openh264/codec/encoder/core/src/encoder_ext.cpp
2014-03-20 16:56:43 +08:00

3746 lines
151 KiB
C++

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file encoder_ext.c
*
* \brief core encoder for SVC
*
* \date 7/24/2009 Created
*
*************************************************************************************
*/
#include "encoder.h"
#include "cpu.h"
#include "utils.h"
#include "svc_enc_golomb.h"
#include "au_set.h"
#include "picture_handle.h"
#include "svc_base_layer_md.h"
#include "svc_encode_slice.h"
#include "decode_mb_aux.h"
#include "deblocking.h"
#include "ref_list_mgr_svc.h"
#include "ls_defines.h"
#include "crt_util_safe_x.h" // Safe CRT routines like utils for cross platforms
#if defined(MT_ENABLED)
#include "slice_multi_threading.h"
#endif//MT_ENABLED
#include "measure_time.h"
namespace WelsSVCEnc {
int32_t WelsCodeOnePicPartition (sWelsEncCtx* pCtx,
SLayerBSInfo* pLbi,
int32_t* pNalIdxInLayer,
int32_t* pLayerSize,
int32_t iFirstMbInPartition, // first mb inclusive in partition
int32_t iEndMbInPartition, // end mb exclusive in partition
int32_t iStartSliceIdx
);
/*!
* \brief validate checking in parameter configuration
* \pParam pParam SWelsSvcCodingParam*
* \return successful - 0; otherwise none 0 for failed
*/
int32_t ParamValidation (SWelsSvcCodingParam* pCfg) {
float fMaxFrameRate = 0.0f;
const float fEpsn = 0.000001f;
int32_t i = 0;
assert (pCfg != NULL);
for (i = 0; i < pCfg->iSpatialLayerNum; ++ i) {
SDLayerParam* fDlp = &pCfg->sDependencyLayers[i];
if (fDlp->fOutputFrameRate > fDlp->fInputFrameRate || (fDlp->fInputFrameRate >= -fEpsn
&& fDlp->fInputFrameRate <= fEpsn)
|| (fDlp->fOutputFrameRate >= -fEpsn && fDlp->fOutputFrameRate <= fEpsn)) {
#if defined (_DEBUG)
fprintf (stderr, "Invalid settings in input frame rate(%.6f) or output frame rate(%.6f) of layer #%d config file..\n",
fDlp->fInputFrameRate, fDlp->fOutputFrameRate, i);
#endif
return 1;
}
if (UINT_MAX == GetLogFactor (fDlp->fOutputFrameRate, fDlp->fInputFrameRate)) {
#if defined (_DEBUG)
fprintf (stderr,
"Invalid settings in input frame rate(%.6f) and output frame rate(%.6f) of layer #%d config file: iResult of output frame rate divided by input frame rate should be power of 2(i.e,in/pOut=2^n)..\n",
fDlp->fInputFrameRate, fDlp->fOutputFrameRate, i);
#endif
return 1;
}
}
for (i = 0; i < pCfg->iSpatialLayerNum; ++ i) {
SDLayerParam* fDlp = &pCfg->sDependencyLayers[i];
if (fDlp->fInputFrameRate > fMaxFrameRate)
fMaxFrameRate = fDlp->fInputFrameRate;
}
if (fMaxFrameRate > fEpsn && (fMaxFrameRate - pCfg->fMaxFrameRate > fEpsn
|| fMaxFrameRate - pCfg->fMaxFrameRate < -fEpsn)) {
pCfg->fMaxFrameRate = fMaxFrameRate;
}
return 0;
}
int32_t ParamValidationExt (sWelsEncCtx*pCtx,SWelsSvcCodingParam* pCodingParam) {
int8_t i = 0;
int32_t iIdx = 0;
assert (pCodingParam != NULL);
if (NULL == pCodingParam)
return ENC_RETURN_INVALIDINPUT;
if (pCodingParam->iSpatialLayerNum < 1 || pCodingParam->iSpatialLayerNum > MAX_DEPENDENCY_LAYER) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->iSpatialLayerNum: %d!\n",
pCodingParam->iSpatialLayerNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->iTemporalLayerNum < 1 || pCodingParam->iTemporalLayerNum > MAX_TEMPORAL_LEVEL) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->iTemporalLayerNum: %d!\n",
pCodingParam->iTemporalLayerNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiGopSize < 1 || pCodingParam->uiGopSize > MAX_GOP_SIZE) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), monitor invalid pCodingParam->uiGopSize: %d!\n", pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiIntraPeriod && pCodingParam->uiIntraPeriod < pCodingParam->uiGopSize) {
WelsLog (pCtx, WELS_LOG_ERROR,
"ParamValidationExt(), uiIntraPeriod(%d) should be not less than that of uiGopSize(%d) or -1 specified!\n",
pCodingParam->uiIntraPeriod, pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (pCodingParam->uiIntraPeriod && (pCodingParam->uiIntraPeriod & (pCodingParam->uiGopSize - 1)) != 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), uiIntraPeriod(%d) should be multiple of uiGopSize(%d) or -1 specified!\n",
pCodingParam->uiIntraPeriod, pCodingParam->uiGopSize);
return ENC_RETURN_UNSUPPORTED_PARA;
}
#ifdef MT_ENABLED
//about iMultipleThreadIdc, bDeblockingParallelFlag, iLoopFilterDisableIdc, & uiSliceMode
// (1) Single Thread
// if (THREAD==1)//single thread
// no parallel_deblocking: bDeblockingParallelFlag = 0;
// (2) Multi Thread: see uiSliceMode decision
if (pCodingParam->iMultipleThreadIdc == 1) {
//now is single thread. no parallel deblocking, set flag=0
pCodingParam->bDeblockingParallelFlag = false;
} else {
pCodingParam->bDeblockingParallelFlag = true;
}
#else
pCodingParam->bDeblockingParallelFlag = false;
#endif//MT_ENABLED
for (i = 0; i < pCodingParam->iSpatialLayerNum; ++ i) {
SDLayerParam* fDlp = &pCodingParam->sDependencyLayers[i];
const int32_t kiPicWidth = fDlp->iFrameWidth;
const int32_t kiPicHeight = fDlp->iFrameHeight;
uint32_t iMbWidth = 0;
uint32_t iMbHeight = 0;
int32_t iMbNumInFrame = 0;
uint32_t iMaxSliceNum = MAX_SLICES_NUM;
if (kiPicWidth <= 0 || kiPicHeight <= 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid %d x %d in dependency layer settings!\n", kiPicWidth, kiPicHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if ((kiPicWidth & 0x0F) != 0 || (kiPicHeight & 0x0F) != 0) {
WelsLog (pCtx, WELS_LOG_ERROR,
"ParamValidationExt(), in layer #%d iWidth x iHeight(%d x %d) both should be multiple of 16, can not support with arbitrary size currently!\n",
i, kiPicWidth, kiPicHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (fDlp->sSliceCfg.uiSliceMode >= SM_RESERVED) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMode (%d) settings!\n", fDlp->sSliceCfg.uiSliceMode);
return ENC_RETURN_UNSUPPORTED_PARA;
}
//check pSlice settings under multi-pSlice
if (kiPicWidth <= 16 && kiPicHeight <= 16) {
//only have one MB, set to single_slice
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
}
switch (fDlp->sSliceCfg.uiSliceMode) {
case SM_SINGLE_SLICE:
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint = 0;
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = 0;
for (iIdx = 0; iIdx < MAX_SLICES_NUM; iIdx++) {
fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[iIdx] = 0;
}
break;
case SM_FIXEDSLCNUM_SLICE:{
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint = 0;
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
iMbNumInFrame = iMbWidth * iMbHeight;
iMaxSliceNum = MAX_SLICES_NUM;
if (fDlp->sSliceCfg.sSliceArgument.uiSliceNum <= 0
|| fDlp->sSliceCfg.sSliceArgument.uiSliceNum > iMaxSliceNum) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) settings!\n", fDlp->sSliceCfg.sSliceArgument.uiSliceNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (fDlp->sSliceCfg.sSliceArgument.uiSliceNum == 1) {
WelsLog (pCtx, WELS_LOG_DEBUG,
"ParamValidationExt(), uiSliceNum(%d) you set for SM_FIXEDSLCNUM_SLICE, now turn to SM_SINGLE_SLICE type!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceNum);
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
break;
}
if (pCodingParam->bEnableRc) { // multiple slices verify with gom
//check uiSliceNum
GomValidCheckSliceNum (iMbWidth, iMbHeight, &fDlp->sSliceCfg.sSliceArgument.uiSliceNum);
assert (fDlp->sSliceCfg.sSliceArgument.uiSliceNum > 1);
//set uiSliceMbNum with current uiSliceNum
GomValidCheckSliceMbNum (iMbWidth, iMbHeight, &fDlp->sSliceCfg.sSliceArgument);
} else if (!CheckFixedSliceNumMultiSliceSetting (iMbNumInFrame,
&fDlp->sSliceCfg.sSliceArgument)) { // verify interleave mode settings
//check uiSliceMbNum with current uiSliceNum
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
// considering the coding efficient and performance, iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (iMbNumInFrame <= MIN_NUM_MB_PER_SLICE) {
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
break;
}
}
break;
case SM_AUTO_SLICE:{
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint = 0;
}
break;
case SM_RASTER_SLICE: {
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint = 0;
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
iMbNumInFrame = iMbWidth * iMbHeight;
iMaxSliceNum = MAX_SLICES_NUM;
if (fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0] <= 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (!CheckRasterMultiSliceSetting (iMbNumInFrame, &fDlp->sSliceCfg.sSliceArgument)) { // verify interleave mode settings
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (fDlp->sSliceCfg.sSliceArgument.uiSliceNum <= 0
|| fDlp->sSliceCfg.sSliceArgument.uiSliceNum > iMaxSliceNum) { // verify interleave mode settings
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) in SM_RASTER_SLICE settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (fDlp->sSliceCfg.sSliceArgument.uiSliceNum == 1) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), pSlice setting for SM_RASTER_SLICE now turn to SM_SINGLE_SLICE!\n");
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
break;
}
#ifdef MT_ENABLED
if (pCodingParam->bEnableRc && fDlp->sSliceCfg.sSliceArgument.uiSliceNum > 1) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), WARNING: GOM based RC do not support SM_RASTER_SLICE!\n");
}
#endif
// considering the coding efficient and performance, iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (iMbNumInFrame <= MIN_NUM_MB_PER_SLICE) {
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
break;
}
}
break;
case SM_ROWMB_SLICE: {
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint = 0;
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
iMaxSliceNum = MAX_SLICES_NUM;
if (iMbHeight > iMaxSliceNum) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) settings more than MAX!\n", iMbHeight);
return ENC_RETURN_UNSUPPORTED_PARA;
}
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = iMbHeight;
if (fDlp->sSliceCfg.sSliceArgument.uiSliceNum <= 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceNum (%d) settings!\n", fDlp->sSliceCfg.sSliceArgument.uiSliceNum);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (!CheckRowMbMultiSliceSetting (iMbWidth, &fDlp->sSliceCfg.sSliceArgument)) { // verify interleave mode settings
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMbNum (%d) settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0]);
return ENC_RETURN_UNSUPPORTED_PARA;
}
}
break;
case SM_DYN_SLICE: {
iMbWidth = (kiPicWidth + 15) >> 4;
iMbHeight = (kiPicHeight + 15) >> 4;
if (fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint <= 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid iSliceSize (%d) settings!\n",
fDlp->sSliceCfg.sSliceArgument.uiSliceSizeConstraint);
return ENC_RETURN_UNSUPPORTED_PARA;
}
// considering the coding efficient and performance, iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (iMbWidth * iMbHeight <= MIN_NUM_MB_PER_SLICE) {
fDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
fDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
break;
}
}
break;
default: {
WelsLog (pCtx, WELS_LOG_ERROR, "ParamValidationExt(), invalid uiSliceMode (%d) settings!\n",
pCodingParam->sDependencyLayers[0].sSliceCfg.uiSliceMode);
return ENC_RETURN_UNSUPPORTED_PARA;
}
break;
}
}
return ParamValidation (pCodingParam);
}
void WelsEncoderApplyFrameRate(SWelsSvcCodingParam* pParam)
{
SDLayerParam* pLayerParam;
const float kfEpsn = 0.000001f;
const int32_t kiNumLayer = pParam->iSpatialLayerNum;
int32_t i;
const float kfMaxFrameRate = pParam->fMaxFrameRate;
float fRatio;
float fTargetOutputFrameRate;
//set input frame rate to each layer
for (i=0;i<kiNumLayer;i++) {
pLayerParam = &(pParam->sDependencyLayers[i]);
fRatio = pLayerParam->fOutputFrameRate / pLayerParam->fInputFrameRate;
if ( (kfMaxFrameRate - pLayerParam->fInputFrameRate) > kfEpsn
|| (kfMaxFrameRate - pLayerParam->fInputFrameRate) < -kfEpsn ) {
pLayerParam->fInputFrameRate = kfMaxFrameRate;
fTargetOutputFrameRate = kfMaxFrameRate*fRatio;
pLayerParam->fOutputFrameRate = (fTargetOutputFrameRate>=6)?fTargetOutputFrameRate:(pLayerParam->fInputFrameRate);
//TODO:{Sijia} from design, there is no sense to have temporal layer when under 6fps even with such setting?
}
}
}
void WelsEncoderApplyBitRate(SWelsSvcCodingParam* pParam,int iLayer)
{
//TODO (Sijia): this is a temporary solution which keep the ratio between layers
//but it is also possible to fulfill the bitrate of lower layer first
SDLayerParam* pLayerParam;
const int32_t iNumLayers = pParam->iSpatialLayerNum;
int32_t i, iOrigTotalBitrate=0;
if(iLayer == SPATIAL_LAYER_ALL){
if(pParam->iMaxBitrate <pParam->iTargetBitrate){
WelsLog (NULL, WELS_LOG_WARNING,"CWelsH264SVCEncoder::SetOption():ENCODER_OPTION_BITRATE,overall settting,TargetBitrate = %d,iMaxBitrate = %d\n",
pParam->iTargetBitrate,pParam->iMaxBitrate);
pParam->iMaxBitrate = pParam->iTargetBitrate;
}
//read old BR
for (i=0;i<iNumLayers;i++) {
iOrigTotalBitrate += pParam->sDependencyLayers[i].iSpatialBitrate;
}
//write new BR
float fRatio = 0.0;
for (i=0;i<iNumLayers;i++) {
pLayerParam = &(pParam->sDependencyLayers[i]);
fRatio = pLayerParam->iSpatialBitrate/(static_cast<float>(iOrigTotalBitrate));
pLayerParam->iSpatialBitrate = static_cast<int32_t>(pParam->iTargetBitrate*fRatio);
}
}else{
if(pParam->sSpatialLayers[iLayer].iMaxSpatialBitrate <pParam->sSpatialLayers[iLayer].iSpatialBitrate){
WelsLog (NULL, WELS_LOG_WARNING,"CWelsH264SVCEncoder::SetOption():ENCODER_OPTION_BITRATE,iLayer = %d,iTargetBitrate = %d,iMaxBitrate = %d\n",
iLayer,pParam->sSpatialLayers[iLayer].iSpatialBitrate,pParam->sSpatialLayers[iLayer].iMaxSpatialBitrate);
pParam->sSpatialLayers[iLayer].iMaxSpatialBitrate = pParam->sSpatialLayers[iLayer].iSpatialBitrate;
}
}
}
/*!
