return ENC_RETURN_MEMALLOCERR;
}
memcpy (pNalList, pCtx->pOut->sNalList, sizeof (SWelsNalRaw) * pCtx->pOut->iCountNals);
pMA->WelsFree (pCtx->pOut->sNalList, "pOut->sNalList");
pCtx->pOut->sNalList = pNalList;
int32_t* pNalLen = (int32_t*)pMA->WelsMallocz (iCountNals * sizeof (int32_t), "pOut->pNalLen");
if (NULL == pNalLen) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR, "CWelsH264SVCEncoder::DynSliceRealloc: pNalLen is NULL");
return ENC_RETURN_MEMALLOCERR;
}
memcpy (pNalLen, pCtx->pOut->pNalLen, sizeof (int32_t) * pCtx->pOut->iCountNals);
pMA->WelsFree (pCtx->pOut->pNalLen, "pOut->pNalLen");
pCtx->pOut->pNalLen = pNalLen;
pCtx->pOut->iCountNals = iCountNals;
SLayerBSInfo* pLBI1, *pLBI2;
pLBI1 = &pFrameBsInfo->sLayerInfo[0];
pLBI1->pNalLengthInByte = pCtx->pOut->pNalLen;
while (pLBI1 != pLayerBsInfo) {
pLBI2 = pLBI1;
++ pLBI1;
pLBI1->pNalLengthInByte = pLBI2->pNalLengthInByte + pLBI2->iNalCount;
}
return ENC_RETURN_SUCCESS;
}
int32_t SliceBufferRealloc (sWelsEncCtx* pCtx) {
CMemoryAlign* pMA = pCtx->pMemAlign;
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
int32_t iMaxSliceNumOld = pCurLayer->sSliceEncCtx.iMaxSliceNumConstraint;
int32_t iMaxSliceNum = iMaxSliceNumOld;
iMaxSliceNum *= SLICE_NUM_EXPAND_COEF;
SSlice* pSlice = (SSlice*)pMA->WelsMallocz (sizeof (SSlice) * iMaxSliceNum, "Slice");
if (NULL == pSlice) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR, "CWelsH264SVCEncoder::DynSliceRealloc: pSlice is NULL");
return ENC_RETURN_MEMALLOCERR;
}
memcpy (pSlice, pCurLayer->sLayerInfo.pSliceInLayer, sizeof (SSlice) * iMaxSliceNumOld);
int32_t uiSliceIdx;
uiSliceIdx = iMaxSliceNumOld;
SSlice* pBaseSlice = &pCurLayer->sLayerInfo.pSliceInLayer[0];
SSliceHeaderExt* pBaseSHExt = &pBaseSlice->sSliceHeaderExt;
SSlice* pSliceIdx = &pSlice[uiSliceIdx];
const int32_t kiCurDid = pCtx->uiDependencyId;
const int32_t kiBitsPerMb = WELS_DIV_ROUND (pCtx->pWelsSvcRc[kiCurDid].iTargetBits * INT_MULTIPLY,
pCtx->pWelsSvcRc[kiCurDid].iNumberMbFrame);
while (uiSliceIdx < iMaxSliceNum) {
SSliceHeaderExt* pSHExt = &pSliceIdx->sSliceHeaderExt;
pSliceIdx->uiSliceIdx = uiSliceIdx;
if (pCtx->pSvcParam->iMultipleThreadIdc > 1)
pSliceIdx->pSliceBsa = &pSliceIdx->sSliceBs.sBsWrite;
else
pSliceIdx->pSliceBsa = &pCtx->pOut->sBsWrite;
if (AllocMbCacheAligned (&pSliceIdx->sMbCacheInfo, pMA)) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR,
"CWelsH264SVCEncoder::DynSliceRealloc: realloc MbCache not successful at slice_idx=%d (max-slice=%d)",
uiSliceIdx, iMaxSliceNum);
return ENC_RETURN_MEMALLOCERR;
}
pSliceIdx->bSliceHeaderExtFlag = pBaseSlice->bSliceHeaderExtFlag;
pSHExt->sSliceHeader.iPpsId = pBaseSHExt->sSliceHeader.iPpsId;
pSHExt->sSliceHeader.pPps = pBaseSHExt->sSliceHeader.pPps;
pSHExt->sSliceHeader.iSpsId = pBaseSHExt->sSliceHeader.iSpsId;
pSHExt->sSliceHeader.pSps = pBaseSHExt->sSliceHeader.pSps;
pSHExt->sSliceHeader.uiRefCount = pCtx->iNumRef0;
memcpy (&pSHExt->sSliceHeader.sRefMarking, &pBaseSHExt->sSliceHeader.sRefMarking, sizeof (SRefPicMarking));
memcpy (&pSHExt->sSliceHeader.sRefReordering, &pBaseSHExt->sSliceHeader.sRefReordering,
sizeof (SRefPicListReorderSyntax));
pSliceIdx->sSlicingOverRc.iComplexityIndexSlice = 0;
pSliceIdx->sSlicingOverRc.iCalculatedQpSlice = pCtx->iGlobalQp;
pSliceIdx->sSlicingOverRc.iTotalQpSlice = 0;
pSliceIdx->sSlicingOverRc.iTotalMbSlice = 0;
pSliceIdx->sSlicingOverRc.iTargetBitsSlice = WELS_DIV_ROUND (kiBitsPerMb *
pSlice[uiSliceIdx].iCountMbNumInSlice,
INT_MULTIPLY);
pSliceIdx->sSlicingOverRc.iFrameBitsSlice = 0;
pSliceIdx->sSlicingOverRc.iGomBitsSlice = 0;
pSliceIdx++;
uiSliceIdx++;
}
pMA->WelsFree (pCurLayer->sLayerInfo.pSliceInLayer, "Slice");
pCurLayer->sLayerInfo.pSliceInLayer = pSlice;
if (pCtx->iMaxSliceCount < iMaxSliceNum)
pCtx->iMaxSliceCount = iMaxSliceNum;
pCurLayer->sSliceEncCtx.iMaxSliceNumConstraint = iMaxSliceNum;
