openh264/codec/encoder/core/src/ratectl.cpp

1070 lines
43 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* ratectl.c
*
* Abstract
* Rate Control
*
* History
* 9/8/2009 Created
* 12/26/2011 Modified
*
*
*
*************************************************************************/
#include "rc.h"
#include "encoder_context.h"
#include "utils.h"
#include "svc_enc_golomb.h"
namespace WelsEnc {
//#define _TEST_TEMP_RC_
#ifdef _TEST_TEMP_RC_
//#define _NOT_USE_AQ_FOR_TEST_
FILE* fp_test_rc = NULL;
FILE* fp_vgop = NULL;
#endif
#define _BITS_RANGE 0
const int32_t g_kiQpToQstepTable[52] = { 63, 71, 79, 89, 100, 112, 126, 141, 159, 178,
200, 224, 252, 283, 317, 356, 400, 449, 504, 566,
635, 713, 800, 898, 1008, 1131, 1270, 1425, 1600, 1796,
2016, 2263, 2540, 2851, 3200, 3592, 4032, 4525, 5080, 5702,
6400, 7184, 8063, 9051, 10159, 11404, 12800, 14368, 16127, 18102,
20319, 22807
}; //WELS_ROUND(INT_MULTIPLY*pow (2.0, (iQP - 4.0) / 6.0))
void RcInitLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA, const int32_t kiMaxTl) {
const int32_t kiSliceNum = pWelsSvcRc->iSliceNum;
const int32_t kiGomSize = pWelsSvcRc->iGomSize;
const int32_t kiGomSizeD = kiGomSize * sizeof (double);
const int32_t kiGomSizeI = kiGomSize * sizeof (int32_t);
const int32_t kiLayerRcSize = kiGomSizeD + (kiGomSizeI * 3) + sizeof (SRCTemporal) * kiMaxTl;
uint8_t* pBaseMem = (uint8_t*)pMA->WelsMalloc (kiLayerRcSize, "rc_layer_memory");
if (NULL == pBaseMem)
return;
pWelsSvcRc->pTemporalOverRc = (SRCTemporal*)pBaseMem;
pBaseMem += sizeof (SRCTemporal) * kiMaxTl;
pWelsSvcRc->pGomComplexity = (double*)pBaseMem;
pBaseMem += kiGomSizeD;
pWelsSvcRc->pGomForegroundBlockNum = (int32_t*)pBaseMem;
pBaseMem += kiGomSizeI;
pWelsSvcRc->pCurrentFrameGomSad = (int32_t*)pBaseMem;
pBaseMem += kiGomSizeI;
pWelsSvcRc->pGomCost = (int32_t*)pBaseMem;
pWelsSvcRc->pSlicingOverRc = (SRCSlicing*)pMA->WelsMalloc (sizeof (SRCSlicing) * kiSliceNum, "SlicingOverRC");
}
void RcFreeLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA) {
if (pWelsSvcRc != NULL && pWelsSvcRc->pSlicingOverRc != NULL) {
pMA->WelsFree (pWelsSvcRc->pSlicingOverRc, "SlicingOverRC");
pWelsSvcRc->pSlicingOverRc = NULL;
}
if (pWelsSvcRc != NULL && pWelsSvcRc->pTemporalOverRc != NULL) {
pMA->WelsFree (pWelsSvcRc->pTemporalOverRc, "rc_layer_memory");
pWelsSvcRc->pTemporalOverRc = NULL;
pWelsSvcRc->pGomComplexity = NULL;
pWelsSvcRc->pGomForegroundBlockNum = NULL;
pWelsSvcRc->pCurrentFrameGomSad = NULL;
pWelsSvcRc->pGomCost = NULL;
}
}
static inline int32_t RcConvertQp2QStep (int32_t iQP) {
return g_kiQpToQstepTable[iQP];
}
static inline int32_t RcConvertQStep2Qp (int32_t iQpStep) {
return WELS_ROUND ((6 * log (iQpStep * 1.0f / INT_MULTIPLY) / log (2.0) + 4.0));
}
void RcInitSequenceParameter (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = NULL;
SSpatialLayerConfig* pDLayerParam = NULL;
int32_t j = 0;
int32_t iMbWidth = 0;
bool bMultiSliceMode = false;
int32_t iGomRowMode0 = 1, iGomRowMode1 = 1;
#ifdef _TEST_TEMP_RC_
fp_test_rc = fopen ("testRC.dat", "w");
fp_vgop = fopen ("vgop.dat", "w");
#endif
for (j = 0; j < pEncCtx->pSvcParam->iSpatialLayerNum; j++) {
SSliceCtx* pSliceCtx = &pEncCtx->pSliceCtxList[j];
pWelsSvcRc = &pEncCtx->pWelsSvcRc[j];
pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[j];
iMbWidth = (pDLayerParam->iVideoWidth >> 4);
pWelsSvcRc->iNumberMbFrame = iMbWidth * (pDLayerParam->iVideoHeight >> 4);
pWelsSvcRc->iSliceNum = pSliceCtx->iSliceNumInFrame;
pWelsSvcRc->iRcVaryPercentage = _BITS_RANGE; // % -- for temp
pWelsSvcRc->iRcVaryRatio = pWelsSvcRc->iRcVaryPercentage;
pWelsSvcRc->iSkipBufferRatio = SKIP_RATIO;
pWelsSvcRc->iQpRangeUpperInFrame = (QP_RANGE_UPPER_MODE1 * MAX_BITS_VARY_PERCENTAGE - ((
QP_RANGE_UPPER_MODE1 - QP_RANGE_MODE0) *
pWelsSvcRc->iRcVaryRatio)) / MAX_BITS_VARY_PERCENTAGE;
pWelsSvcRc->iQpRangeLowerInFrame = (QP_RANGE_LOWER_MODE1 * MAX_BITS_VARY_PERCENTAGE - ((
QP_RANGE_LOWER_MODE1 - QP_RANGE_MODE0) *
pWelsSvcRc->iRcVaryRatio)) / MAX_BITS_VARY_PERCENTAGE;
if (iMbWidth <= MB_WIDTH_THRESHOLD_90P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_90P;
iGomRowMode0 = GOM_ROW_MODE0_90P;
iGomRowMode1 = GOM_ROW_MODE1_90P;
} else if (iMbWidth <= MB_WIDTH_THRESHOLD_180P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_180P;
iGomRowMode0 = GOM_ROW_MODE0_180P;
iGomRowMode1 = GOM_ROW_MODE1_180P;
} else if (iMbWidth <= MB_WIDTH_THRESHOLD_360P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_360P;