* \brief acquire count number of layers and NALs based on configurable paramters dependency
* \pParam pCtx sWelsEncCtx*
* \pParam pParam SWelsSvcCodingParam*
* \pParam pCountLayers pointer of count number of layers indeed
* \pParam iCountNals pointer of count number of nals indeed
* \return 0 - successful; otherwise failed
*/
static inline int32_t AcquireLayersNals (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pParam, int32_t* pCountLayers,
int32_t* pCountNals) {
int32_t iCountNumLayers = 0;
int32_t iCountNumNals = 0;
int32_t iNumDependencyLayers = 0;
int32_t iDIndex = 0;
if (NULL == pParam || NULL == ppCtx || NULL == *ppCtx)
return 1;
iNumDependencyLayers = pParam->iSpatialLayerNum;
do {
SDLayerParam* pDLayer = &pParam->sDependencyLayers[iDIndex];
// pDLayer->ptr_cfg = pParam;
int32_t iOrgNumNals = iCountNumNals;
//Note: Sep. 2010
//Review this part and suggest no change, since the memory over-use
//(1) counts little to the overall performance
//(2) should not be critial even under mobile case
if (SM_DYN_SLICE == pDLayer->sSliceCfg.uiSliceMode) {
iCountNumNals += MAX_SLICES_NUM;
// plus prefix NALs
if (iDIndex == 0)
iCountNumNals += MAX_SLICES_NUM;
// MAX_SLICES_NUM < MAX_LAYER_NUM_OF_FRAME ensured at svc_enc_slice_segment.h
assert (iCountNumNals - iOrgNumNals <= MAX_NAL_UNITS_IN_LAYER);
} else { /*if ( SM_SINGLE_SLICE != pDLayer->sSliceCfg.uiSliceMode )*/
const int32_t kiNumOfSlice = GetInitialSliceNum ((pDLayer->iFrameWidth + 0x0f) >> 4,
(pDLayer->iFrameHeight + 0x0f) >> 4,
&pDLayer->sSliceCfg);
// NEED check iCountNals value in case multiple slices is used
iCountNumNals += kiNumOfSlice; // for pSlice VCL NALs
// plus prefix NALs
if (iDIndex == 0)
iCountNumNals += kiNumOfSlice;
assert (iCountNumNals - iOrgNumNals <= MAX_NAL_UNITS_IN_LAYER);
if (kiNumOfSlice > MAX_SLICES_NUM) {
WelsLog (*ppCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), num_of_slice(%d) > MAX_SLICES_NUM(%d) per (iDid= %d, qid= %d) settings!\n",
kiNumOfSlice, MAX_SLICES_NUM, iDIndex, 0);
return 1;
}
}
if (iCountNumNals - iOrgNumNals > MAX_NAL_UNITS_IN_LAYER) {
WelsLog (*ppCtx, WELS_LOG_ERROR,
"AcquireLayersNals(), num_of_nals(%d) > MAX_NAL_UNITS_IN_LAYER(%d) per (iDid= %d, qid= %d) settings!\n",
(iCountNumNals - iOrgNumNals), MAX_NAL_UNITS_IN_LAYER, iDIndex, 0);
return 1;
}
iCountNumLayers ++;
++ iDIndex;
} while (iDIndex < iNumDependencyLayers);
iCountNumNals += 1 + iNumDependencyLayers + (iCountNumLayers << 1) +
iCountNumLayers; // plus iCountNumLayers for reserved application
// to check number of layers / nals / slices dependencies, 12/8/2010
#if !defined(MT_ENABLED)
if (iCountNumLayers > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (*ppCtx, WELS_LOG_ERROR, "AcquireLayersNals(), iCountNumLayers(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iCountNumLayers, MAX_LAYER_NUM_OF_FRAME);
return 1;
}
#else//MT_ENABLED
if (iCountNumLayers > MAX_LAYER_NUM_OF_FRAME) {
WelsLog (*ppCtx, WELS_LOG_ERROR, "AcquireLayersNals(), iCountNumLayers(%d) > MAX_LAYER_NUM_OF_FRAME(%d)!",
iCountNumLayers, MAX_LAYER_NUM_OF_FRAME);
return 1;
}
#endif//!MT_ENABLED
if (NULL != pCountLayers)
*pCountLayers = iCountNumLayers;
if (NULL != pCountNals)
*pCountNals = iCountNumNals;
return 0;
}
static void InitMbInfo (sWelsEncCtx* pEnc, SMB* pList, SDqLayer* pLayer, const int32_t kiDlayerId,
const int32_t kiMaxMbNum) {
int32_t iMbWidth = pLayer->iMbWidth;
int32_t iMbHeight = pLayer->iMbHeight;
int32_t iIdx;
int32_t iMbNum = iMbWidth * iMbHeight;
SSliceCtx* pSliceCtx = pLayer->pSliceEncCtx;
uint32_t uiNeighborAvail;
const int32_t kiOffset = (kiDlayerId & 0x01) * kiMaxMbNum;
SMVUnitXY (*pLayerMvUnitBlock4x4)[MB_BLOCK4x4_NUM] = (SMVUnitXY (*)[MB_BLOCK4x4_NUM]) (
&pEnc->pMvUnitBlock4x4[MB_BLOCK4x4_NUM * kiOffset]);
int8_t (*pLayerRefIndexBlock8x8)[MB_BLOCK8x8_NUM] = (int8_t (*)[MB_BLOCK8x8_NUM]) (
&pEnc->pRefIndexBlock4x4[MB_BLOCK8x8_NUM * kiOffset]);
for (iIdx = 0; iIdx < iMbNum; iIdx++) {
bool bLeft;
bool bTop;
bool bLeftTop;
bool bRightTop;
int32_t iLeftXY, iTopXY, iLeftTopXY, iRightTopXY;
uint8_t uiSliceIdc;
pList[iIdx].iMbX = pEnc->pStrideTab->pMbIndexX[kiDlayerId][iIdx];
pList[iIdx].iMbY = pEnc->pStrideTab->pMbIndexY[kiDlayerId][iIdx];
pList[iIdx].iMbXY = iIdx;
uiSliceIdc = WelsMbToSliceIdc (pSliceCtx, iIdx);
iLeftXY = iIdx - 1;
iTopXY = iIdx - iMbWidth;
iLeftTopXY = iTopXY - 1;
iRightTopXY = iTopXY + 1;
bLeft = (pList[iIdx].iMbX > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iLeftXY));
bTop = (pList[iIdx].iMbY > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iTopXY));
bLeftTop = (pList[iIdx].iMbX > 0) && (pList[iIdx].iMbY > 0) && (uiSliceIdc ==
WelsMbToSliceIdc (pSliceCtx, iLeftTopXY));
bRightTop = (pList[iIdx].iMbX < (iMbWidth - 1)) && (pList[iIdx].iMbY > 0) && (uiSliceIdc ==
WelsMbToSliceIdc (pSliceCtx, iRightTopXY));
uiNeighborAvail = 0;
if (bLeft) {
uiNeighborAvail |= LEFT_MB_POS;
}
if (bTop) {
uiNeighborAvail |= TOP_MB_POS;
}
if (bLeftTop) {
uiNeighborAvail |= TOPLEFT_MB_POS;
}
if (bRightTop) {
uiNeighborAvail |= TOPRIGHT_MB_POS;
}
pList[iIdx].uiSliceIdc = uiSliceIdc; // merge from svc_hd_opt_b for multiple slices coding
pList[iIdx].uiNeighborAvail = uiNeighborAvail;
uiNeighborAvail = 0;
if (pList[iIdx].iMbX >= BASE_MV_MB_NMB)
uiNeighborAvail |= LEFT_MB_POS;
if (pList[iIdx].iMbX <= (iMbWidth - 1 - BASE_MV_MB_NMB))
uiNeighborAvail |= RIGHT_MB_POS;
if (pList[iIdx].iMbY >= BASE_MV_MB_NMB)
uiNeighborAvail |= TOP_MB_POS;
if (pList[iIdx].iMbY <= (iMbHeight - 1 - BASE_MV_MB_NMB))
uiNeighborAvail |= BOTTOM_MB_POS;
pList[iIdx].sMv = pLayerMvUnitBlock4x4[iIdx];
pList[iIdx].pRefIndex = pLayerRefIndexBlock8x8[iIdx];
pList[iIdx].pSadCost = &pEnc->pSadCostMb[iIdx];
pList[iIdx].pIntra4x4PredMode = &pEnc->pIntra4x4PredModeBlocks[iIdx * INTRA_4x4_MODE_NUM];
pList[iIdx].pNonZeroCount = &pEnc->pNonZeroCountBlocks[iIdx * MB_LUMA_CHROMA_BLOCK4x4_NUM];
}
}
int32_t InitMbListD (sWelsEncCtx** ppCtx) {
int32_t iNumDlayer = (*ppCtx)->pSvcParam->iSpatialLayerNum;
int32_t iMbSize[MAX_DEPENDENCY_LAYER] = { 0 };
int32_t iOverallMbNum = 0;
int32_t iMbWidth = 0;
int32_t iMbHeight = 0;
int32_t i;
if (iNumDlayer > MAX_DEPENDENCY_LAYER)
return 1;
for (i = 0; i < iNumDlayer; i++) {
iMbWidth = ((*ppCtx)->pSvcParam->sDependencyLayers[i].iFrameWidth + 15) >> 4;
iMbHeight = ((*ppCtx)->pSvcParam->sDependencyLayers[i].iFrameHeight + 15) >> 4;
iMbSize[i] = iMbWidth * iMbHeight;
iOverallMbNum += iMbSize[i];
}
(*ppCtx)->ppMbListD = static_cast<SMB**> ((*ppCtx)->pMemAlign->WelsMalloc (iNumDlayer * sizeof (SMB*), "ppMbListD"));
(*ppCtx)->ppMbListD[0] = NULL;
WELS_VERIFY_RETURN_PROC_IF (1, (*ppCtx)->ppMbListD == NULL, FreeMemorySvc (ppCtx));
(*ppCtx)->ppMbListD[0] = static_cast<SMB*> ((*ppCtx)->pMemAlign->WelsMallocz (iOverallMbNum * sizeof (SMB),
"ppMbListD[0]"));
WELS_VERIFY_RETURN_PROC_IF (1, (*ppCtx)->ppMbListD[0] == NULL, FreeMemorySvc (ppCtx));
(*ppCtx)->ppDqLayerList[0]->sMbDataP = (*ppCtx)->ppMbListD[0];
InitMbInfo (*ppCtx, (*ppCtx)->ppMbListD[0], (*ppCtx)->ppDqLayerList[0], 0, iMbSize[iNumDlayer - 1]);
for (i = 1; i < iNumDlayer; i++) {
(*ppCtx)->ppMbListD[i] = (*ppCtx)->ppMbListD[i - 1] + iMbSize[i - 1];
(*ppCtx)->ppDqLayerList[i]->sMbDataP = (*ppCtx)->ppMbListD[i];
InitMbInfo (*ppCtx, (*ppCtx)->ppMbListD[i], (*ppCtx)->ppDqLayerList[i], i, iMbSize[iNumDlayer - 1]);
}
return 0;
}
int32_t AllocMbCacheAligned (SMbCache* pMbCache, CMemoryAlign* pMa) {
pMbCache->pCoeffLevel = (int16_t*)pMa->WelsMalloc (MB_COEFF_LIST_SIZE * sizeof (int16_t), "pMbCache->pCoeffLevel");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pCoeffLevel));
pMbCache->pMemPredMb = (uint8_t*)pMa->WelsMalloc (2 * 256 * sizeof (uint8_t), "pMbCache->pMemPredMb");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pMemPredMb));
pMbCache->pSkipMb = (uint8_t*)pMa->WelsMalloc (384 * sizeof (uint8_t), "pMbCache->pSkipMb");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pSkipMb));
pMbCache->pMemPredBlk4 = (uint8_t*)pMa->WelsMalloc (2 * 16 * sizeof (uint8_t), "pMbCache->pMemPredBlk4");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pMemPredBlk4));
pMbCache->pBufferInterPredMe = (uint8_t*)pMa->WelsMalloc (4 * 640 * sizeof (uint8_t), "pMbCache->pBufferInterPredMe");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pBufferInterPredMe));
pMbCache->pPrevIntra4x4PredModeFlag = (bool*)pMa->WelsMalloc (16 * sizeof (bool),
"pMbCache->pPrevIntra4x4PredModeFlag");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pPrevIntra4x4PredModeFlag));
pMbCache->pRemIntra4x4PredModeFlag = (int8_t*)pMa->WelsMalloc (16 * sizeof (int8_t),
"pMbCache->pRemIntra4x4PredModeFlag");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pRemIntra4x4PredModeFlag));
pMbCache->pDct = (SDCTCoeff*)pMa->WelsMalloc (sizeof (SDCTCoeff), "pMbCache->pDct");
WELS_VERIFY_RETURN_IF (1, (NULL == pMbCache->pDct));
return 0;
}
void FreeMbCache (SMbCache* pMbCache, CMemoryAlign* pMa) {
if (NULL != pMbCache->pCoeffLevel) {
pMa->WelsFree (pMbCache->pCoeffLevel, "pMbCache->pCoeffLevel");
pMbCache->pCoeffLevel = NULL;
}
if (NULL != pMbCache->pMemPredMb) {
pMa->WelsFree (pMbCache->pMemPredMb, "pMbCache->pMemPredMb");
pMbCache->pMemPredMb = NULL;
}
if (NULL != pMbCache->pSkipMb) {
pMa->WelsFree (pMbCache->pSkipMb, "pMbCache->pSkipMb");
pMbCache->pSkipMb = NULL;
}
if (NULL != pMbCache->pMemPredBlk4) {
pMa->WelsFree (pMbCache->pMemPredBlk4, "pMbCache->pMemPredBlk4");
pMbCache->pMemPredBlk4 = NULL;
}
if (NULL != pMbCache->pBufferInterPredMe) {
pMa->WelsFree (pMbCache->pBufferInterPredMe, "pMbCache->pBufferInterPredMe");
pMbCache->pBufferInterPredMe = NULL;
}
if (NULL != pMbCache->pPrevIntra4x4PredModeFlag) {
pMa->WelsFree (pMbCache->pPrevIntra4x4PredModeFlag, "pMbCache->pPrevIntra4x4PredModeFlag");
pMbCache->pPrevIntra4x4PredModeFlag = NULL;
}
if (NULL != pMbCache->pRemIntra4x4PredModeFlag) {
pMa->WelsFree (pMbCache->pRemIntra4x4PredModeFlag, "pMbCache->pRemIntra4x4PredModeFlag");
pMbCache->pRemIntra4x4PredModeFlag = NULL;
}
if (NULL != pMbCache->pDct) {
pMa->WelsFree (pMbCache->pDct, "pMbCache->pDct");
pMbCache->pDct = NULL;
}
}
/*!