pCurLayer->iMaxSliceNum = iMaxSliceNum;
return ENC_RETURN_SUCCESS;
}
int32_t DynSliceRealloc (sWelsEncCtx* pCtx,
SFrameBSInfo* pFrameBsInfo,
SLayerBSInfo* pLayerBsInfo) {
int32_t iRet = 0;
iRet = FrameBsRealloc (pCtx, pFrameBsInfo, pLayerBsInfo);
if (ENC_RETURN_SUCCESS != iRet)
return iRet;
iRet = SliceBufferRealloc (pCtx);
return iRet;
}
int32_t WelsCodeOnePicPartition (sWelsEncCtx* pCtx,
SFrameBSInfo* pFrameBSInfo,
SLayerBSInfo* pLayerBsInfo,
int32_t* pNalIdxInLayer,
int32_t* pLayerSize,
int32_t iFirstMbInPartition, // first mb inclusive in partition
int32_t iEndMbInPartition, // end mb exclusive in partition
int32_t iStartSliceIdx
) {
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = &pCurLayer->sSliceEncCtx;
SSlice* pSliceInLayer = pCurLayer->sLayerInfo.pSliceInLayer;
SSlice* pStartSlice = &pSliceInLayer[iStartSliceIdx];
int32_t iNalIdxInLayer = *pNalIdxInLayer;
int32_t iSliceIdx = iStartSliceIdx;
const int32_t kiSliceStep = pCtx->iActiveThreadsNum;
const int32_t kiPartitionId = iStartSliceIdx % kiSliceStep;
int32_t iPartitionBsSize = 0;
int32_t iAnyMbLeftInPartition = iEndMbInPartition - iFirstMbInPartition;
const EWelsNalUnitType keNalType = pCtx->eNalType;
const EWelsNalRefIdc keNalRefIdc = pCtx->eNalPriority;
const bool kbNeedPrefix = pCtx->bNeedPrefixNalFlag;
const int32_t kiSliceIdxStep = pCtx->iActiveThreadsNum;
int32_t iReturn = ENC_RETURN_SUCCESS;
//init
{
pStartSlice->sSliceHeaderExt.sSliceHeader.iFirstMbInSlice = iFirstMbInPartition;
pCurLayer->pNumSliceCodedOfPartition[kiPartitionId] =
1; // one slice per partition intialized, dynamic slicing inside
pCurLayer->pLastMbIdxOfPartition[kiPartitionId] = iEndMbInPartition - 1;
}
pCurLayer->pLastCodedMbIdxOfPartition[kiPartitionId] = 0;
while (iAnyMbLeftInPartition > 0) {
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (iSliceIdx >= (pSliceCtx->iMaxSliceNumConstraint - kiSliceIdxStep)) { // insufficient memory in pSliceInLayer[]
if (pCtx->iActiveThreadsNum == 1) {
//only single thread support re-alloc now
if (DynSliceRealloc (pCtx, pFrameBSInfo, pLayerBsInfo)) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR,
"CWelsH264SVCEncoder::WelsCodeOnePicPartition: DynSliceRealloc not successful");
return ENC_RETURN_MEMALLOCERR;
}
} else if (iSliceIdx >= pSliceCtx->iMaxSliceNumConstraint) {
WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR,
"CWelsH264SVCEncoder::WelsCodeOnePicPartition: iSliceIdx(%d) over iMaxSliceNumConstraint(%d)", iSliceIdx,
pSliceCtx->iMaxSliceNumConstraint);
return ENC_RETURN_MEMALLOCERR;
}
}
if (kbNeedPrefix) {
iReturn = AddPrefixNal (pCtx, pLayerBsInfo, &pLayerBsInfo->pNalLengthInByte[0], &iNalIdxInLayer, keNalType, keNalRefIdc,
iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
iPartitionBsSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, keNalType, keNalRefIdc);
iReturn = WelsCodeOneSlice (pCtx, iSliceIdx, keNalType);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ (iReturn, ENC_RETURN_SUCCESS)
iSliceSize = pLayerBsInfo->pNalLengthInByte[iNalIdxInLayer];
pCtx->iPosBsBuffer += iSliceSize;
iPartitionBsSize += iSliceSize;
#if defined(SLICE_INFO_OUTPUT)
fprintf (stderr,
"@slice=%-6d sliceType:%c idc:%d size:%-6d\n",
iSliceIdx,
(pCtx->eSliceType == P_SLICE ? 'P' : 'I'),
keNalRefIdc,
iSliceSize);
#endif//SLICE_INFO_OUTPUT
++ iNalIdxInLayer;
iSliceIdx += kiSliceStep; //if uiSliceIdx is not continuous
iAnyMbLeftInPartition = iEndMbInPartition - (1 + pCurLayer->pLastCodedMbIdxOfPartition[kiPartitionId]);
}
*pLayerSize = iPartitionBsSize;
*pNalIdxInLayer = iNalIdxInLayer;
// slice based packing???
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = pCtx->uiDependencyId;
pLayerBsInfo->uiTemporalId = pCtx->uiTemporalId;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->iNalCount = iNalIdxInLayer;
return ENC_RETURN_SUCCESS;
}
} // namespace WelsEnc