iGomRowMode0 = GOM_ROW_MODE0_360P;
iGomRowMode1 = GOM_ROW_MODE1_360P;
} else {
pWelsSvcRc->iSkipQpValue = SKIP_QP_720P;
iGomRowMode0 = GOM_ROW_MODE0_720P;
iGomRowMode1 = GOM_ROW_MODE1_720P;
}
iGomRowMode0 = iGomRowMode1 + ((iGomRowMode0 - iGomRowMode1) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE);
pWelsSvcRc->iNumberMbGom = iMbWidth * iGomRowMode0;
pWelsSvcRc->iMinQp = GOM_MIN_QP_MODE;
pWelsSvcRc->iMaxQp = GOM_MAX_QP_MODE;
pWelsSvcRc->iFrameDeltaQpUpper = LAST_FRAME_QP_RANGE_UPPER_MODE1 - ((LAST_FRAME_QP_RANGE_UPPER_MODE1 -
LAST_FRAME_QP_RANGE_UPPER_MODE0) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE);
pWelsSvcRc->iFrameDeltaQpLower = LAST_FRAME_QP_RANGE_LOWER_MODE1 - ((LAST_FRAME_QP_RANGE_LOWER_MODE1 -
LAST_FRAME_QP_RANGE_LOWER_MODE0) * pWelsSvcRc->iRcVaryRatio / MAX_BITS_VARY_PERCENTAGE);
pWelsSvcRc->iSkipFrameNum = 0;
pWelsSvcRc->iGomSize = (pWelsSvcRc->iNumberMbFrame + pWelsSvcRc->iNumberMbGom - 1) / pWelsSvcRc->iNumberMbGom;
RcInitLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign, 1 + pEncCtx->pSvcParam->sDependencyLayers[j].iHighestTemporalId);
bMultiSliceMode = ((SM_RASTER_SLICE == pDLayerParam->sSliceCfg.uiSliceMode) ||
(SM_ROWMB_SLICE == pDLayerParam->sSliceCfg.uiSliceMode) ||
(SM_DYN_SLICE == pDLayerParam->sSliceCfg.uiSliceMode));
if (bMultiSliceMode)
pWelsSvcRc->iNumberMbGom = pWelsSvcRc->iNumberMbFrame;
}
}
void RcInitTlWeight (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SSpatialLayerInternal* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
const int32_t kiDecompositionStages = pDLayerParam->iDecompositionStages;
const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId;
//Index 0:Virtual GOP size, Index 1:Frame rate
//double WeightArray[4][4] = { {1.0, 0, 0, 0}, {0.6, 0.4, 0, 0}, {0.4, 0.3, 0.15, 0}, {0.25, 0.15, 0.125, 0.0875}};
int32_t iWeightArray[4][4] = { {2000, 0, 0, 0}, {1200, 800, 0, 0}, {800, 600, 300, 0}, {500, 300, 250, 175}}; // original*WEIGHT_MULTIPLY
const int32_t kiGopSize = (1 << kiDecompositionStages);
int32_t i, k, n;
n = 0;
while (n <= kiHighestTid) {
pTOverRc[n].iTlayerWeight = iWeightArray[kiDecompositionStages][n];
++ n;
}
//Calculate the frame index for the current frame and its reference frame
for (n = 0; n < VGOP_SIZE; n += kiGopSize) {
pWelsSvcRc->iTlOfFrames[n] = 0;
for (i = 1; i <= kiDecompositionStages; i++) {
for (k = 1 << (kiDecompositionStages - i); k < kiGopSize; k += (kiGopSize >> (i - 1))) {
pWelsSvcRc->iTlOfFrames[k + n] = i;
}
}
}
pWelsSvcRc->iPreviousGopSize = kiGopSize;
pWelsSvcRc->iGopNumberInVGop = VGOP_SIZE / kiGopSize;
}
void RcUpdateBitrateFps (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
const int32_t kiGopSize = (1 << pDLayerParamInternal->iDecompositionStages);
const int32_t kiHighestTid = pDLayerParamInternal->iHighestTemporalId;
int32_t input_iBitsPerFrame = WELS_ROUND (pDLayerParam->iSpatialBitrate * INT_MULTIPLY /
pDLayerParamInternal->fInputFrameRate);
const int32_t kiGopBits = WELS_DIV_ROUND (input_iBitsPerFrame * kiGopSize, INT_MULTIPLY);
int32_t i;
pWelsSvcRc->iBitRate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->fFrameRate = pDLayerParamInternal->fInputFrameRate;
int32_t iTargetVaryRange = FRAME_iTargetBits_VARY_RANGE * (MAX_BITS_VARY_PERCENTAGE - pWelsSvcRc->iRcVaryRatio);
int32_t iMinBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * INT_MULTIPLY - iTargetVaryRange;
int32_t iMaxBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * (INT_MULTIPLY + FRAME_iTargetBits_VARY_RANGE);
for (i = 0; i <= kiHighestTid; i++) {
const int64_t kdConstraitBits = kiGopBits * pTOverRc[i].iTlayerWeight;
pTOverRc[i].iMinBitsTl = WELS_DIV_ROUND (kdConstraitBits * iMinBitsRatio,
INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY);
pTOverRc[i].iMaxBitsTl = WELS_DIV_ROUND (kdConstraitBits * iMaxBitsRatio,
INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY);
}
//When bitrate is changed, pBuffer size should be updated
pWelsSvcRc->iBufferSizeSkip = WELS_DIV_ROUND (pWelsSvcRc->iBitRate * pWelsSvcRc->iSkipBufferRatio, INT_MULTIPLY);
pWelsSvcRc->iBufferSizePadding = WELS_DIV_ROUND (pWelsSvcRc->iBitRate * PADDING_BUFFER_RATIO, INT_MULTIPLY);
//change remaining bits
if (pWelsSvcRc->iBitsPerFrame > REMAIN_BITS_TH)
pWelsSvcRc->iRemainingBits = pWelsSvcRc->iRemainingBits * input_iBitsPerFrame / pWelsSvcRc->iBitsPerFrame;
pWelsSvcRc->iBitsPerFrame = input_iBitsPerFrame;
}
void RcInitVGop (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId;