* \brief initialize ppDqLayerList and slicepEncCtx_list due to count number of layers available
* \pParam pCtx sWelsEncCtx*
* \return 0 - successful; otherwise failed
*/
static inline int32_t InitDqLayers (sWelsEncCtx** ppCtx) {
SWelsSvcCodingParam* pParam = NULL;
SWelsSPS* pSps = NULL;
SSubsetSps* pSubsetSps = NULL;
SWelsPPS* pPps = NULL;
CMemoryAlign* pMa = NULL;
int32_t iDlayerCount = 0;
int32_t iDlayerIndex = 0;
uint32_t iSpsId = 0;
uint32_t iPpsId = 0;
uint32_t iNumRef = 0;
int32_t iResult = 0;
if (NULL == ppCtx || NULL == *ppCtx)
return 1;
pMa = (*ppCtx)->pMemAlign;
pParam = (*ppCtx)->pSvcParam;
iDlayerCount = pParam->iSpatialLayerNum;
iNumRef = pParam->iNumRefFrame;
// highest_layers_in_temporal = 1 + WELS_MAX(pParam->iDecompStages, 1);
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SRefList* pRefList = NULL;
uint32_t i = 0;
const int32_t kiWidth = pParam->sDependencyLayers[iDlayerIndex].iFrameWidth;
const int32_t kiHeight = pParam->sDependencyLayers[iDlayerIndex].iFrameHeight;
int32_t iPicWidth = WELS_ALIGN (kiWidth, MB_WIDTH_LUMA) + (PADDING_LENGTH << 1); // with iWidth of horizon
int32_t iPicChromaWidth = iPicWidth >> 1;
iPicWidth = WELS_ALIGN (iPicWidth,
32); // 32(or 16 for chroma below) to match original imp. here instead of iCacheLineSize
iPicChromaWidth = WELS_ALIGN (iPicChromaWidth, 16);
WelsGetEncBlockStrideOffset ((*ppCtx)->pStrideTab->pStrideEncBlockOffset[iDlayerIndex], iPicWidth, iPicChromaWidth);
// pRef list
pRefList = (SRefList*)pMa->WelsMallocz (sizeof (SRefList), "pRefList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pRefList), FreeMemorySvc (ppCtx))
do {
pRefList->pRef[i] = AllocPicture (pMa, kiWidth, kiHeight, true); // to use actual size of current layer
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pRefList->pRef[i]), FreeMemorySvc (ppCtx))
++ i;
} while (i < 1 + iNumRef);
pRefList->pNextBuffer = pRefList->pRef[0];
(*ppCtx)->ppRefPicListExt[iDlayerIndex] = pRefList;
++ iDlayerIndex;
}
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SDqLayer* pDqLayer = NULL;
SDLayerParam* pDlayer = &pParam->sDependencyLayers[iDlayerIndex];
const int32_t kiMbW = (pDlayer->iFrameWidth + 0x0f) >> 4;
const int32_t kiMbH = (pDlayer->iFrameHeight + 0x0f) >> 4;
int32_t iMaxSliceNum = 1;
const int32_t kiSliceNum = GetInitialSliceNum (kiMbW, kiMbH, &pDlayer->sSliceCfg);
if (iMaxSliceNum < kiSliceNum)
iMaxSliceNum = kiSliceNum;
// pDq layers list
pDqLayer = (SDqLayer*)pMa->WelsMallocz (sizeof (SDqLayer), "pDqLayer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pDqLayer), FreeMemorySvc (ppCtx))
// for dynamic slicing mode
if (SM_DYN_SLICE == pDlayer->sSliceCfg.uiSliceMode) {
const int32_t iSize = pParam->iCountThreadsNum * sizeof (int32_t);
pDqLayer->pNumSliceCodedOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pNumSliceCodedOfPartition");
pDqLayer->pLastCodedMbIdxOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pLastCodedMbIdxOfPartition");
pDqLayer->pLastMbIdxOfPartition = (int32_t*)pMa->WelsMallocz (iSize, "pLastMbIdxOfPartition");
WELS_VERIFY_RETURN_PROC_IF (1,
(NULL == pDqLayer->pNumSliceCodedOfPartition ||
NULL == pDqLayer->pLastCodedMbIdxOfPartition ||
NULL == pDqLayer->pLastMbIdxOfPartition),
FreeMemorySvc (ppCtx))
}
pDqLayer->iMbWidth = kiMbW;
pDqLayer->iMbHeight = kiMbH;
#ifndef MT_ENABLED
if (SM_DYN_SLICE == pDlayer->sSliceCfg.uiSliceMode) { //wmalloc pSliceInLayer
SSlice* pSlice = NULL;
int32_t iSliceIdx = 0;
//wmalloc AVERSLICENUM_CONSTANT of pDqLayer->sLayerInfo.pSliceInLayer,
//wmalloc AVERSLICENUM_CONSTANT num of pSlice as initialization
//only set value for the first pSlice
pDqLayer->sLayerInfo.pSliceInLayer = (SSlice*)pMa->WelsMallocz (sizeof (SSlice) * iMaxSliceNum, "pSliceInLayer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pDqLayer->sLayerInfo.pSliceInLayer), FreeMemorySvc (ppCtx)) {
pSlice = &pDqLayer->sLayerInfo.pSliceInLayer[0];
pSlice->uiSliceIdx = 0;
pSlice->pSliceBsa = & (*ppCtx)->pOut->sBsWrite;
}
while (iSliceIdx < iMaxSliceNum) {
pSlice = &pDqLayer->sLayerInfo.pSliceInLayer[iSliceIdx];
if (AllocMbCacheAligned (&pSlice->sMbCacheInfo, pMa)) {
FreeMemorySvc (ppCtx);
return 1;
}
++ iSliceIdx;
}
} else
#endif//!MT_ENABLED
{
int32_t iSliceIdx = 0;
pDqLayer->sLayerInfo.pSliceInLayer = (SSlice*)pMa->WelsMallocz (sizeof (SSlice) * iMaxSliceNum, "pSliceInLayer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pDqLayer->sLayerInfo.pSliceInLayer), FreeMemorySvc (ppCtx))
if (iMaxSliceNum > 1) {
while (iSliceIdx < iMaxSliceNum) {
SSlice* pSlice = &pDqLayer->sLayerInfo.pSliceInLayer[iSliceIdx];
pSlice->uiSliceIdx = iSliceIdx;
#ifdef MT_ENABLED
if (pParam->iMultipleThreadIdc > 1)
pSlice->pSliceBsa = & (*ppCtx)->pSliceBs[iSliceIdx].sBsWrite;
else
pSlice->pSliceBsa = & (*ppCtx)->pOut->sBsWrite;
#else
pSlice->pSliceBsa = & (*ppCtx)->pOut->sBsWrite;
#endif//MT_ENABLED
if (AllocMbCacheAligned (&pSlice->sMbCacheInfo, pMa)) {
FreeMemorySvc (ppCtx);
return 1;
}
++ iSliceIdx;
}
}
// fix issue in case single pSlice coding might be inclusive exist in variant spatial layer setting, also introducing multi-pSlice modes
else { // only one pSlice
SSlice* pSlice = &pDqLayer->sLayerInfo.pSliceInLayer[0];
pSlice->uiSliceIdx = 0;
pSlice->pSliceBsa = & (*ppCtx)->pOut->sBsWrite;
if (AllocMbCacheAligned (&pSlice->sMbCacheInfo, pMa)) {
FreeMemorySvc (ppCtx);
return 1;
}
}
}
//deblocking parameters initialization
//target-layer deblocking
pDqLayer->iLoopFilterDisableIdc = pParam->iLoopFilterDisableIdc;
pDqLayer->iLoopFilterAlphaC0Offset = (pParam->iLoopFilterAlphaC0Offset) << 1;
pDqLayer->iLoopFilterBetaOffset = (pParam->iLoopFilterBetaOffset) << 1;
//parallel deblocking
pDqLayer->bDeblockingParallelFlag = pParam->bDeblockingParallelFlag;
//deblocking parameter adjustment
if (SM_SINGLE_SLICE == pDlayer->sSliceCfg.uiSliceMode) {
//iLoopFilterDisableIdc: will be 0 or 1 under single_slice
if (2 == pParam->iLoopFilterDisableIdc) {
pDqLayer->iLoopFilterDisableIdc = 0;
}
//bDeblockingParallelFlag
pDqLayer->bDeblockingParallelFlag = false;
} else {
//multi-pSlice
#ifdef MT_ENABLED
if (0 == pDqLayer->iLoopFilterDisableIdc) {
pDqLayer->bDeblockingParallelFlag = false;
}
#endif
}
(*ppCtx)->ppDqLayerList[iDlayerIndex] = pDqLayer;
++ iDlayerIndex;
}
// for dynamically malloc for parameter sets memory instead of maximal items for standard to reduce size, 3/18/2010
(*ppCtx)->pPPSArray = (SWelsPPS*)pMa->WelsMalloc (iDlayerCount * sizeof (SWelsPPS), "pPPSArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pPPSArray), FreeMemorySvc (ppCtx))
(*ppCtx)->pSpsArray = (SWelsSPS*)pMa->WelsMalloc (sizeof (SWelsSPS), "pSpsArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSpsArray), FreeMemorySvc (ppCtx))
if (iDlayerCount > 1) {
(*ppCtx)->pSubsetArray = (SSubsetSps*)pMa->WelsMalloc ((iDlayerCount - 1) * sizeof (SSubsetSps), "pSubsetArray");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSubsetArray), FreeMemorySvc (ppCtx))
}
(*ppCtx)->pDqIdcMap = (SDqIdc*)pMa->WelsMallocz (iDlayerCount * sizeof (SDqIdc), "pDqIdcMap");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pDqIdcMap), FreeMemorySvc (ppCtx))
iDlayerIndex = 0;
while (iDlayerIndex < iDlayerCount) {
SDqIdc* pDqIdc = & (*ppCtx)->pDqIdcMap[iDlayerIndex];
const bool bUseSubsetSps = (iDlayerIndex > BASE_DEPENDENCY_ID);
SDLayerParam* pDlayerParam = &pParam->sDependencyLayers[iDlayerIndex];
pDqIdc->uiSpatialId = iDlayerIndex;
pPps = & (*ppCtx)->pPPSArray[iPpsId];
if (!bUseSubsetSps) {
pSps = & (*ppCtx)->pSpsArray[iSpsId];
} else {
pSubsetSps = & (*ppCtx)->pSubsetArray[iSpsId];
pSps = &pSubsetSps->pSps;
}
// Need port pSps/pPps initialization due to spatial scalability changed
if (!bUseSubsetSps) {
WelsInitSps (pSps, pDlayerParam, pParam->uiIntraPeriod, pParam->iNumRefFrame, iSpsId,
pParam->bEnableFrameCroppingFlag, pParam->bEnableRc);
if (iDlayerCount > 1) {
pSps->bConstraintSet0Flag = true;
pSps->bConstraintSet1Flag = true;
pSps->bConstraintSet2Flag = true;
}
} else {
WelsInitSubsetSps (pSubsetSps, pDlayerParam, pParam->uiIntraPeriod, pParam->iNumRefFrame, iSpsId,
pParam->bEnableFrameCroppingFlag, pParam->bEnableRc);
}
// initialize pPps
WelsInitPps (pPps, pSps, pSubsetSps, iPpsId, true, bUseSubsetSps);
// Not using FMO in SVC coding so far, come back if need FMO
{
iResult = InitSlicePEncCtx (& (*ppCtx)->pSliceCtxList[iDlayerIndex],
(*ppCtx)->pMemAlign,
false,
pSps->iMbWidth,
pSps->iMbHeight,
& (pDlayerParam->sSliceCfg),
pPps);
if (iResult) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "InitDqLayers(), InitSlicePEncCtx failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return 1;
}
(*ppCtx)->ppDqLayerList[iDlayerIndex]->pSliceEncCtx = & (*ppCtx)->pSliceCtxList[iDlayerIndex];
}
pDqIdc->iSpsId = iSpsId;
pDqIdc->iPpsId = iPpsId;
(*ppCtx)->sPSOVector.bPpsIdMappingIntoSubsetsps[iPpsId] = bUseSubsetSps;
if (bUseSubsetSps)
++ iSpsId;
++ iPpsId;
++ (*ppCtx)->iSpsNum;
++ (*ppCtx)->iPpsNum;
++ iDlayerIndex;
}
return 0;
}
int32_t AllocStrideTables (sWelsEncCtx** ppCtx, const int32_t kiNumSpatialLayers) {
CMemoryAlign* pMa = (*ppCtx)->pMemAlign;
SWelsSvcCodingParam* pParam = (*ppCtx)->pSvcParam;
SStrideTables* pPtr = NULL;
int16_t* pTmpRow = NULL, *pRowX = NULL, *pRowY = NULL, *p = NULL;
uint8_t* pBase = NULL;
uint8_t* pBaseDec = NULL, *pBaseEnc = NULL, *pBaseMbX = NULL, *pBaseMbY = NULL;
struct {
int32_t iMbWidth;
int32_t iCountMbNum; // count number of SMB in each spatial
int32_t iSizeAllMbAlignCache; // cache line size aligned in each spatial
} sMbSizeMap[MAX_DEPENDENCY_LAYER] = {{ 0 }};
int32_t iLineSizeY[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iLineSizeUV[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iMapSpatialIdx[MAX_DEPENDENCY_LAYER][2] = {{ 0 }};
int32_t iSizeDec = 0;
int32_t iSizeEnc = 0;
int32_t iCountLayersNeedCs[2] = {0};
const int32_t kiUnit1Size = 24 * sizeof (int32_t);
int32_t iUnit2Size = 0;
int32_t iNeedAllocSize = 0;
int32_t iRowSize = 0;
int16_t iMaxMbWidth = 0;
int16_t iMaxMbHeight = 0;
int32_t i = 0;
int32_t iSpatialIdx = 0;
int32_t iTemporalIdx = 0;
int32_t iCntTid = 0;
if (kiNumSpatialLayers <= 0 || kiNumSpatialLayers > MAX_DEPENDENCY_LAYER)
return 1;
pPtr = (SStrideTables*)pMa->WelsMalloc (sizeof (SStrideTables), "SStrideTables");
if (NULL == pPtr)
return 1;
(*ppCtx)->pStrideTab = pPtr;
iCntTid = pParam->iTemporalLayerNum > 1 ? 2 : 1;
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
const int32_t kiTmpWidth = (pParam->sDependencyLayers[iSpatialIdx].iFrameWidth + 15) >> 4;
const int32_t kiTmpHeight = (pParam->sDependencyLayers[iSpatialIdx].iFrameHeight + 15) >> 4;
int32_t iNumMb = kiTmpWidth * kiTmpHeight;
sMbSizeMap[iSpatialIdx].iMbWidth = kiTmpWidth;
sMbSizeMap[iSpatialIdx].iCountMbNum = iNumMb;
iNumMb *= sizeof (int16_t);
sMbSizeMap[iSpatialIdx].iSizeAllMbAlignCache = iNumMb;
iUnit2Size += iNumMb;
++ iSpatialIdx;
}
// Adaptive size_cs, size_fdec by implementation dependency
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
SDLayerParam* fDlp = &pParam->sDependencyLayers[iSpatialIdx];
const int32_t kiWidthPad = WELS_ALIGN (fDlp->iFrameWidth, 16) + (PADDING_LENGTH << 1);
iLineSizeY[iSpatialIdx][kbBaseTemporalFlag] = WELS_ALIGN (kiWidthPad, 32);
iLineSizeUV[iSpatialIdx][kbBaseTemporalFlag] = WELS_ALIGN ((kiWidthPad >> 1), 16);
iMapSpatialIdx[iCountLayersNeedCs[kbBaseTemporalFlag]][kbBaseTemporalFlag] = iSpatialIdx;
++ iCountLayersNeedCs[kbBaseTemporalFlag];
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iSizeDec = kiUnit1Size * (iCountLayersNeedCs[0] + iCountLayersNeedCs[1]);
iSizeEnc = kiUnit1Size * kiNumSpatialLayers;
iNeedAllocSize = iSizeDec + iSizeEnc + (iUnit2Size << 1);
pBase = (uint8_t*)pMa->WelsMalloc (iNeedAllocSize, "pBase");
if (NULL == pBase) {
return 1;
}
pBaseDec = pBase; // iCountLayersNeedCs
pBaseEnc = pBaseDec + iSizeDec; // iNumSpatialLayers
pBaseMbX = pBaseEnc + iSizeEnc; // iNumSpatialLayers
pBaseMbY = pBaseMbX + iUnit2Size; // iNumSpatialLayers
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < iCountLayersNeedCs[kbBaseTemporalFlag]) {
const int32_t kiActualSpatialIdx = iMapSpatialIdx[iSpatialIdx][kbBaseTemporalFlag];
const int32_t kiLumaWidth = iLineSizeY[kiActualSpatialIdx][kbBaseTemporalFlag];
const int32_t kiChromaWidth = iLineSizeUV[kiActualSpatialIdx][kbBaseTemporalFlag];
WelsGetEncBlockStrideOffset ((int32_t*)pBaseDec, kiLumaWidth, kiChromaWidth);
pPtr->pStrideDecBlockOffset[kiActualSpatialIdx][kbBaseTemporalFlag] = (int32_t*)pBaseDec;
pBaseDec += kiUnit1Size;
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iTemporalIdx = 0;
while (iTemporalIdx < iCntTid) {
const bool kbBaseTemporalFlag = (iTemporalIdx == 0);
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
int32_t iMatchIndex = 0;
bool bInMap = false;
bool bMatchFlag = false;
i = 0;
while (i < iCountLayersNeedCs[kbBaseTemporalFlag]) {
const int32_t kiActualIdx = iMapSpatialIdx[i][kbBaseTemporalFlag];
if (kiActualIdx == iSpatialIdx) {
bInMap = true;
break;
}
if (!bMatchFlag) {
iMatchIndex = kiActualIdx;
bMatchFlag = true;
}
++ i;
}
if (bInMap) {
++ iSpatialIdx;
continue;
}
// not in spatial map and assign match one to it
pPtr->pStrideDecBlockOffset[iSpatialIdx][kbBaseTemporalFlag] =
pPtr->pStrideDecBlockOffset[iMatchIndex][kbBaseTemporalFlag];
++ iSpatialIdx;
}
++ iTemporalIdx;
}
iSpatialIdx = 0;
while (iSpatialIdx < kiNumSpatialLayers) {
const int32_t kiAllocMbSize = sMbSizeMap[iSpatialIdx].iSizeAllMbAlignCache;
pPtr->pStrideEncBlockOffset[iSpatialIdx] = (int32_t*)pBaseEnc;
pPtr->pMbIndexX[iSpatialIdx] = (int16_t*)pBaseMbX;
pPtr->pMbIndexY[iSpatialIdx] = (int16_t*)pBaseMbY;
pBaseEnc += kiUnit1Size;
pBaseMbX += kiAllocMbSize;
pBaseMbY += kiAllocMbSize;
++ iSpatialIdx;
}
while (iSpatialIdx < MAX_DEPENDENCY_LAYER) {
pPtr->pStrideDecBlockOffset[iSpatialIdx][0] = NULL;
pPtr->pStrideDecBlockOffset[iSpatialIdx][1] = NULL;
pPtr->pStrideEncBlockOffset[iSpatialIdx] = NULL;
pPtr->pMbIndexX[iSpatialIdx] = NULL;
pPtr->pMbIndexY[iSpatialIdx] = NULL;
++ iSpatialIdx;
}
// initialize pMbIndexX and pMbIndexY tables as below
iMaxMbWidth = sMbSizeMap[kiNumSpatialLayers - 1].iMbWidth;
iMaxMbWidth = WELS_ALIGN (iMaxMbWidth, 4); // 4 loops for int16_t required introduced as below
iRowSize = iMaxMbWidth * sizeof (int16_t);
pTmpRow = (int16_t*)pMa->WelsMalloc (iRowSize, "pTmpRow");
if (NULL == pTmpRow) {
return 1;
}
pRowX = pTmpRow;
pRowY = pRowX;
// initialize pRowX & pRowY
i = 0;
p = pRowX;
while (i < iMaxMbWidth) {
*p = i;
* (p + 1) = 1 + i;
* (p + 2) = 2 + i;
* (p + 3) = 3 + i;
p += 4;
i += 4;
}
iSpatialIdx = kiNumSpatialLayers;
while (--iSpatialIdx >= 0) {
int16_t* pMbIndexX = pPtr->pMbIndexX[iSpatialIdx];
const int32_t kiMbWidth = sMbSizeMap[iSpatialIdx].iMbWidth;
const int32_t kiMbHeight = sMbSizeMap[iSpatialIdx].iCountMbNum / kiMbWidth;
const int32_t kiLineSize = kiMbWidth * sizeof (int16_t);
i = 0;
while (i < kiMbHeight) {
memcpy (pMbIndexX, pRowX, kiLineSize); // confirmed_safe_unsafe_usage
pMbIndexX += kiMbWidth;
++ i;
}
}
memset (pRowY, 0, iRowSize);
iMaxMbHeight = sMbSizeMap[kiNumSpatialLayers - 1].iCountMbNum / sMbSizeMap[kiNumSpatialLayers - 1].iMbWidth;
i = 0;
for (;;) {
ENFORCE_STACK_ALIGN_1D (int16_t, t, 4, 16)
int32_t t32 = 0;
int16_t j = 0;
for (iSpatialIdx = kiNumSpatialLayers - 1; iSpatialIdx >= 0; -- iSpatialIdx) {
const int32_t kiMbWidth = sMbSizeMap[iSpatialIdx].iMbWidth;
const int32_t kiMbHeight = sMbSizeMap[iSpatialIdx].iCountMbNum / kiMbWidth;
const int32_t kiLineSize = kiMbWidth * sizeof (int16_t);
int16_t* pMbIndexY = pPtr->pMbIndexY[iSpatialIdx] + i * kiMbWidth;
if (i < kiMbHeight) {
memcpy (pMbIndexY, pRowY, kiLineSize); // confirmed_safe_unsafe_usage
}
}
++ i;
if (i >= iMaxMbHeight)
break;
t32 = i | (i << 16);
ST32 (t , t32);
ST32 (t + 2, t32);
p = pRowY;
while (j < iMaxMbWidth) {
ST64 (p, LD64 (t));
p += 4;
j += 4;
}
}
pMa->WelsFree (pTmpRow, "pTmpRow");
pTmpRow = NULL;
return 0;
}
/*!
* \brief request specific memory for SVC
* \pParam pEncCtx sWelsEncCtx*
* \return successful - 0; otherwise none 0 for failed
*/
int32_t RequestMemorySvc (sWelsEncCtx** ppCtx) {
SWelsSvcCodingParam* pParam = (*ppCtx)->pSvcParam;
CMemoryAlign* pMa = (*ppCtx)->pMemAlign;
SDLayerParam* pFinalSpatial = NULL;
int32_t iCountBsLen = 0;
int32_t iCountNals = 0;
int32_t iMaxPicWidth = 0;
int32_t iMaxPicHeight = 0;
int32_t iCountMaxMbNum = 0;
int32_t iIndex = 0;
int32_t iCountLayers = 0;
int32_t iResult = 0;
float fCompressRatioThr = .5f;
const int32_t kiNumDependencyLayers = pParam->iSpatialLayerNum;
(*ppCtx)->iMvRange = pParam->iUsageType?EXPANDED_MV_RANGE:CAMERA_STARTMV_RANGE;
const int32_t kiMvdRange = (pParam->iUsageType?EXPANDED_MVD_RANGE:((kiNumDependencyLayers == 1)?CAMERA_MVD_RANGE:CAMERA_HIGHLAYER_MVD_RANGE));
const uint32_t kuiMvdInterTableSize = 1 + (kiMvdRange << 3);//intepel*4=qpel; qpel_mv_range*2=(+/-);
const uint32_t kuiMvdCacheAlignedSize = kuiMvdInterTableSize * sizeof (uint16_t);
int32_t iVclLayersBsSizeCount = 0;
int32_t iNonVclLayersBsSizeCount = 0;
#if defined(MT_ENABLED)
int32_t iTargetSpatialBsSize = 0;
#endif//MT_ENABLED
if (kiNumDependencyLayers < 1 || kiNumDependencyLayers > MAX_DEPENDENCY_LAYER) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc() failed due to invalid iNumDependencyLayers(%d)!\n",
kiNumDependencyLayers);
FreeMemorySvc (ppCtx);
return 1;
}
if (pParam->uiGopSize == 0 || (pParam->uiIntraPeriod && ((pParam->uiIntraPeriod % pParam->uiGopSize) != 0))) {
WelsLog (*ppCtx, WELS_LOG_WARNING,
"RequestMemorySvc() failed due to invalid uiIntraPeriod(%d) (=multipler of uiGopSize(%d)!",
pParam->uiIntraPeriod, pParam->uiGopSize);
FreeMemorySvc (ppCtx);
return 1;
}
pFinalSpatial = &pParam->sDependencyLayers[kiNumDependencyLayers - 1];
iMaxPicWidth = pFinalSpatial->iFrameWidth;
iMaxPicHeight = pFinalSpatial->iFrameHeight;
iCountMaxMbNum = ((15 + iMaxPicWidth) >> 4) * ((15 + iMaxPicHeight) >> 4);
iResult = AcquireLayersNals (ppCtx, pParam, &iCountLayers, &iCountNals);
if (iResult) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc(), AcquireLayersNals failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return 1;
}
iNonVclLayersBsSizeCount = SSEI_BUFFER_SIZE + pParam->iSpatialLayerNum * SPS_BUFFER_SIZE +
(1 + pParam->iSpatialLayerNum) * PPS_BUFFER_SIZE;
int32_t iLayerBsSize = 0;
iIndex = 0;
while (iIndex < pParam->iSpatialLayerNum) {
SDLayerParam* fDlp = &pParam->sDependencyLayers[iIndex];
fCompressRatioThr = COMPRESS_RATIO_THR;
iLayerBsSize = WELS_ROUND (((3 * fDlp->iFrameWidth * fDlp->iFrameHeight) >> 1) * fCompressRatioThr);
iLayerBsSize = WELS_ALIGN (iLayerBsSize, 4); // 4 bytes alinged
iVclLayersBsSizeCount += iLayerBsSize;
++ iIndex;
}
#if defined(MT_ENABLED)
iTargetSpatialBsSize = iLayerBsSize;
#endif//MT_ENABLED
iCountBsLen = iNonVclLayersBsSizeCount + iVclLayersBsSizeCount;
pParam->iNumRefFrame = WELS_CLIP3 (pParam->iNumRefFrame, MIN_REF_PIC_COUNT, MAX_REFERENCE_PICTURE_COUNT_NUM);
// Output
(*ppCtx)->pOut = (SWelsEncoderOutput*)pMa->WelsMalloc (sizeof (SWelsEncoderOutput), "SWelsEncoderOutput");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->pBsBuffer = (uint8_t*)pMa->WelsMalloc (iCountBsLen, "pOut->pBsBuffer");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut->pBsBuffer), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->uiSize = iCountBsLen;
(*ppCtx)->pOut->sNalList = (SWelsNalRaw*)pMa->WelsMalloc (iCountNals * sizeof (SWelsNalRaw), "pOut->sNalList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pOut->sNalList), FreeMemorySvc (ppCtx))
(*ppCtx)->pOut->iCountNals = iCountNals;
(*ppCtx)->pOut->iNalIndex = 0;
#ifdef MT_ENABLED
if (pParam->iMultipleThreadIdc > 1) {
const int32_t iTotalLength = iCountBsLen + (iTargetSpatialBsSize * ((*ppCtx)->iMaxSliceCount - 1));
(*ppCtx)->pFrameBs = (uint8_t*)pMa->WelsMalloc (iTotalLength, "pFrameBs");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pFrameBs), FreeMemorySvc (ppCtx))
(*ppCtx)->iFrameBsSize = iTotalLength;
} else
#endif//MT_ENABLED
{
(*ppCtx)->pFrameBs = (uint8_t*)pMa->WelsMalloc (iCountBsLen, "pFrameBs");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pFrameBs), FreeMemorySvc (ppCtx))
(*ppCtx)->iFrameBsSize = iCountBsLen;
}
(*ppCtx)->iPosBsBuffer = 0;
#ifdef MT_ENABLED
// for pSlice bs buffers
if (pParam->iMultipleThreadIdc > 1 && RequestMtResource (ppCtx, pParam, iCountBsLen, iTargetSpatialBsSize)) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc(), RequestMtResource failed!");
FreeMemorySvc (ppCtx);
return 1;
}
#endif
(*ppCtx)->pIntra4x4PredModeBlocks = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * INTRA_4x4_MODE_NUM, "pIntra4x4PredModeBlocks"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pIntra4x4PredModeBlocks), FreeMemorySvc (ppCtx))
(*ppCtx)->pNonZeroCountBlocks = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * MB_LUMA_CHROMA_BLOCK4x4_NUM, "pNonZeroCountBlocks"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pNonZeroCountBlocks), FreeMemorySvc (ppCtx))
(*ppCtx)->pMvUnitBlock4x4 = static_cast<SMVUnitXY*>
(pMa->WelsMallocz (iCountMaxMbNum * 2 * MB_BLOCK4x4_NUM * sizeof (SMVUnitXY), "pMvUnitBlock4x4"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pMvUnitBlock4x4), FreeMemorySvc (ppCtx))
(*ppCtx)->pRefIndexBlock4x4 = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * 2 * MB_BLOCK8x8_NUM * sizeof (int8_t), "pRefIndexBlock4x4"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pRefIndexBlock4x4), FreeMemorySvc (ppCtx))
(*ppCtx)->pSadCostMb = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pSadCostMb"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSadCostMb), FreeMemorySvc (ppCtx))
(*ppCtx)->bEncCurFrmAsIdrFlag = true; // make sure first frame is IDR
(*ppCtx)->iGlobalQp = 26; // global qp in default
(*ppCtx)->pLtr = (SLTRState*)pMa->WelsMalloc (kiNumDependencyLayers * sizeof (SLTRState), "SLTRState");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pLtr), FreeMemorySvc (ppCtx))
int32_t i = 0;
for (i = 0; i < kiNumDependencyLayers; i++) {
ResetLtrState (& (*ppCtx)->pLtr[i]);
}
(*ppCtx)->ppRefPicListExt = (SRefList**)pMa->WelsMalloc (kiNumDependencyLayers * sizeof (SRefList*), "ppRefPicListExt");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->ppRefPicListExt), FreeMemorySvc (ppCtx))
// pSlice context list
(*ppCtx)->pSliceCtxList = (SSliceCtx*)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SSliceCtx), "pSliceCtxList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pSliceCtxList), FreeMemorySvc (ppCtx))
(*ppCtx)->ppDqLayerList = (SDqLayer**)pMa->WelsMalloc (kiNumDependencyLayers * sizeof (SDqLayer*), "ppDqLayerList");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->ppDqLayerList), FreeMemorySvc (ppCtx))
// stride tables
if (AllocStrideTables (ppCtx, kiNumDependencyLayers)) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc(), AllocStrideTables failed!");
FreeMemorySvc (ppCtx);
return 1;
}
//Rate control module memory allocation
// only malloc once for RC pData, 12/14/2009
(*ppCtx)->pWelsSvcRc = (SWelsSvcRc*)pMa->WelsMallocz (kiNumDependencyLayers * sizeof (SWelsSvcRc), "pWelsSvcRc");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pWelsSvcRc), FreeMemorySvc (ppCtx))
//End of Rate control module memory allocation
//pVaa memory allocation
(*ppCtx)->pVaa = (SVAAFrameInfo*)pMa->WelsMallocz (sizeof (SVAAFrameInfo), "pVaa");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa), FreeMemorySvc (ppCtx))
if ((*ppCtx)->pSvcParam->bEnableAdaptiveQuant) { //malloc mem
(*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureUnit = static_cast<SMotionTextureUnit*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (SMotionTextureUnit), "pVaa->sAdaptiveQuantParam.pMotionTextureUnit"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureUnit), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp = static_cast<int8_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int8_t), "pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp),
FreeMemorySvc (ppCtx))
}
(*ppCtx)->pVaa->pVaaBackgroundMbFlag = (int8_t*)pMa->WelsMallocz (iCountMaxMbNum * sizeof (int8_t),
"pVaa->vaa_skip_mb_flag");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->pVaaBackgroundMbFlag), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSad8x8 = static_cast<int32_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (int32_t), "pVaa->sVaaCalcInfo.sad8x8"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSad8x8), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSsd16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSsd16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSsd16x16), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSum16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSum16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSum16x16), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pSumOfSquare16x16 = static_cast<int32_t*>
(pMa->WelsMallocz (iCountMaxMbNum * sizeof (int32_t), "pVaa->sVaaCalcInfo.pSumOfSquare16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSumOfSquare16x16), FreeMemorySvc (ppCtx))
if ((*ppCtx)->pSvcParam->bEnableBackgroundDetection) { //BGD control
(*ppCtx)->pVaa->sVaaCalcInfo.pSumOfDiff8x8 = static_cast<int32_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (int32_t), "pVaa->sVaaCalcInfo.sd_16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pSumOfDiff8x8), FreeMemorySvc (ppCtx))
(*ppCtx)->pVaa->sVaaCalcInfo.pMad8x8 = static_cast<uint8_t (*)[4]>
(pMa->WelsMallocz (iCountMaxMbNum * 4 * sizeof (uint8_t), "pVaa->sVaaCalcInfo.mad_16x16"));
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pVaa->sVaaCalcInfo.pMad8x8), FreeMemorySvc (ppCtx))
}
//End of pVaa memory allocation
iResult = InitDqLayers (ppCtx);
if (iResult) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc(), InitDqLayers failed(%d)!", iResult);
FreeMemorySvc (ppCtx);
return iResult;
}
if (InitMbListD (ppCtx)) {
WelsLog (*ppCtx, WELS_LOG_WARNING, "RequestMemorySvc(), InitMbListD failed!");
FreeMemorySvc (ppCtx);
return 1;
}
(*ppCtx)->pMvdCostTableInter = (uint16_t*)pMa->WelsMallocz (52 * kuiMvdCacheAlignedSize, "pMvdCostTableInter");
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == (*ppCtx)->pMvdCostTableInter), FreeMemorySvc (ppCtx))
MvdCostInit ((*ppCtx)->pMvdCostTableInter, kuiMvdInterTableSize); //should put to a better place?