pWelsSvcRc->iRemainingBits = WELS_DIV_ROUND (VGOP_SIZE * pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
pWelsSvcRc->iRemainingWeights = pWelsSvcRc->iGopNumberInVGop * WEIGHT_MULTIPLY;
pWelsSvcRc->iFrameCodedInVGop = 0;
pWelsSvcRc->iGopIndexInVGop = 0;
for (int32_t i = 0; i <= kiHighestTid; ++ i)
pTOverRc[i].iGopBitsDq = 0;
pWelsSvcRc->iSkipFrameInVGop = 0;
}
void RcInitRefreshParameter (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[kiDid];
SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[kiDid];
const int32_t kiHighestTid = pDLayerParamInternal->iHighestTemporalId;
int32_t i;
//I frame R-Q Model
pWelsSvcRc->iIntraComplexity = 0;
pWelsSvcRc->iIntraMbCount = 0;
//P frame R-Q Model
for (i = 0; i <= kiHighestTid; i++) {
pTOverRc[i].iPFrameNum = 0;
pTOverRc[i].iLinearCmplx = 0;
pTOverRc[i].iFrameCmplxMean = 0;
}
pWelsSvcRc->iBufferFullnessSkip = 0;
pWelsSvcRc->iBufferFullnessPadding = 0;
pWelsSvcRc->iGopIndexInVGop = 0;
pWelsSvcRc->iRemainingBits = 0;
pWelsSvcRc->iBitsPerFrame = 0;
//Backup the initial bitrate and fps
pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->dPreviousFps = pDLayerParamInternal->fInputFrameRate;
memset (pWelsSvcRc->pCurrentFrameGomSad, 0, pWelsSvcRc->iGomSize * sizeof (int32_t));
RcInitTlWeight (pEncCtx);
RcUpdateBitrateFps (pEncCtx);
RcInitVGop (pEncCtx);
}
bool RcJudgeBitrateFpsUpdate (sWelsEncCtx* pEncCtx) {
int32_t iCurDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[iCurDid];
SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[iCurDid];
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[iCurDid];
if ((pWelsSvcRc->iPreviousBitrate != pDLayerParam->iSpatialBitrate) ||
(pWelsSvcRc->dPreviousFps - pDLayerParamInternal->fInputFrameRate) > EPSN ||
(pWelsSvcRc->dPreviousFps - pDLayerParamInternal->fInputFrameRate) < -EPSN) {
pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->dPreviousFps = pDLayerParamInternal->fInputFrameRate;
return true;
} else
return false;
}
#if GOM_TRACE_FLAG
void RcTraceVGopBitrate (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
if (pWelsSvcRc->iFrameCodedInVGop) {
const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId;
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
int32_t iVGopBitrate = 0;
int32_t iTotalBits = pWelsSvcRc->iPaddingBitrateStat;
int32_t iTid = 0;
while (iTid <= kiHighestTid) {
iTotalBits += pTOverRc[iTid].iGopBitsDq;
++ iTid;
}
int32_t iFrameInVGop = pWelsSvcRc->iFrameCodedInVGop + pWelsSvcRc->iSkipFrameInVGop;
if (0 != iFrameInVGop)
iVGopBitrate = WELS_ROUND (iTotalBits / iFrameInVGop * pWelsSvcRc->fFrameRate);
#ifdef _TEST_TEMP_Rc_
fprintf (fp_vgop, "%d\n", WELS_ROUND ((double)iTotalBits / iFrameInVGop));
#endif
WelsLog (& (pEncCtx->sLogCtx), WELS_LOG_INFO, "[Rc] VGOPbitrate%d: %d ", kiDid, iVGopBitrate);
if (iTotalBits > 0) {
iTid = 0;
while (iTid <= kiHighestTid) {
WelsLog (& (pEncCtx->sLogCtx), WELS_LOG_INFO, "T%d=%8.3f ", iTid, (double) (pTOverRc[iTid].iGopBitsDq / iTotalBits));
++ iTid;
}
}
}
}
#endif
void RcUpdateTemporalZero (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SSpatialLayerInternal* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid];
const int32_t kiGopSize = (1 << pDLayerParam->iDecompositionStages);
if (pWelsSvcRc->iPreviousGopSize != kiGopSize) {
#if GOM_TRACE_FLAG
RcTraceVGopBitrate (pEncCtx);
#endif
RcInitTlWeight (pEncCtx);
RcInitVGop (pEncCtx);
} else if (pWelsSvcRc->iGopIndexInVGop == pWelsSvcRc->iGopNumberInVGop || pEncCtx->eSliceType == I_SLICE) {
#if GOM_TRACE_FLAG
RcTraceVGopBitrate (pEncCtx);
#endif
RcInitVGop (pEncCtx);
}
pWelsSvcRc->iGopIndexInVGop++;
}
void RcInitIdrQp (sWelsEncCtx* pEncCtx) {
double dBpp = 0;
int32_t i;
//64k@6fps for 90p: bpp 0.74 QP:24
//192k@12fps for 180p: bpp 0.28 QP:26
//512k@24fps for 360p: bpp 0.09 QP:30
//1500k@30fps for 720p: bpp 0.05 QP:32
double dBppArray[4][3] = {{0.5, 0.75, 1.0}, {0.2, 0.3, 0.4}, {0.05, 0.09, 0.13}, {0.03, 0.06, 0.1}};
int32_t dInitialQPArray[4][4] = {{28, 26, 24, 22}, {30, 28, 26, 24}, {32, 30, 28, 26}, {34, 32, 30, 28}};
int32_t iBppIndex = 0;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
if (pDLayerParam->fFrameRate > EPSN && pDLayerParam->iVideoWidth && pDLayerParam->iVideoHeight)
dBpp = (double) (pDLayerParam->iSpatialBitrate) / (double) (pDLayerParam->fFrameRate * pDLayerParam->iVideoWidth *
pDLayerParam->iVideoHeight);
else
dBpp = 0.1;
//Area*2
if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 28800) // 90p video:160*90
iBppIndex = 0;