if ((*ppCtx)->ppRefPicListExt[0] != NULL && (*ppCtx)->ppRefPicListExt[0]->pRef[0] != NULL)
(*ppCtx)->pDecPic = (*ppCtx)->ppRefPicListExt[0]->pRef[0];
else
(*ppCtx)->pDecPic = NULL; // error here
(*ppCtx)->pSps = & (*ppCtx)->pSpsArray[0];
(*ppCtx)->pPps = & (*ppCtx)->pPPSArray[0];
return 0;
}
/*!
* \brief free memory in SVC core encoder
* \pParam pEncCtx sWelsEncCtx*
* \return none
*/
void FreeMemorySvc (sWelsEncCtx** ppCtx) {
if (NULL != *ppCtx) {
sWelsEncCtx* pCtx = *ppCtx;
CMemoryAlign* pMa = pCtx->pMemAlign;
SWelsSvcCodingParam* pParam = pCtx->pSvcParam;
int32_t ilayer = 0;
// SStrideTables
if (NULL != pCtx->pStrideTab) {
if (NULL != pCtx->pStrideTab->pStrideDecBlockOffset[0][1]) {
pMa->WelsFree (pCtx->pStrideTab->pStrideDecBlockOffset[0][1], "pBase");
pCtx->pStrideTab->pStrideDecBlockOffset[0][1] = NULL;
}
pMa->WelsFree (pCtx->pStrideTab, "SStrideTables");
pCtx->pStrideTab = NULL;
}
// pDq idc map
if (NULL != pCtx->pDqIdcMap) {
pMa->WelsFree (pCtx->pDqIdcMap, "pDqIdcMap");
pCtx->pDqIdcMap = NULL;
}
if (NULL != pCtx->pOut) {
// bs pBuffer
if (NULL != pCtx->pOut->pBsBuffer) {
pMa->WelsFree (pCtx->pOut->pBsBuffer, "pOut->pBsBuffer");
pCtx->pOut->pBsBuffer = NULL;
}
// NALs list
if (NULL != pCtx->pOut->sNalList) {
pMa->WelsFree (pCtx->pOut->sNalList, "pOut->sNalList");
pCtx->pOut->sNalList = NULL;
}
pMa->WelsFree (pCtx->pOut, "SWelsEncoderOutput");
pCtx->pOut = NULL;
}
#ifdef MT_ENABLED
if (pParam != NULL && pParam->iMultipleThreadIdc > 1)
ReleaseMtResource (ppCtx);
#endif//MT_ENABLED
// frame bitstream pBuffer
if (NULL != pCtx->pFrameBs) {
pMa->WelsFree (pCtx->pFrameBs, "pFrameBs");
pCtx->pFrameBs = NULL;
}
// pSpsArray
if (NULL != pCtx->pSpsArray) {
pMa->WelsFree (pCtx->pSpsArray, "pSpsArray");
pCtx->pSpsArray = NULL;
}
// pPPSArray
if (NULL != pCtx->pPPSArray) {
pMa->WelsFree (pCtx->pPPSArray, "pPPSArray");
pCtx->pPPSArray = NULL;
}
// subset_sps_array
if (NULL != pCtx->pSubsetArray) {
pMa->WelsFree (pCtx->pSubsetArray, "pSubsetArray");
pCtx->pSubsetArray = NULL;
}
if (NULL != pCtx->pIntra4x4PredModeBlocks) {
pMa->WelsFree (pCtx->pIntra4x4PredModeBlocks, "pIntra4x4PredModeBlocks");
pCtx->pIntra4x4PredModeBlocks = NULL;
}
if (NULL != pCtx->pNonZeroCountBlocks) {
pMa->WelsFree (pCtx->pNonZeroCountBlocks, "pNonZeroCountBlocks");
pCtx->pNonZeroCountBlocks = NULL;
}
if (NULL != pCtx->pMvUnitBlock4x4) {
pMa->WelsFree (pCtx->pMvUnitBlock4x4, "pMvUnitBlock4x4");
pCtx->pMvUnitBlock4x4 = NULL;
}
if (NULL != pCtx->pRefIndexBlock4x4) {
pMa->WelsFree (pCtx->pRefIndexBlock4x4, "pRefIndexBlock4x4");
pCtx->pRefIndexBlock4x4 = NULL;
}
if (NULL != pCtx->ppMbListD) {
if (NULL != pCtx->ppMbListD[0]) {
pMa->WelsFree (pCtx->ppMbListD[0], "ppMbListD[0]");
(*ppCtx)->ppMbListD[0] = NULL;
}
pMa->WelsFree (pCtx->ppMbListD, "ppMbListD");
pCtx->ppMbListD = NULL;
}
if (NULL != pCtx->pSadCostMb) {
pMa->WelsFree (pCtx->pSadCostMb, "pSadCostMb");
pCtx->pSadCostMb = NULL;
}
// SLTRState
if (NULL != pCtx->pLtr) {
pMa->WelsFree (pCtx->pLtr, "SLTRState");
pCtx->pLtr = NULL;
}
// pDq layers list
ilayer = 0;
if (NULL != pCtx->ppDqLayerList && pParam != NULL) {
while (ilayer < pParam->iSpatialLayerNum) {
SDqLayer* pDq = pCtx->ppDqLayerList[ilayer];
SDLayerParam* pDlp = &pCtx->pSvcParam->sDependencyLayers[ilayer];
const bool kbIsDynamicSlicing = (SM_DYN_SLICE == pDlp->sSliceCfg.uiSliceMode);
// pDq layers
if (NULL != pDq) {
if (NULL != pDq->sLayerInfo.pSliceInLayer) {
int32_t iSliceIdx = 0;
int32_t iSliceNum = GetInitialSliceNum (pDq->iMbWidth, pDq->iMbHeight, &pDlp->sSliceCfg);
if (iSliceNum < 1)
iSliceNum = 1;
while (iSliceIdx < iSliceNum) {
SSlice* pSlice = &pDq->sLayerInfo.pSliceInLayer[iSliceIdx];
FreeMbCache (&pSlice->sMbCacheInfo, pMa);
++ iSliceIdx;
}
pMa->WelsFree (pDq->sLayerInfo.pSliceInLayer, "pSliceInLayer");
pDq->sLayerInfo.pSliceInLayer = NULL;
}
if (kbIsDynamicSlicing) {
pMa->WelsFree (pDq->pNumSliceCodedOfPartition, "pNumSliceCodedOfPartition");
pDq->pNumSliceCodedOfPartition = NULL;
pMa->WelsFree (pDq->pLastCodedMbIdxOfPartition, "pLastCodedMbIdxOfPartition");
pDq->pLastCodedMbIdxOfPartition = NULL;
pMa->WelsFree (pDq->pLastMbIdxOfPartition, "pLastMbIdxOfPartition");
pDq->pLastMbIdxOfPartition = NULL;
}
pMa->WelsFree (pDq, "pDq");
pDq = NULL;
pCtx->ppDqLayerList[ilayer] = NULL;
}
++ ilayer;
}
pMa->WelsFree (pCtx->ppDqLayerList, "ppDqLayerList");
pCtx->ppDqLayerList = NULL;
}
// reference picture list extension
if (NULL != pCtx->ppRefPicListExt && pParam != NULL) {
ilayer = 0;
while (ilayer < pParam->iSpatialLayerNum) {
SRefList* pRefList = pCtx->ppRefPicListExt[ilayer];
if (NULL != pRefList) {
int32_t iRef = 0;
do {
if (pRefList->pRef[iRef] != NULL) {
FreePicture (pMa, &pRefList->pRef[iRef]);
}
++ iRef;
} while (iRef < 1 + pParam->iNumRefFrame);
pMa->WelsFree (pCtx->ppRefPicListExt[ilayer], "ppRefPicListExt[]");
pCtx->ppRefPicListExt[ilayer] = NULL;
}
++ ilayer;
}
pMa->WelsFree (pCtx->ppRefPicListExt, "ppRefPicListExt");
pCtx->ppRefPicListExt = NULL;
}
// pSlice context list
if (NULL != pCtx->pSliceCtxList && pParam != NULL) {
ilayer = 0;
while (ilayer < pParam->iSpatialLayerNum) {
SSliceCtx* pSliceCtx = &pCtx->pSliceCtxList[ilayer];
if (NULL != pSliceCtx)
UninitSlicePEncCtx (pSliceCtx, pMa);
++ ilayer;
}
pMa->WelsFree (pCtx->pSliceCtxList, "pSliceCtxList");
pCtx->pSliceCtxList = NULL;
}
// VAA
if (NULL != pCtx->pVaa) {
if (pCtx->pSvcParam->bEnableAdaptiveQuant) { //free mem
pMa->WelsFree (pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureUnit, "pVaa->sAdaptiveQuantParam.pMotionTextureUnit");
pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureUnit = NULL;
pMa->WelsFree (pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp,
"pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp");
pCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp = NULL;
}
pMa->WelsFree (pCtx->pVaa->pVaaBackgroundMbFlag, "pVaa->pVaaBackgroundMbFlag");
pCtx->pVaa->pVaaBackgroundMbFlag = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSad8x8, "pVaa->sVaaCalcInfo.sad8x8");
pCtx->pVaa->sVaaCalcInfo.pSad8x8 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSsd16x16, "pVaa->sVaaCalcInfo.pSsd16x16");
pCtx->pVaa->sVaaCalcInfo.pSsd16x16 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSum16x16, "pVaa->sVaaCalcInfo.pSum16x16");
pCtx->pVaa->sVaaCalcInfo.pSum16x16 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSumOfSquare16x16, "pVaa->sVaaCalcInfo.pSumOfSquare16x16");
pCtx->pVaa->sVaaCalcInfo.pSumOfSquare16x16 = NULL;
if (pCtx->pSvcParam->bEnableBackgroundDetection) { //BGD control
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pSumOfDiff8x8, "pVaa->sVaaCalcInfo.pSumOfDiff8x8");
pCtx->pVaa->sVaaCalcInfo.pSumOfDiff8x8 = NULL;
pMa->WelsFree (pCtx->pVaa->sVaaCalcInfo.pMad8x8, "pVaa->sVaaCalcInfo.pMad8x8");
pCtx->pVaa->sVaaCalcInfo.pMad8x8 = NULL;
}
pMa->WelsFree (pCtx->pVaa, "pVaa");
pCtx->pVaa = NULL;
}
WelsRcFreeMemory (pCtx);
// rate control module memory free
if (NULL != pCtx->pWelsSvcRc) {
pMa->WelsFree (pCtx->pWelsSvcRc, "pWelsSvcRc");
pCtx->pWelsSvcRc = NULL;
}
/* MVD cost tables for Inter */
if (NULL != pCtx->pMvdCostTableInter) {
pMa->WelsFree (pCtx->pMvdCostTableInter, "pMvdCostTableInter");
pCtx->pMvdCostTableInter = NULL;
}
#ifdef ENABLE_TRACE_FILE
if (NULL != pCtx->pFileLog) {
WelsFclose (pCtx->pFileLog);
pCtx->pFileLog = NULL;
}
pCtx->uiSizeLog = 0;
#endif//ENABLE_TRACE_FILE
FreeCodingParam (&pCtx->pSvcParam, pMa);
if (NULL != pCtx->pFuncList) {
pMa->WelsFree (pCtx->pFuncList, "SWelsFuncPtrList");
pCtx->pFuncList = NULL;
}
#if defined(MEMORY_MONITOR)
assert (pMa->WelsGetMemoryUsage() == 0); // ensure all memory free well
#endif//MEMORY_MONITOR
if ((*ppCtx)->pMemAlign != NULL) {
WelsLog (NULL, WELS_LOG_INFO, "FreeMemorySvc(), verify memory usage (%d bytes) after free..\n",
(*ppCtx)->pMemAlign->WelsGetMemoryUsage());
delete (*ppCtx)->pMemAlign;
(*ppCtx)->pMemAlign = NULL;
}
free (*ppCtx);
*ppCtx = NULL;
}
}
int32_t InitSliceSettings (SWelsSvcCodingParam* pCodingParam, const int32_t kiCpuCores, int16_t* pMaxSliceCount) {
int32_t iSpatialIdx = 0, iSpatialNum = pCodingParam->iSpatialLayerNum;
uint16_t iMaxSliceCount = 0;
do {
SDLayerParam* pDlp = &pCodingParam->sDependencyLayers[iSpatialIdx];
SSliceConfig* pMso = &pDlp->sSliceCfg;
SSliceArgument* pSlcArg = &pMso->sSliceArgument;
const int32_t kiMbWidth = (pDlp->iFrameWidth + 15) >> 4;
const int32_t kiMbHeight = (pDlp->iFrameHeight + 15) >> 4;
const int32_t kiMbNumInFrame = kiMbWidth * kiMbHeight;
int32_t iSliceNum = (SM_AUTO_SLICE == pMso->uiSliceMode)? kiCpuCores :pSlcArg->uiSliceNum;
// NOTE: Per design, in case MT/DYNAMIC_SLICE_ASSIGN enabled, for SM_FIXEDSLCNUM_SLICE mode,
// uiSliceNum of current spatial layer settings equals to uiCpuCores number; SM_DYN_SLICE mode,
// uiSliceNum intials as uiCpuCores also, stay tuned dynamically slicing in future
pSlcArg->uiSliceNum = iSliceNum; // used fixed one
switch (pMso->uiSliceMode) {
case SM_DYN_SLICE:
iMaxSliceCount = AVERSLICENUM_CONSTRAINT;
//#ifndef MT_ENABLED
break; // go through for MT_ENABLED & SM_DYN_SLICE?
//#endif//MT_ENABLED
case SM_FIXEDSLCNUM_SLICE:
if (iSliceNum > iMaxSliceCount)
iMaxSliceCount = iSliceNum;
// need perform check due uiSliceNum might change, although has been initialized somewhere outside
if (pCodingParam->bEnableRc) {
GomValidCheckSliceMbNum (kiMbWidth, kiMbHeight, pSlcArg);
} else {
CheckFixedSliceNumMultiSliceSetting (kiMbNumInFrame, pSlcArg);
}
break;
case SM_SINGLE_SLICE:
if (iSliceNum > iMaxSliceCount)
iMaxSliceCount = iSliceNum;
break;
case SM_RASTER_SLICE:
if (iSliceNum > iMaxSliceCount)
iMaxSliceCount = iSliceNum;
break;
case SM_ROWMB_SLICE:
if (iSliceNum > iMaxSliceCount)
iMaxSliceCount = iSliceNum;
break;
case SM_AUTO_SLICE:
iMaxSliceCount = MAX_SLICES_NUM;
pDlp->sSliceCfg.sSliceArgument.uiSliceNum = kiCpuCores;
if (pDlp->sSliceCfg.sSliceArgument.uiSliceNum > iMaxSliceCount){
pDlp->sSliceCfg.sSliceArgument.uiSliceNum = iMaxSliceCount;
}
if (pDlp->sSliceCfg.sSliceArgument.uiSliceNum == 1) {
WelsLog (NULL, WELS_LOG_DEBUG,
"InitSliceSettings(), uiSliceNum(%d) you set for SM_AUTO_SLICE, now turn to SM_SINGLE_SLICE type!\n",
pDlp->sSliceCfg.sSliceArgument.uiSliceNum);
pDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
break;
}
if (pCodingParam->bEnableRc) { // multiple slices verify with gom
//check uiSliceNum
GomValidCheckSliceNum (kiMbWidth, kiMbHeight, &pDlp->sSliceCfg.sSliceArgument.uiSliceNum);
assert (pDlp->sSliceCfg.sSliceArgument.uiSliceNum > 1);
//set uiSliceMbNum with current uiSliceNum
GomValidCheckSliceMbNum (kiMbWidth, kiMbHeight, &pDlp->sSliceCfg.sSliceArgument);
} else if (!CheckFixedSliceNumMultiSliceSetting (kiMbNumInFrame,
&pDlp->sSliceCfg.sSliceArgument)) { // verify interleave mode settings
//check uiSliceMbNum with current uiSliceNum
WelsLog (NULL, WELS_LOG_ERROR, "InitSliceSettings(), invalid uiSliceMbNum (%d) settings!,now turn to SM_SINGLE_SLICE type\n",
pDlp->sSliceCfg.sSliceArgument.uiSliceMbNum[0]);
pDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
pDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
}
// considering the coding efficient and performance, iCountMbNum constraint by MIN_NUM_MB_PER_SLICE condition of multi-pSlice mode settting
if (kiMbNumInFrame <= MIN_NUM_MB_PER_SLICE) {
pDlp->sSliceCfg.uiSliceMode = SM_SINGLE_SLICE;
pDlp->sSliceCfg.sSliceArgument.uiSliceNum = 1;
break;
}
break;
default:
break;
}
++ iSpatialIdx;
} while (iSpatialIdx < iSpatialNum);
#ifdef MT_ENABLED
pCodingParam->iCountThreadsNum = WELS_MIN (kiCpuCores, iMaxSliceCount);
pCodingParam->iMultipleThreadIdc = pCodingParam->iCountThreadsNum;
#else
pCodingParam->iMultipleThreadIdc = 1;
pCodingParam->iCountThreadsNum = 1;
#endif//MT_ENABLED
#ifndef WELS_TESTBED // for product release and non-SGE testing
if (kiCpuCores < 2) { // single CPU core, make no sense for MT parallelization
pCodingParam->iMultipleThreadIdc = 1;
pCodingParam->iCountThreadsNum = 1;
}
#endif
*pMaxSliceCount = iMaxSliceCount;
return 0;
}
/*!
* \brief log output for cpu features/capabilities
*/
void OutputCpuFeaturesLog (uint32_t uiCpuFeatureFlags, uint32_t uiCpuCores, int32_t iCacheLineSize) {
// welstracer output
WelsLog (NULL, WELS_LOG_INFO, "WELS CPU features/capacities (0x%x) detected: \t" \
"HTT: %c, " \
"MMX: %c, " \
"MMXEX: %c, " \
"SSE: %c, " \
"SSE2: %c, " \
"SSE3: %c, " \
"SSSE3: %c, " \
"SSE4.1: %c, " \
"SSE4.2: %c, " \
"AVX: %c, " \
"FMA: %c, " \
"X87-FPU: %c, " \
"3DNOW: %c, " \
"3DNOWEX: %c, " \
"ALTIVEC: %c, " \
"CMOV: %c, " \
"MOVBE: %c, " \
"AES: %c, " \
"NUMBER OF LOGIC PROCESSORS ON CHIP: %d, " \
"CPU CACHE LINE SIZE (BYTES): %d\n",
uiCpuFeatureFlags,
(uiCpuFeatureFlags & WELS_CPU_HTT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MMX) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MMXEXT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE2) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE3) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSSE3) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE41) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_SSE42) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_AVX) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_FMA) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_FPU) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_3DNOW) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_3DNOWEXT) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_ALTIVEC) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_CMOV) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_MOVBE) ? 'Y' : 'N',
(uiCpuFeatureFlags & WELS_CPU_AES) ? 'Y' : 'N',
uiCpuCores,
iCacheLineSize);
}
/*!
* \brief initialize Wels avc encoder core library
* \pParam ppCtx sWelsEncCtx**
* \pParam pParam SWelsSvcCodingParam*
* \return successful - 0; otherwise none 0 for failed
*/
int32_t WelsInitEncoderExt (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pCodingParam) {
sWelsEncCtx* pCtx = NULL;
int32_t iRet = 0;
uint32_t uiCpuFeatureFlags = 0; // CPU features
int32_t uiCpuCores =
0; // number of logic processors on physical processor package, zero logic processors means HTT not supported
int32_t iCacheLineSize = 16; // on chip cache line size in byte
int16_t iSliceNum = 1; // number of slices used
if (NULL == ppCtx || NULL == pCodingParam) {
WelsLog (NULL, WELS_LOG_ERROR, "WelsInitEncoderExt(), NULL == ppCtx(0x%p) or NULL == pCodingParam(0x%p).\n",
(void*)ppCtx, (void*)pCodingParam);
return 1;
}
iRet = ParamValidationExt (*ppCtx,pCodingParam);
if (iRet != 0) {
WelsLog (NULL, WELS_LOG_ERROR, "WelsInitEncoderExt(), ParamValidationExt failed return %d.\n", iRet);
return iRet;
}
// for cpu features detection, Only detect once??
uiCpuFeatureFlags = WelsCPUFeatureDetect (&uiCpuCores); // detect cpu capacity features
#ifdef X86_ASM
if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_128)
iCacheLineSize = 128;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_64)
iCacheLineSize = 64;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_32)
iCacheLineSize = 32;
else if (uiCpuFeatureFlags & WELS_CPU_CACHELINE_16)
iCacheLineSize = 16;
OutputCpuFeaturesLog (uiCpuFeatureFlags, uiCpuCores, iCacheLineSize);
#else
iCacheLineSize = 16; // 16 bytes aligned in default
#endif//X86_ASM
#ifndef WELS_TESTBED
#if defined(MT_ENABLED) && defined(DYNAMIC_DETECT_CPU_CORES)
if (pCodingParam->iMultipleThreadIdc > 0)
uiCpuCores = pCodingParam->iMultipleThreadIdc;
else {
if (uiCpuCores ==
0) // cpuid not supported or doesn't expose the number of cores, use high level system API as followed to detect number of pysical/logic processor
uiCpuCores = DynamicDetectCpuCores();
// So far so many cpu cores up to MAX_THREADS_NUM mean for server platforms,
// for client application here it is constrained by maximal to MAX_THREADS_NUM
if (uiCpuCores > MAX_THREADS_NUM) // MAX_THREADS_NUM
uiCpuCores = MAX_THREADS_NUM; // MAX_THREADS_NUM
else if (uiCpuCores < 1) // just for safe
uiCpuCores = 1;
}
#endif//MT_ENABLED && DYNAMIC_DETECT_CPU_CORES
#else//WELS_TESTBED
uiCpuCores = pCodingParam->iMultipleThreadIdc; // assigned uiCpuCores from iMultipleThreadIdc from SGE testing
#endif//WELS_TESTBED
uiCpuCores = WELS_CLIP3 (uiCpuCores, 1, MAX_THREADS_NUM);
if (InitSliceSettings (pCodingParam, uiCpuCores, &iSliceNum)) {
WelsLog (NULL, WELS_LOG_ERROR, "WelsInitEncoderExt(), InitSliceSettings failed.\n");
return 1;
}
*ppCtx = NULL;
pCtx = static_cast<sWelsEncCtx*> (malloc (sizeof (sWelsEncCtx)));
WELS_VERIFY_RETURN_IF (1, (NULL == pCtx))
memset (pCtx, 0, sizeof (sWelsEncCtx));
pCtx->pMemAlign = new CMemoryAlign (iCacheLineSize);
WELS_VERIFY_RETURN_PROC_IF (1, (NULL == pCtx->pMemAlign), FreeMemorySvc (&pCtx))
// for logs
#ifdef ENABLE_TRACE_FILE
if (wlog == WelsLogDefault) {
char fname[MAX_FNAME_LEN] = {0};
WelsSnprintf (fname, MAX_FNAME_LEN, "wels_svc_encoder_trace.txt");
pCtx->pFileLog = WelsFopen (fname, "wt+");
pCtx->uiSizeLog = 0;
}
#endif//ENABLE_TRACE_FILE
pCodingParam->DetermineTemporalSettings();
iRet = AllocCodingParam (&pCtx->pSvcParam, pCtx->pMemAlign, pCodingParam->iSpatialLayerNum);
if (iRet != 0) {
FreeMemorySvc (&pCtx);
return iRet;
}
memcpy (pCtx->pSvcParam, pCodingParam, sizeof (SWelsSvcCodingParam)); // confirmed_safe_unsafe_usage
pCtx->pFuncList = (SWelsFuncPtrList*)pCtx->pMemAlign->WelsMalloc (sizeof (SWelsFuncPtrList), "SWelsFuncPtrList");
if (NULL == pCtx->pFuncList) {
FreeMemorySvc (&pCtx);
return 1;
}
InitFunctionPointers (pCtx->pFuncList, pCtx->pSvcParam, uiCpuFeatureFlags);
pCtx->iActiveThreadsNum = pCodingParam->iCountThreadsNum;
pCtx->iMaxSliceCount = iSliceNum;
iRet = RequestMemorySvc (&pCtx);
if (iRet != 0) {
WelsLog (pCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), RequestMemorySvc failed return %d.\n", iRet);
FreeMemorySvc (&pCtx);
return iRet;
}
#ifdef MT_ENABLED
if (pCodingParam->iMultipleThreadIdc > 1)
iRet = CreateSliceThreads (pCtx);
#endif
WelsRcInitModule (pCtx, pCtx->pSvcParam->bEnableRc ? WELS_RC_GOM : WELS_RC_DISABLE);
pCtx->pVpp = new CWelsPreProcess (pCtx);
if (pCtx->pVpp == NULL) {
iRet = 1;
WelsLog (pCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), pOut of memory in case new CWelsPreProcess().\n");
FreeMemorySvc (&pCtx);
return iRet;
}
if( (iRet = pCtx->pVpp->AllocSpatialPictures(pCtx, pCtx->pSvcParam)) != 0 ){
WelsLog( pCtx, WELS_LOG_ERROR, "WelsInitEncoderExt(), pVPP alloc spatial pictures failed\n");
FreeMemorySvc(&pCtx);
return iRet;
}
#if defined(MEMORY_MONITOR)
WelsLog (pCtx, WELS_LOG_INFO, "WelsInitEncoderExt() exit, overall memory usage: %llu bytes\n",
static_cast<unsigned long long> (sizeof (sWelsEncCtx) /* requested size from malloc() or new operator */
+ pCtx->pMemAlign->WelsGetMemoryUsage()) /* requested size from CMemoryAlign::WelsMalloc() */
);
#endif//MEMORY_MONITOR
*ppCtx = pCtx;
WelsLog (pCtx, WELS_LOG_DEBUG, "WelsInitEncoderExt(), pCtx= 0x%p.\n", (void*)pCtx);
return 0;
}
/*
*
* status information output
*/
#if defined(STAT_OUTPUT)
void StatOverallEncodingExt (sWelsEncCtx* pCtx) {
int8_t i = 0;
int8_t j = 0;
for (i = 0; i < pCtx->pSvcParam->iSpatialLayerNum; i++) {
fprintf (stdout, "\nDependency layer : %d\n", i);
fprintf (stdout, "Quality layer : %d\n", j);
{
const int32_t iCount = pCtx->sStatData[i][j].sSliceData.iSliceCount[I_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceCount[P_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceCount[B_SLICE];
#if defined(MB_TYPES_CHECK)
if (iCount > 0) {
int32_t iCountNumIMb = pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra16x16] + pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][7];
int32_t iCountNumPMb = pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][7] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][PSkip];
int32_t count_p_mbL0 = pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10];
int32_t iMbCount = iCountNumIMb + iCountNumPMb;
if (iMbCount > 0) {
fprintf (stderr,
"SVC: overall Slices MBs: %d Avg\nI4x4: %.3f%% I16x16: %.3f%% IBL: %.3f%%\nP16x16: %.3f%% P16x8: %.3f%% P8x16: %.3f%% P8x8: %.3f%% SUBP8x8: %.3f%% PSKIP: %.3f%%\nILP(All): %.3f%% ILP(PL0): %.3f%% BLSKIP(PL0): %.3f%% RP(PL0): %.3f%%\n",
iMbCount,
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra4x4] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra4x4]) / iMbCount),
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][Intra16x16] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Intra16x16]) / iMbCount),
(100.0f * (pCtx->sStatData[i][j].sSliceData.iMbCount[I_SLICE][7] +
pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][7]) / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x16] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter16x8] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x16] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][Inter8x8] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][10] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][PSkip] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][11] / iMbCount),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][11] / count_p_mbL0),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][8] / count_p_mbL0),
(100.0f * pCtx->sStatData[i][j].sSliceData.iMbCount[P_SLICE][9] / count_p_mbL0)
);
}
}
#endif //#if defined(MB_TYPES_CHECK)
if (iCount > 0) {
fprintf (stdout, "SVC: overall PSNR Y: %2.3f U: %2.3f V: %2.3f kb/s: %.1f fps: %.3f\n\n",
(pCtx->sStatData[i][j].sQualityStat.rYPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rYPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rYPsnr[B_SLICE]) / (float) (iCount),
(pCtx->sStatData[i][j].sQualityStat.rUPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rUPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rUPsnr[B_SLICE]) / (float) (iCount),
(pCtx->sStatData[i][j].sQualityStat.rVPsnr[I_SLICE] + pCtx->sStatData[i][j].sQualityStat.rVPsnr[P_SLICE] +
pCtx->sStatData[i][j].sQualityStat.rVPsnr[B_SLICE]) / (float) (iCount),
1.0f * pCtx->pSvcParam->sDependencyLayers[i].fOutputFrameRate * (pCtx->sStatData[i][j].sSliceData.iSliceSize[I_SLICE] +
pCtx->sStatData[i][j].sSliceData.iSliceSize[P_SLICE] + pCtx->sStatData[i][j].sSliceData.iSliceSize[B_SLICE]) / (float) (
iCount + pCtx->pWelsSvcRc[i].iSkipFrameNum) / 1000,
1.0f * pCtx->pSvcParam->sDependencyLayers[i].fOutputFrameRate);
}
}
}
}
#endif
/*!