else if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 115200) // 180p video:320*180
iBppIndex = 1;
else if (pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight <= 460800) // 360p video:640*360
iBppIndex = 2;
else
iBppIndex = 3;
//Search
for (i = 0; i < 3; i++) {
if (dBpp <= dBppArray[iBppIndex][i])
break;
}
pWelsSvcRc->iInitialQp = dInitialQPArray[iBppIndex][i];
pWelsSvcRc->iInitialQp = WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP);
pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp;
pWelsSvcRc->iQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp);
pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp;
}
void RcCalculateIdrQp (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
//obtain the idr qp using previous idr complexity
if (pWelsSvcRc->iNumberMbFrame != pWelsSvcRc->iIntraMbCount) {
pWelsSvcRc->iIntraComplexity = pWelsSvcRc->iIntraComplexity * pWelsSvcRc->iNumberMbFrame /
pWelsSvcRc->iIntraMbCount;
}
pWelsSvcRc->iInitialQp = RcConvertQStep2Qp (pWelsSvcRc->iIntraComplexity /
pWelsSvcRc->iTargetBits);
pWelsSvcRc->iInitialQp = WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP);
pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp;
pWelsSvcRc->iQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp);
pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp;
}
void RcCalculatePictureQp (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
int32_t iTl = pEncCtx->uiTemporalId;
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[iTl];
int32_t iLumaQp = 0;
if (0 == pTOverRc->iPFrameNum) {
iLumaQp = pWelsSvcRc->iInitialQp;
} else if (pWelsSvcRc->iCurrentBitsLevel == BITS_EXCEEDED) {
iLumaQp = MAX_LOW_BR_QP;
//limit QP
int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1;
if (iLastIdxCodecInVGop < 0)
iLastIdxCodecInVGop += VGOP_SIZE;
int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop];
int32_t iDeltaQpTemporal = iTl - iTlLast;
if (0 == iTlLast && iTl > 0)
iDeltaQpTemporal += 3;
else if (0 == iTl && iTlLast > 0)
iDeltaQpTemporal -= 3;
iLumaQp = WELS_CLIP3 (iLumaQp,
pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal,
pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal);
iLumaQp = WELS_CLIP3 (iLumaQp, GOM_MIN_QP_MODE, MAX_LOW_BR_QP);
pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp);
pWelsSvcRc->iLastCalculatedQScale = iLumaQp;
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
iLumaQp = WELS_CLIP3 ((iLumaQp * INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp) /
INT_MULTIPLY, GOM_MIN_QP_MODE, MAX_LOW_BR_QP);
}
pEncCtx->iGlobalQp = iLumaQp;
return;
} else {
int64_t iCmplxRatio = WELS_DIV_ROUND64 (pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity * INT_MULTIPLY,
pTOverRc->iFrameCmplxMean);
iCmplxRatio = WELS_CLIP3 (iCmplxRatio, INT_MULTIPLY - FRAME_CMPLX_RATIO_RANGE, INT_MULTIPLY + FRAME_CMPLX_RATIO_RANGE);
pWelsSvcRc->iQStep = WELS_DIV_ROUND ((pTOverRc->iLinearCmplx * iCmplxRatio), (pWelsSvcRc->iTargetBits * INT_MULTIPLY));
iLumaQp = RcConvertQStep2Qp (pWelsSvcRc->iQStep);
//limit QP
int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1;
if (iLastIdxCodecInVGop < 0)
iLastIdxCodecInVGop += VGOP_SIZE;
int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop];
int32_t iDeltaQpTemporal = iTl - iTlLast;
if (0 == iTlLast && iTl > 0)
iDeltaQpTemporal += 3;
else if (0 == iTl && iTlLast > 0)
iDeltaQpTemporal -= 3;
iLumaQp = WELS_CLIP3 (iLumaQp,
pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal,
pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal);
}
iLumaQp = WELS_CLIP3 (iLumaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE);
pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp);
pWelsSvcRc->iLastCalculatedQScale = iLumaQp;
#ifndef _NOT_USE_AQ_FOR_TEST_
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
iLumaQp = WELS_DIV_ROUND (iLumaQp * INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp,
INT_MULTIPLY);
if (pEncCtx->pSvcParam->iRCMode != RC_LOW_BW_MODE)
iLumaQp = WELS_CLIP3 (iLumaQp, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp);
}
#endif
pEncCtx->iGlobalQp = iLumaQp;
}
void RcInitSliceInformation (sWelsEncCtx* pEncCtx) {
SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
const int32_t kiSliceNum = pWelsSvcRc->iSliceNum;
const int32_t kiBitsPerMb = WELS_DIV_ROUND (pWelsSvcRc->iTargetBits * INT_MULTIPLY, pWelsSvcRc->iNumberMbFrame);
for (int32_t i = 0; i < kiSliceNum; i++) {
pSOverRc->iStartMbSlice =
pSOverRc->iEndMbSlice = pCurSliceCtx->pFirstMbInSlice[i];
pSOverRc->iEndMbSlice += (pCurSliceCtx->pCountMbNumInSlice[i] - 1);
pSOverRc->iTotalQpSlice = 0;
pSOverRc->iTotalMbSlice = 0;
pSOverRc->iTargetBitsSlice = WELS_DIV_ROUND (kiBitsPerMb * pCurSliceCtx->pCountMbNumInSlice[i], INT_MULTIPLY);
pSOverRc->iFrameBitsSlice = 0;
pSOverRc->iGomBitsSlice = 0;
++ pSOverRc;
}
}
void RcDecideTargetBits (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId];
pWelsSvcRc->iCurrentBitsLevel = BITS_NORMAL;
//allocate bits
if (pEncCtx->eSliceType == I_SLICE) {
pWelsSvcRc->iTargetBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame * IDR_BITRATE_RATIO, INT_MULTIPLY);
} else {
if (pWelsSvcRc->iRemainingWeights > pTOverRc->iTlayerWeight)
pWelsSvcRc->iTargetBits = (int32_t) ((int64_t)pWelsSvcRc->iRemainingBits * pTOverRc->iTlayerWeight /
pWelsSvcRc->iRemainingWeights);
else //this case should be not hit. needs to more test case to verify this
pWelsSvcRc->iTargetBits = pWelsSvcRc->iRemainingBits;
if ((pWelsSvcRc->iTargetBits <= 0) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) {
pWelsSvcRc->iCurrentBitsLevel = BITS_EXCEEDED;
} else if ((pWelsSvcRc->iTargetBits <= pTOverRc->iMinBitsTl) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) {
pWelsSvcRc->iCurrentBitsLevel = BITS_LIMITED;
}
pWelsSvcRc->iTargetBits = WELS_CLIP3 (pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl, pTOverRc->iMaxBitsTl);
}
pWelsSvcRc->iRemainingWeights -= pTOverRc->iTlayerWeight;
}
void RcInitGomParameters (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
const int32_t kiSliceNum = pWelsSvcRc->iSliceNum;
const int32_t kiGlobalQp = pEncCtx->iGlobalQp;
pWelsSvcRc->iAverageFrameQp = 0;
for (int32_t i = 0; i < kiSliceNum; ++i) {
pSOverRc->iComplexityIndexSlice = 0;
pSOverRc->iCalculatedQpSlice = kiGlobalQp;
++ pSOverRc;
}
memset (pWelsSvcRc->pGomComplexity, 0, pWelsSvcRc->iGomSize * sizeof (double));
memset (pWelsSvcRc->pGomCost, 0, pWelsSvcRc->iGomSize * sizeof (int32_t));
}
void RcCalculateMbQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, const int32_t kiSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
int32_t iLumaQp = pSOverRc->iCalculatedQpSlice;
SDqLayer* pCurLayer = pEncCtx->pCurDqLayer;
const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;
#ifndef _NOT_USE_AQ_FOR_TEST_
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp +
pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinQp, 51);
}
#endif
pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)];
pCurMb->uiLumaQp = iLumaQp;
}
SWelsSvcRc* RcJudgeBaseUsability (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = NULL, *pWelsSvcRc_Base = NULL;
SSpatialLayerConfig* pDlpBase = NULL, *pDLayerParam = NULL;
SSpatialLayerInternal* pDlpBaseInternal = NULL;
if (pEncCtx->uiDependencyId <= 0)
return NULL;
pDlpBaseInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId - 1];
pDlpBase = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId - 1];
pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1];
if (pEncCtx->uiTemporalId <= pDlpBaseInternal->iDecompositionStages) {
pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1];
pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
pDlpBase = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId - 1];
if ((pDLayerParam->iVideoWidth * pDLayerParam->iVideoHeight / pWelsSvcRc->iNumberMbGom) ==
(pDlpBase->iVideoWidth * pDlpBase->iVideoHeight / pWelsSvcRc_Base->iNumberMbGom))
return pWelsSvcRc_Base;
else
return NULL;
} else
return NULL;
}
void RcGomTargetBits (sWelsEncCtx* pEncCtx, const int32_t kiSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SWelsSvcRc* pWelsSvcRc_Base = NULL;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
int32_t iAllocateBits = 0;
int32_t iSumSad = 0;
int32_t iLastGomIndex = 0;
int32_t iLeftBits = 0;
const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;
int32_t i;
iLastGomIndex = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom;
iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;
if (iLeftBits <= 0) {
pSOverRc->iGomTargetBits = 0;
return;
} else if (kiComplexityIndex >= iLastGomIndex) {
iAllocateBits = iLeftBits;
} else {
pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx);
pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc;
for (i = kiComplexityIndex; i <= iLastGomIndex; i++) {
iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i];
}
if (0 == iSumSad)
iAllocateBits = WELS_DIV_ROUND (iLeftBits, (iLastGomIndex - kiComplexityIndex));