* \brief uninitialize Wels encoder core library
* \pParam pEncCtx sWelsEncCtx*
* \return none
*/
void WelsUninitEncoderExt (sWelsEncCtx** ppCtx) {
if (NULL == ppCtx || NULL == *ppCtx)
return;
WelsLog (*ppCtx, WELS_LOG_INFO, "WelsUninitEncoderExt(), pCtx= %p, iThreadCount= %d, iMultipleThreadIdc= %d.\n",
(void*) (*ppCtx), (*ppCtx)->pSvcParam->iCountThreadsNum, (*ppCtx)->pSvcParam->iMultipleThreadIdc);
#if defined(STAT_OUTPUT)
StatOverallEncodingExt (*ppCtx);
#endif
#if defined(MT_ENABLED)
if ((*ppCtx)->pSvcParam->iMultipleThreadIdc > 1 && (*ppCtx)->pSliceThreading != NULL) {
const int32_t iThreadCount = (*ppCtx)->pSvcParam->iCountThreadsNum;
int32_t iThreadIdx = 0;
if ((*ppCtx)->pSliceThreading->pExitEncodeEvent != NULL) {
while (iThreadIdx < iThreadCount) {
int res = 0;
if ((*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx]) {
WelsEventSignal (& (*ppCtx)->pSliceThreading->pExitEncodeEvent[iThreadIdx]);
WelsEventSignal (& (*ppCtx)->pSliceThreading->pThreadMasterEvent[iThreadIdx]);
res = WelsThreadJoin ((*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx]); // waiting thread exit
WelsLog (*ppCtx, WELS_LOG_INFO, "WelsUninitEncoderExt(), pthread_join(pThreadHandles%d) return %d..\n", iThreadIdx,
res);
(*ppCtx)->pSliceThreading->pThreadHandles[iThreadIdx] = 0;
}
++ iThreadIdx;
}
}
}
#endif//MT_ENABLED
if ((*ppCtx)->pVpp) {
(*ppCtx)->pVpp->FreeSpatialPictures(*ppCtx);
delete (*ppCtx)->pVpp;
(*ppCtx)->pVpp = NULL;
}
FreeMemorySvc (ppCtx);
*ppCtx = NULL;
}
/*!
* \brief get temporal level due to configuration and coding context
*/
static inline int32_t GetTemporalLevel (SDLayerParam* fDlp, const int32_t kiFrameNum, const int32_t kiGopSize) {
const int32_t kiCodingIdx = kiFrameNum & (kiGopSize - 1);
return fDlp->uiCodingIdx2TemporalId[kiCodingIdx];
}
void DynslcUpdateMbNeighbourInfoListForAllSlices (SSliceCtx* pSliceCtx, SMB* pMbList) {
const int32_t kiMbWidth = pSliceCtx->iMbWidth;
const int32_t kiEndMbInSlice = pSliceCtx->iMbNumInFrame - 1;
int32_t iIdx = 0;
do {
SMB* pMb = &pMbList[iIdx];
uint32_t uiNeighborAvailFlag = 0;
const int32_t kiMbXY = pMb->iMbXY;
const int32_t kiMbX = pMb->iMbX;
const int32_t kiMbY = pMb->iMbY;
bool bLeft;
bool bTop;
bool bLeftTop;
bool bRightTop;
int32_t uiSliceIdc;
int32_t iLeftXY, iTopXY, iLeftTopXY, iRightTopXY;
uiSliceIdc = WelsMbToSliceIdc (pSliceCtx, kiMbXY);
pMb->uiSliceIdc = uiSliceIdc;
iLeftXY = kiMbXY - 1;
iTopXY = kiMbXY - kiMbWidth;
iLeftTopXY = iTopXY - 1;
iRightTopXY = iTopXY + 1;
bLeft = (kiMbX > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iLeftXY));
bTop = (kiMbY > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iTopXY));
bLeftTop = (kiMbX > 0) && (kiMbY > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iLeftTopXY));
bRightTop = (kiMbX < (kiMbWidth - 1)) && (kiMbY > 0) && (uiSliceIdc == WelsMbToSliceIdc (pSliceCtx, iRightTopXY));
if (bLeft) {
uiNeighborAvailFlag |= LEFT_MB_POS;
}
if (bTop) {
uiNeighborAvailFlag |= TOP_MB_POS;
}
if (bLeftTop) {
uiNeighborAvailFlag |= TOPLEFT_MB_POS;
}
if (bRightTop) {
uiNeighborAvailFlag |= TOPRIGHT_MB_POS;
}
pMb->uiNeighborAvail = (uint8_t)uiNeighborAvailFlag;
++ iIdx;
} while (iIdx <= kiEndMbInSlice);
}
/*
* TUNE back if number of picture partition decision algorithm based on past if available
*/
int32_t PicPartitionNumDecision (sWelsEncCtx* pCtx) {
int32_t iPartitionNum = 1;
#ifdef MT_ENABLED
if (pCtx->pSvcParam->iMultipleThreadIdc > 1) {
iPartitionNum = pCtx->pSvcParam->iCountThreadsNum;
if (P_SLICE == pCtx->eSliceType)
iPartitionNum = 1;
}
return iPartitionNum;
#else
return iPartitionNum;
#endif//MT_ENABLED
}
#if defined(MT_ENABLED)
void WelsInitCurrentQBLayerMltslc (sWelsEncCtx* pCtx) {
//pData init
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = (pCurDq->pSliceEncCtx);
//mb_neighbor
DynslcUpdateMbNeighbourInfoListForAllSlices (pSliceCtx, pCurDq->sMbDataP);
}
void UpdateSlicepEncCtxWithPartition (SSliceCtx* pSliceCtx, int32_t iPartitionNum) {
const int32_t kiMbNumInFrame = pSliceCtx->iMbNumInFrame;
int32_t iCountMbNumPerPartition = kiMbNumInFrame;
int32_t iAssignableMbLeft = kiMbNumInFrame;
int32_t iFirstMbIdx = 0;
int32_t i/*, j*/;
if (iPartitionNum <= 0)
iPartitionNum = 1;
else if (iPartitionNum > AVERSLICENUM_CONSTRAINT)
iPartitionNum = AVERSLICENUM_CONSTRAINT; // AVERSLICENUM_CONSTRAINT might be variable, however not fixed by MACRO
iCountMbNumPerPartition /= iPartitionNum;
pSliceCtx->iSliceNumInFrame = iPartitionNum;
i = 0;
while (i < iPartitionNum) {
if (i + 1 == iPartitionNum) {
pSliceCtx->pCountMbNumInSlice[i] = iAssignableMbLeft;
} else {
pSliceCtx->pCountMbNumInSlice[i] = iCountMbNumPerPartition;
}
pSliceCtx->pFirstMbInSlice[i] = iFirstMbIdx;
memset (pSliceCtx->pOverallMbMap + iFirstMbIdx, (uint8_t)i, pSliceCtx->pCountMbNumInSlice[i]*sizeof (uint8_t));
// for next partition(or pSlice)
iFirstMbIdx += pSliceCtx->pCountMbNumInSlice[i];
iAssignableMbLeft -= pSliceCtx->pCountMbNumInSlice[i];
++ i;
}
}
void WelsInitCurrentDlayerMltslc (sWelsEncCtx* pCtx, int32_t iPartitionNum) {
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = pCurDq->pSliceEncCtx;
UpdateSlicepEncCtxWithPartition (pSliceCtx, iPartitionNum);
if (I_SLICE == pCtx->eSliceType) { //check if uiSliceSizeConstraint too small
#define byte_complexIMBat26 (60)
uint8_t iCurDid = pCtx->uiDependencyId;
uint32_t uiFrmByte = 0;
if (pCtx->pSvcParam->bEnableRc) {
//RC case
uiFrmByte = (
((uint32_t) (pCtx->pSvcParam->sDependencyLayers[iCurDid].iSpatialBitrate)
/ (uint32_t) (pCtx->pSvcParam->sDependencyLayers[iCurDid].fInputFrameRate)) >> 3);
} else {
//fixed QP case
const int32_t iTtlMbNumInFrame = pSliceCtx->iMbNumInFrame;
int32_t iQDeltaTo26 = (26 - pCtx->pSvcParam->sDependencyLayers[iCurDid].iDLayerQp);
uiFrmByte = (iTtlMbNumInFrame * byte_complexIMBat26);
if (iQDeltaTo26 > 0) {
//smaller QP than 26
uiFrmByte = (uint32_t) (uiFrmByte * ((float)iQDeltaTo26 / 4));
} else if (iQDeltaTo26 < 0) {
//larger QP than 26
iQDeltaTo26 = ((-iQDeltaTo26) >> 2); //delta mod 4
uiFrmByte = (uiFrmByte >> (iQDeltaTo26)); //if delta 4, byte /2
}
}
//MINPACKETSIZE_CONSTRAINT
if (pSliceCtx->uiSliceSizeConstraint
<
(uint32_t) (uiFrmByte//suppose 16 byte per mb at average
/ (pSliceCtx->iMaxSliceNumConstraint))
) {
WelsLog (pCtx,
WELS_LOG_WARNING,
"Set-SliceConstraint(%d) too small for current resolution (MB# %d) under QP/BR!\n",
pSliceCtx->uiSliceSizeConstraint,
pSliceCtx->iMbNumInFrame
);
}
}
WelsInitCurrentQBLayerMltslc (pCtx);
}
#else
void WelsInitCurrentQBLayerMltslc (sWelsEncCtx* pCtx) {
//pData init
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = (pCurDq->pSliceEncCtx);
SSlice* pSlice = &pCurDq->sLayerInfo.pSliceInLayer[0];
int32_t iTtlMbNumInFrame = pSliceCtx->iMbNumInFrame;
//pSliceCtx
memset (pSliceCtx->pOverallMbMap, 0, iTtlMbNumInFrame * sizeof (uint8_t));
memset (pSliceCtx->pCountMbNumInSlice, 0, pSliceCtx->iSliceNumInFrame * sizeof (int32_t));
memset (pSliceCtx->pFirstMbInSlice, 0, pSliceCtx->iSliceNumInFrame * sizeof (int16_t));
pSliceCtx->iSliceNumInFrame = 1;//
pSliceCtx->pCountMbNumInSlice[0] = iTtlMbNumInFrame;
//mb_neighbor
DynslcUpdateMbNeighbourInfoListForAllSlices (pSliceCtx, pCurDq->sMbDataP);
//pSlice init
pSlice->uiSliceIdx = 0;
pSlice->pSliceBsa = &pCtx->pOut->sBsWrite;
pSlice->bDynamicSlicingSliceSizeCtrlFlag = false;
pSlice->uiAssumeLog2BytePerMb = (pCtx->eSliceType == P_SLICE) ? 0 : 1;
}
void WelsInitCurrentDlayerMltslc (sWelsEncCtx* pCtx, int32_t iPartitionNum) {
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = (pCurDq->pSliceEncCtx);
int32_t iTtlMbNumInFrame = pCurDq->iMbHeight * pCurDq->iMbWidth;
pSliceCtx->iMbNumInFrame
= pSliceCtx->pCountMbNumInSlice[0] = iTtlMbNumInFrame;
if (I_SLICE == pCtx->eSliceType) { //check if uiSliceSizeConstraint too small
#define byte_complexIMBat26 (60)
uint8_t iCurDid = pCtx->uiDependencyId;
uint32_t uiFrmByte = 0;
if (pCtx->pSvcParam->bEnableRc) {
//RC case
uiFrmByte = (
((uint32_t) (pCtx->pSvcParam->sDependencyLayers[iCurDid].iSpatialBitrate)
/ (uint32_t) (pCtx->pSvcParam->sDependencyLayers[iCurDid].fInputFrameRate)) >> 3);
} else {
//fixed QP case
int32_t iQDeltaTo26 = (26 - pCtx->pSvcParam->sDependencyLayers[iCurDid].iDLayerQp);
uiFrmByte = (iTtlMbNumInFrame * byte_complexIMBat26);
if (iQDeltaTo26 > 0) {
//smaller QP than 26
uiFrmByte = (uint32_t) (uiFrmByte * ((float)iQDeltaTo26 / 4));
} else if (iQDeltaTo26 < 0) {
//larger QP than 26
iQDeltaTo26 = ((-iQDeltaTo26) >> 2); //delta mod 4
uiFrmByte = (uiFrmByte >> (iQDeltaTo26)); //if delta 4, byte /2
}
}
//MINPACKETSIZE_CONSTRAINT
if (pSliceCtx->uiSliceSizeConstraint
<
(uint32_t) (uiFrmByte//suppose 16 byte per mb at average
/ (pSliceCtx->iMaxSliceNumConstraint))
) {
WelsLog (pCtx,
WELS_LOG_WARNING,
"Set-SliceConstraint(%d) too small for current resolution (MB# %d) under QP/BR!\n",
pSliceCtx->uiSliceSizeConstraint,
pSliceCtx->iMbNumInFrame
);
}
}
WelsInitCurrentQBLayerMltslc (pCtx);
}
#endif
/*!