else
iAllocateBits = WELS_DIV_ROUND ((int64_t)iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1],
iSumSad);
}
pSOverRc->iGomTargetBits = iAllocateBits;
}
void RcCalculateGomQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, int32_t iSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId];
int64_t iBitsRatio = 1;
int64_t iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;
int64_t iTargetLeftBits = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits;
if (iLeftBits <= 0) {
pSOverRc->iCalculatedQpSlice += 2;
} else {
//globe decision
iBitsRatio = 10000 * iLeftBits / (iTargetLeftBits + 1);
if (iBitsRatio < 8409) //2^(-1.5/6)*10000
pSOverRc->iCalculatedQpSlice += 2;
else if (iBitsRatio < 9439) //2^(-0.5/6)*10000
pSOverRc->iCalculatedQpSlice += 1;
else if (iBitsRatio > 10600) //2^(0.5/6)*10000
pSOverRc->iCalculatedQpSlice -= 1;
else if (iBitsRatio > 11900) //2^(1.5/6)*10000
pSOverRc->iCalculatedQpSlice -= 2;
}
pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice,
pEncCtx->iGlobalQp - pWelsSvcRc->iQpRangeLowerInFrame, pEncCtx->iGlobalQp + pWelsSvcRc->iQpRangeUpperInFrame);
if (! (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE))
pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp);
pSOverRc->iGomBitsSlice = 0;
}
void RcVBufferCalculationSkip (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
const int32_t kiOutputBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
//condition 1: whole pBuffer fullness
pWelsSvcRc->iBufferFullnessSkip += (pWelsSvcRc->iFrameDqBits - kiOutputBits);
//condition 2: VGOP bits constraint
int32_t iVGopBitsPred = 0;
for (int32_t i = pWelsSvcRc->iFrameCodedInVGop + 1; i < VGOP_SIZE; i++)
iVGopBitsPred += pTOverRc[pWelsSvcRc->iTlOfFrames[i]].iMinBitsTl;
iVGopBitsPred -= pWelsSvcRc->iRemainingBits;
double dIncPercent = iVGopBitsPred * 100.0 * INT_MULTIPLY / (pWelsSvcRc->iBitsPerFrame * VGOP_SIZE) -
(double)VGOP_BITS_PERCENTAGE_DIFF;
if ((pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip
&& pWelsSvcRc->iAverageFrameQp > pWelsSvcRc->iSkipQpValue)
|| (dIncPercent > pWelsSvcRc->iRcVaryPercentage)) {
pEncCtx->iSkipFrameFlag = 1;
pWelsSvcRc->iBufferFullnessSkip = pWelsSvcRc->iBufferFullnessSkip - kiOutputBits;
#ifdef FRAME_INFO_OUTPUT
fprintf (stderr, "skip one frame\n");
#endif
}
if (pWelsSvcRc->iBufferFullnessSkip < 0)
pWelsSvcRc->iBufferFullnessSkip = 0;
if (pEncCtx->iSkipFrameFlag == 1) {
pWelsSvcRc->iRemainingBits += WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
pWelsSvcRc->iSkipFrameNum++;
pWelsSvcRc->iSkipFrameInVGop++;
}
}
void WelsRcFrameDelayJudge (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
SSpatialLayerInternal* pDLayerParamInternal = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
int32_t iSentBits = WELS_ROUND (pDLayerParam->iSpatialBitrate / pDLayerParamInternal->fOutputFrameRate);
pWelsSvcRc->bSkipFlag = false;
if (pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip) {
pWelsSvcRc->bSkipFlag = true;
pWelsSvcRc->iBufferFullnessSkip -= iSentBits;
pWelsSvcRc->iBufferFullnessSkip = WELS_MAX (pWelsSvcRc->iBufferFullnessSkip, 0);
}
}
void RcVBufferCalculationPadding (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiOutputBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
const int32_t kiBufferThreshold = WELS_DIV_ROUND (PADDING_THRESHOLD * (-pWelsSvcRc->iBufferSizePadding), INT_MULTIPLY);
pWelsSvcRc->iBufferFullnessPadding += (pWelsSvcRc->iFrameDqBits - kiOutputBits);
if (pWelsSvcRc->iBufferFullnessPadding < kiBufferThreshold) {
pWelsSvcRc->iPaddingSize = -pWelsSvcRc->iBufferFullnessPadding;
pWelsSvcRc->iPaddingSize >>= 3; // /8
pWelsSvcRc->iBufferFullnessPadding = 0;
} else
pWelsSvcRc->iPaddingSize = 0;
}
void RcTraceFrameBits (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
WelsLog (& (pEncCtx->sLogCtx), WELS_LOG_INFO,
"[Rc] encoding_qp%d, qp = %3d, index = %8d, iTid = %1d, used = %8d, target = %8d, remaingbits = %8d",
pEncCtx->uiDependencyId, pWelsSvcRc->iAverageFrameQp, pEncCtx->iFrameIndex, pEncCtx->uiTemporalId,
pWelsSvcRc->iFrameDqBits,
pWelsSvcRc->iTargetBits, pWelsSvcRc->iRemainingBits);
}
void RcUpdatePictureQpBits (sWelsEncCtx* pEncCtx, int32_t iCodedBits) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx;
int32_t iTotalQp = 0, iTotalMb = 0;
int32_t i;
if (pEncCtx->eSliceType == P_SLICE) {
for (i = 0; i < pCurSliceCtx->iSliceNumInFrame; i++) {
iTotalQp += pSOverRc->iTotalQpSlice;
iTotalMb += pSOverRc->iTotalMbSlice;
++ pSOverRc;
}
if (iTotalMb > 0)
pWelsSvcRc->iAverageFrameQp = WELS_DIV_ROUND (INT_MULTIPLY * iTotalQp, iTotalMb * INT_MULTIPLY);
else
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
} else {
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
}
pWelsSvcRc->iFrameDqBits = iCodedBits;
pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId].iGopBitsDq += pWelsSvcRc->iFrameDqBits;
}
void RcUpdateIntraComplexity (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
int32_t iAlpha = WELS_DIV_ROUND (INT_MULTIPLY, (1 + pWelsSvcRc->iIdrNum));
if (iAlpha < (INT_MULTIPLY / 4)) iAlpha = INT_MULTIPLY / 4;
int64_t iIntraCmplx = pWelsSvcRc->iQStep * pWelsSvcRc->iFrameDqBits;
pWelsSvcRc->iIntraComplexity = WELS_DIV_ROUND (((INT_MULTIPLY - iAlpha) * pWelsSvcRc->iIntraComplexity + iAlpha *
iIntraCmplx), INT_MULTIPLY);
pWelsSvcRc->iIntraMbCount = pWelsSvcRc->iNumberMbFrame;
pWelsSvcRc->iIdrNum++;
if (pWelsSvcRc->iIdrNum > 255)
pWelsSvcRc->iIdrNum = 255;
}
void RcUpdateFrameComplexity (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiTl = pEncCtx->uiTemporalId;
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[kiTl];
if (0 == pTOverRc->iPFrameNum) {
pTOverRc->iLinearCmplx = ((int64_t)pWelsSvcRc->iFrameDqBits) * pWelsSvcRc->iQStep;
} else {
pTOverRc->iLinearCmplx = WELS_DIV_ROUND64 ((LINEAR_MODEL_DECAY_FACTOR * (int64_t)pTOverRc->iLinearCmplx
+ (INT_MULTIPLY - LINEAR_MODEL_DECAY_FACTOR) * (int64_t) (pWelsSvcRc->iFrameDqBits * pWelsSvcRc->iQStep)),
INT_MULTIPLY);
}
int32_t iAlpha = WELS_DIV_ROUND (INT_MULTIPLY, (1 + pTOverRc->iPFrameNum));
if (iAlpha < SMOOTH_FACTOR_MIN_VALUE)
iAlpha = SMOOTH_FACTOR_MIN_VALUE;
pTOverRc->iFrameCmplxMean = WELS_DIV_ROUND (((INT_MULTIPLY - iAlpha) * pTOverRc->iFrameCmplxMean + iAlpha *
pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity), INT_MULTIPLY);
pTOverRc->iPFrameNum++;
if (pTOverRc->iPFrameNum > 255)
pTOverRc->iPFrameNum = 255;
}
int32_t RcCalculateCascadingQp (struct TagWelsEncCtx* pEncCtx, int32_t iQp) {
int32_t iTemporalQp = 0;
if (pEncCtx->pSvcParam->iDecompStages) {
if (pEncCtx->uiTemporalId == 0)
iTemporalQp = iQp - 3 - (pEncCtx->pSvcParam->iDecompStages - 1);
else
iTemporalQp = iQp - (pEncCtx->pSvcParam->iDecompStages - pEncCtx->uiTemporalId);
iTemporalQp = WELS_CLIP3 (iTemporalQp, 1, 51);
} else
iTemporalQp = iQp;
return iTemporalQp;
}
void WelsRcPictureInitGom (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
if (pEncCtx->eSliceType == I_SLICE) {
if (0 == pWelsSvcRc->iIdrNum) { //iIdrNum == 0 means encoder has been initialed
RcInitRefreshParameter (pEncCtx);
}
}
if (RcJudgeBitrateFpsUpdate (pEncCtx)) {
RcUpdateBitrateFps (pEncCtx);
}
if (pEncCtx->uiTemporalId == 0) {
RcUpdateTemporalZero (pEncCtx);
}
RcDecideTargetBits (pEncCtx);
//decide globe_qp
if (pEncCtx->eSliceType == I_SLICE) {
if (0 == pWelsSvcRc->iIdrNum)
RcInitIdrQp (pEncCtx);
else {
RcCalculateIdrQp (pEncCtx);
}
} else {
RcCalculatePictureQp (pEncCtx);
}
RcInitSliceInformation (pEncCtx);
RcInitGomParameters (pEncCtx);
}
void WelsRcPictureInfoUpdateGom (void* pCtx, int32_t layer_size) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
int32_t iCodedBits = (layer_size << 3);
RcUpdatePictureQpBits (pEncCtx, iCodedBits);
if (pEncCtx->eSliceType == P_SLICE) {
RcUpdateFrameComplexity (pEncCtx);
} else {
RcUpdateIntraComplexity (pEncCtx);
}
pWelsSvcRc->iRemainingBits -= pWelsSvcRc->iFrameDqBits;
#if GOM_TRACE_FLAG
RcTraceFrameBits (pEncCtx);
#endif
if (pEncCtx->pSvcParam->bEnableFrameSkip /*&&
pEncCtx->uiDependencyId == pEncCtx->pSvcParam->iSpatialLayerNum - 1*/) {
RcVBufferCalculationSkip (pEncCtx);
}
if (pEncCtx->pSvcParam->iPaddingFlag)
RcVBufferCalculationPadding (pEncCtx);
pWelsSvcRc->iFrameCodedInVGop++;
#ifdef _TEST_TEMP_Rc_
fprintf (fp_test_rc, "%d\n", pWelsSvcRc->iFrameDqBits);
if (pEncCtx->iSkipFrameFlag)
fprintf (fp_test_rc, "0\n");
fflush (fp_test_rc);
#endif
}
void WelsRcMbInitGom (void* pCtx, SMB* pCurMb, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiSliceId = pSlice->uiSliceIdx;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
SBitStringAux* bs = pSlice->pSliceBsa;
SDqLayer* pCurLayer = pEncCtx->pCurDqLayer;
const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;
pSOverRc->iBsPosSlice = BsGetBitsPos (bs);
if (pEncCtx->eSliceType == I_SLICE) {
pCurMb->uiLumaQp = pEncCtx->iGlobalQp;
pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (pCurMb->uiLumaQp + kuiChromaQpIndexOffset)];
return;
}
//calculate gom qp and target bits at the beginning of gom
if (0 == (pCurMb->iMbXY % pWelsSvcRc->iNumberMbGom)) {
if (pCurMb->iMbXY != pSOverRc->iStartMbSlice) {
pSOverRc->iComplexityIndexSlice++;
RcCalculateGomQp (pEncCtx, pCurMb, kiSliceId);
}
RcGomTargetBits (pEncCtx, kiSliceId);
}
RcCalculateMbQp (pEncCtx, pCurMb, kiSliceId);
}
void WelsRcMbInfoUpdateGom (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SBitStringAux* bs = pSlice->pSliceBsa;
int32_t iSliceId = pSlice->uiSliceIdx;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId];
const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;
int32_t cur_mb_bits = BsGetBitsPos (bs) - pSOverRc->iBsPosSlice;
pSOverRc->iFrameBitsSlice += cur_mb_bits;
pSOverRc->iGomBitsSlice += cur_mb_bits;
pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma;
if (cur_mb_bits > 0) {
pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp;
pSOverRc->iTotalMbSlice++;
}
}
void WelsRcPictureInitDisable (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SSpatialLayerConfig* pDLayerParam = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
const int32_t kiQp = pDLayerParam->iDLayerQp;
pEncCtx->iGlobalQp = RcCalculateCascadingQp (pEncCtx, kiQp);
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) {
pEncCtx->iGlobalQp = WELS_CLIP3 ((pEncCtx->iGlobalQp * INT_MULTIPLY -
pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp) / INT_MULTIPLY, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE);
} else {
pEncCtx->iGlobalQp = WELS_CLIP3 (pEncCtx->iGlobalQp, 0, 51);
}
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
}
void WelsRcPictureInfoUpdateDisable (void* pCtx, int32_t layer_size) {
}
void WelsRcMbInitDisable (void* pCtx, SMB* pCurMb, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
int32_t iLumaQp = pEncCtx->iGlobalQp;
SDqLayer* pCurLayer = pEncCtx->pCurDqLayer;
const uint8_t kuiChromaQpIndexOffset = pCurLayer->sLayerInfo.pPpsP->uiChromaQpIndexOffset;
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) {
iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp +
pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], GOM_MIN_QP_MODE, 51);
} else {
iLumaQp = WELS_CLIP3 (iLumaQp, 0, 51);
}
pCurMb->uiChromaQp = g_kuiChromaQpTable[CLIP3_QP_0_51 (iLumaQp + kuiChromaQpIndexOffset)];
pCurMb->uiLumaQp = iLumaQp;
}
void WelsRcMbInfoUpdateDisable (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {
}
void WelRcPictureInitBufferBasedQp (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SVAAFrameInfo* pVaa = static_cast<SVAAFrameInfo*> (pEncCtx->pVaa);
int32_t iMinQp = MIN_SCREEN_QP;
if (pVaa->eSceneChangeIdc == LARGE_CHANGED_SCENE)
iMinQp = MIN_SCREEN_QP + 2;
else if (pVaa->eSceneChangeIdc == MEDIUM_CHANGED_SCENE)
iMinQp = MIN_SCREEN_QP + 1;
else
iMinQp = MIN_SCREEN_QP;
pEncCtx->iGlobalQp += pEncCtx->iDropNumber;
pEncCtx->iGlobalQp = WELS_CLIP3 (pEncCtx->iGlobalQp, iMinQp, MAX_SCREEN_QP);
}
void WelsRcInitModule (void* pCtx, RC_MODES iRcMode) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsRcFunc* pRcf = &pEncCtx->pFuncList->pfRc;
switch (iRcMode) {
case RC_OFF_MODE:
pRcf->pfWelsRcPictureInit = WelsRcPictureInitDisable;
pRcf->pfWelsRcPicDelayJudge = NULL;
pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateDisable;
pRcf->pfWelsRcMbInit = WelsRcMbInitDisable;
pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateDisable;
break;
case RC_BUFFERBASED_MODE:
pRcf->pfWelsRcPictureInit = WelRcPictureInitBufferBasedQp;
pRcf->pfWelsRcPicDelayJudge = NULL;
pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateDisable;
pRcf->pfWelsRcMbInit = WelsRcMbInitDisable;
pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateDisable;
break;
case RC_QUALITY_MODE:
case RC_BITRATE_MODE:
case RC_LOW_BW_MODE:
default:
pRcf->pfWelsRcPictureInit = WelsRcPictureInitGom;
pRcf->pfWelsRcPicDelayJudge = WelsRcFrameDelayJudge;
pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateGom;
pRcf->pfWelsRcMbInit = WelsRcMbInitGom;
pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateGom;
break;
}
RcInitSequenceParameter (pEncCtx);
}
void WelsRcFreeMemory (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = NULL;
int32_t i = 0;
#ifdef _TEST_TEMP_Rc_
if (fp_test_rc)
fclose (fp_test_rc);
fp_test_rc = NULL;
if (fp_vgop)
fclose (fp_vgop);
fp_vgop = NULL;
#endif
for (i = 0; i < pEncCtx->pSvcParam->iSpatialLayerNum; i++) {
pWelsSvcRc = &pEncCtx->pWelsSvcRc[i];
RcFreeLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign);
}
}
}//end of namespace