* \brief initialize current layer
*/
void WelsInitCurrentLayer (sWelsEncCtx* pCtx,
const int32_t kiWidth,
const int32_t kiHeight) {
SWelsSvcCodingParam* pParam = pCtx->pSvcParam;
SPicture* pEncPic = pCtx->pEncPic;
SPicture* pDecPic = pCtx->pDecPic;
SDqLayer* pCurDq = pCtx->pCurDqLayer;
SSlice* pBaseSlice = &pCurDq->sLayerInfo.pSliceInLayer[0];
SSlice* pSlice = NULL;
const uint8_t kiCurDid = pCtx->uiDependencyId;
const bool kbUseSubsetSpsFlag = (kiCurDid > BASE_DEPENDENCY_ID);
SDLayerParam* fDlp = &pParam->sDependencyLayers[kiCurDid];
SNalUnitHeaderExt* pNalHdExt = &pCurDq->sLayerInfo.sNalHeaderExt;
SNalUnitHeader* pNalHd = &pNalHdExt->sNalHeader;
SDqIdc* pDqIdc = &pCtx->pDqIdcMap[kiCurDid];
int32_t iIdx = 0;
int32_t iSliceCount = 0;
if (NULL == pCurDq)
return;
pCurDq->pDecPic = pDecPic;
if (fDlp->sSliceCfg.uiSliceMode == SM_DYN_SLICE) // need get extra slices for update
iSliceCount = GetInitialSliceNum (pCurDq->iMbWidth, pCurDq->iMbHeight, &fDlp->sSliceCfg);
else
iSliceCount = GetCurrentSliceNum (pCurDq->pSliceEncCtx);
assert (iSliceCount > 0);
pBaseSlice->sSliceHeaderExt.sSliceHeader.iPpsId = pDqIdc->iPpsId;
pCurDq->sLayerInfo.pPpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pPps = &pCtx->pPPSArray[pBaseSlice->sSliceHeaderExt.sSliceHeader.iPpsId];
pBaseSlice->sSliceHeaderExt.sSliceHeader.iSpsId = pDqIdc->iSpsId;
if (kbUseSubsetSpsFlag) {
pCurDq->sLayerInfo.pSubsetSpsP = &pCtx->pSubsetArray[pDqIdc->iSpsId];
pCurDq->sLayerInfo.pSpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps = &pCurDq->sLayerInfo.pSubsetSpsP->pSps;
} else {
pCurDq->sLayerInfo.pSubsetSpsP = NULL;
pCurDq->sLayerInfo.pSpsP =
pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps = &pCtx->pSpsArray[pBaseSlice->sSliceHeaderExt.sSliceHeader.iSpsId];
}
pSlice = pBaseSlice;
iIdx = 1;
while (iIdx < iSliceCount) {
++ pSlice;
pSlice->sSliceHeaderExt.sSliceHeader.iPpsId = pBaseSlice->sSliceHeaderExt.sSliceHeader.iPpsId;
pSlice->sSliceHeaderExt.sSliceHeader.pPps = pBaseSlice->sSliceHeaderExt.sSliceHeader.pPps;
pSlice->sSliceHeaderExt.sSliceHeader.iSpsId = pBaseSlice->sSliceHeaderExt.sSliceHeader.iSpsId;
pSlice->sSliceHeaderExt.sSliceHeader.pSps = pBaseSlice->sSliceHeaderExt.sSliceHeader.pSps;
++ iIdx;
}
memset (pNalHdExt, 0, sizeof (SNalUnitHeaderExt));
pNalHd->uiNalRefIdc = pCtx->eNalPriority;
pNalHd->eNalUnitType = pCtx->eNalType;
pNalHdExt->uiDependencyId = kiCurDid;
pNalHdExt->bDiscardableFlag = (pCtx->bNeedPrefixNalFlag) ? (pNalHd->uiNalRefIdc == NRI_PRI_LOWEST) : false;
pNalHdExt->bIdrFlag = (pCtx->iFrameNum == 0) && ((pCtx->eNalType == NAL_UNIT_CODED_SLICE_IDR)
|| (pCtx->eSliceType == I_SLICE));
pNalHdExt->uiTemporalId = pCtx->uiTemporalId;
pBaseSlice->bSliceHeaderExtFlag = (NAL_UNIT_CODED_SLICE_EXT == pNalHd->eNalUnitType);
pSlice = pBaseSlice;
iIdx = 1;
while (iIdx < iSliceCount) {
++ pSlice;
pSlice->bSliceHeaderExtFlag = pBaseSlice->bSliceHeaderExtFlag;
++ iIdx;
}
// pEncPic pData
pCurDq->pEncData[0] = pEncPic->pData[0];
pCurDq->pEncData[1] = pEncPic->pData[1];
pCurDq->pEncData[2] = pEncPic->pData[2];
pCurDq->iEncStride[0] = pEncPic->iLineSize[0];
pCurDq->iEncStride[1] = pEncPic->iLineSize[1];
pCurDq->iEncStride[2] = pEncPic->iLineSize[2];
// cs pData
pCurDq->pCsData[0] = pDecPic->pData[0];
pCurDq->pCsData[1] = pDecPic->pData[1];
pCurDq->pCsData[2] = pDecPic->pData[2];
pCurDq->iCsStride[0] = pDecPic->iLineSize[0];
pCurDq->iCsStride[1] = pDecPic->iLineSize[1];
pCurDq->iCsStride[2] = pDecPic->iLineSize[2];
if (pCurDq->pRefLayer != NULL) {
pCurDq->bBaseLayerAvailableFlag = true;
} else {
pCurDq->bBaseLayerAvailableFlag = false;
}
}
static inline void SetFastCodingFunc(SWelsFuncPtrList* pFuncList)
{
pFuncList->pfIntraFineMd = WelsMdIntraFinePartitionVaa;
pFuncList->sSampleDealingFuncs.pfMdCost = pFuncList->sSampleDealingFuncs.pfSampleSad;
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3 = pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3Sad;
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3 = pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3Sad;
}
static inline void SetNormalCodingFunc(SWelsFuncPtrList* pFuncList)
{
pFuncList->pfIntraFineMd = WelsMdIntraFinePartition;
pFuncList->sSampleDealingFuncs.pfMdCost = pFuncList->sSampleDealingFuncs.pfSampleSatd;
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra16x16Combined3Satd;
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra8x8Combined3Satd;
pFuncList->sSampleDealingFuncs.pfIntra4x4Combined3 =
pFuncList->sSampleDealingFuncs.pfIntra4x4Combined3Satd;
}
void PreprocessSliceCoding (sWelsEncCtx* pCtx) {
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
const bool kbBaseAvail = pCurLayer->bBaseLayerAvailableFlag;
const bool kbHighestSpatialLayer =
(pCtx->pSvcParam->iSpatialLayerNum == (pCurLayer->sLayerInfo.sNalHeaderExt.uiDependencyId + 1));
SWelsFuncPtrList* pFuncList = pCtx->pFuncList;
/* function pointers conditional assignment under sWelsEncCtx, layer_mb_enc_rec (in stack) is exclusive */
if (kbHighestSpatialLayer) {
SetFastCodingFunc(pFuncList);
} else {
SetNormalCodingFunc(pFuncList);
}
if (P_SLICE == pCtx->eSliceType) {
pFuncList->pfMotionSearch = WelsMotionEstimateSearch;
pFuncList->pfFirstIntraMode = WelsMdFirstIntraMode;
pFuncList->sSampleDealingFuncs.pfMeCost = pCtx->pFuncList->sSampleDealingFuncs.pfSampleSatd;
if (kbHighestSpatialLayer) {
pFuncList->pfCalculateSatd = NotCalculateSatdCost;
pFuncList->pfInterFineMd = WelsMdInterFinePartitionVaa;
} else {
pFuncList->pfCalculateSatd = CalculateSatdCost;
pFuncList->pfInterFineMd = WelsMdInterFinePartition;
}
}
}
/*!
* \brief swap pDq layers between current pDq layer and reference pDq layer
*/
static inline void WelsSwapDqLayers (sWelsEncCtx* pCtx) {
// swap and assign reference
const int32_t kiDid = pCtx->uiDependencyId;
const int32_t kiNextDqIdx = 1 + kiDid;
SDqLayer* pTmpLayer = pCtx->ppDqLayerList[kiNextDqIdx];
SDqLayer* pRefLayer = pCtx->pCurDqLayer;
pCtx->pCurDqLayer = pTmpLayer;
pCtx->pCurDqLayer->pRefLayer = pRefLayer;
}
/*!
* \brief prefetch reference picture after WelsBuildRefList
*/
static inline void PrefetchReferencePicture (sWelsEncCtx* pCtx, const EVideoFrameType keFrameType) {
SSlice* pSliceBase = &pCtx->pCurDqLayer->sLayerInfo.pSliceInLayer[0];
const int32_t kiSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer->pSliceEncCtx);
int32_t iIdx = 0;
uint8_t uiRefIdx = -1;
assert (kiSliceCount > 0);
if (keFrameType != videoFrameTypeIDR) {
assert (pCtx->iNumRef0 > 0);
pCtx->pRefPic = pCtx->pRefList0[0]; // always get item 0 due to reordering done
pCtx->pCurDqLayer->pRefPic = pCtx->pRefPic;
uiRefIdx = 0; // reordered reference iIndex
} else { // safe for IDR coding
pCtx->pRefPic = NULL;
pCtx->pCurDqLayer->pRefPic = NULL;
}
iIdx = 0;
while (iIdx < kiSliceCount) {
pSliceBase->sSliceHeaderExt.sSliceHeader.uiRefIndex = uiRefIdx;
++ pSliceBase;
++ iIdx;
}
}
void ParasetIdAdditionIdAdjust (SParaSetOffsetVariable* sParaSetOffsetVariable, const int32_t kiCurEncoderParaSetId,
const uint32_t kuiMaxIdInBs) { //paraset_type = 0: SPS; =1: PPS
//SPS_ID in avc_sps and pSubsetSps will be different using this
//SPS_ID case example:
//1st enter: next_spsid_in_bs == 0; spsid == 0; delta==0; //actual spsid_in_bs == 0
//1st finish: next_spsid_in_bs == 1;
//2nd enter: next_spsid_in_bs == 1; spsid == 0; delta==1; //actual spsid_in_bs == 1
//2nd finish: next_spsid_in_bs == 2;
//31st enter: next_spsid_in_bs == 31; spsid == 0~2; delta==31~29; //actual spsid_in_bs == 31
//31st finish: next_spsid_in_bs == 0;
//31st enter: next_spsid_in_bs == 0; spsid == 0~2; delta==-2~0; //actual spsid_in_bs == 0
//31st finish: next_spsid_in_bs == 1;
const int32_t kiEncId = kiCurEncoderParaSetId;
const uint32_t kuiPrevIdInBs = sParaSetOffsetVariable->iParaSetIdDelta[kiEncId] + kiEncId;//mark current_id
const bool* kpUsedIdPointer = &sParaSetOffsetVariable->bUsedParaSetIdInBs[0];
uint32_t uiNextIdInBs = sParaSetOffsetVariable->uiNextParaSetIdToUseInBs;
#if _DEBUG
if (0 != sParaSetOffsetVariable->iParaSetIdDelta[kiEncId])
assert (sParaSetOffsetVariable->bUsedParaSetIdInBs[kuiPrevIdInBs]); //sure the prev-used one was marked activated correctly
#endif
//update current layer's pCodingParam
sParaSetOffsetVariable->iParaSetIdDelta[kiEncId] = uiNextIdInBs -
kiEncId; //for current parameter set, change its id_delta
//write pso pData for next update:
sParaSetOffsetVariable->bUsedParaSetIdInBs[kuiPrevIdInBs] = false; //
sParaSetOffsetVariable->bUsedParaSetIdInBs[uiNextIdInBs] = true; // update current used_id
//prepare for next update:
// find the next avaibable iId
do {
++uiNextIdInBs;
if (uiNextIdInBs >= kuiMaxIdInBs) {
uiNextIdInBs = 0;//ensure the SPS_ID wound not exceed MAX_SPS_COUNT
}
} while (kpUsedIdPointer[uiNextIdInBs]);
// update next_id
sParaSetOffsetVariable->uiNextParaSetIdToUseInBs = uiNextIdInBs;
#if _DEBUG
assert (!sParaSetOffsetVariable->bUsedParaSetIdInBs[uiNextIdInBs]); //sure the next-to-use one is marked activated correctly
#endif
}
/*!
* \brief write all parameter sets introduced in SVC extension
* \return writing results, success or error
*/
int32_t WelsWriteParameterSets (sWelsEncCtx* pCtx, int32_t* pNalLen, int32_t* pNumNal) {
int32_t iSize = 0;
int32_t iNal = 0;
int32_t iIdx = 0;
int32_t iId = 0;
int32_t iCountNal = 0;
int32_t iNalLength = 0;
int32_t iReturn = ENC_RETURN_SUCCESS;
if (NULL == pCtx || NULL == pNalLen || NULL == pNumNal)
return ENC_RETURN_UNEXPECTED;
/* write all SPS */
iIdx = 0;
while (iIdx < pCtx->iSpsNum) {
SDqIdc* pDqIdc = &pCtx->pDqIdcMap[iIdx];
const int32_t kiDid = pDqIdc->uiSpatialId;
const bool kbUsingSubsetSps = (kiDid > BASE_DEPENDENCY_ID);
iNal = pCtx->pOut->iNalIndex;
if (pCtx->pSvcParam->bEnableSpsPpsIdAddition) {
#if _DEBUG
pCtx->sPSOVector.bEnableSpsPpsIdAddition = 1;
assert (kiDid < MAX_DEPENDENCY_LAYER);
assert (iIdx < MAX_DQ_LAYER_NUM);
#endif
ParasetIdAdditionIdAdjust (& (pCtx->sPSOVector.sParaSetOffsetVariable[kbUsingSubsetSps ? PARA_SET_TYPE_SUBSETSPS :
PARA_SET_TYPE_AVCSPS]),
(kbUsingSubsetSps) ? (pCtx->pSubsetArray[iIdx - 1].pSps.uiSpsId) : (pCtx->pSpsArray[0].uiSpsId),
MAX_SPS_COUNT);
} else {
memset (& (pCtx->sPSOVector), 0, sizeof (pCtx->sPSOVector));
}
if (kbUsingSubsetSps) {
iId = iIdx - 1;
/* generate Subset SPS */
WelsLoadNal (pCtx->pOut, NAL_UNIT_SUBSET_SPS, NRI_PRI_HIGHEST);
WelsWriteSubsetSpsSyntax (&pCtx->pSubsetArray[iId], &pCtx->pOut->sBsWrite,
& (pCtx->sPSOVector.sParaSetOffsetVariable[PARA_SET_TYPE_SUBSETSPS].iParaSetIdDelta[0]));
WelsUnloadNal (pCtx->pOut);
} else {
iId = 0;
/* generate sequence parameters set */
WelsLoadNal (pCtx->pOut, NAL_UNIT_SPS, NRI_PRI_HIGHEST);
WelsWriteSpsNal (&pCtx->pSpsArray[0], &pCtx->pOut->sBsWrite,
& (pCtx->sPSOVector.sParaSetOffsetVariable[PARA_SET_TYPE_AVCSPS].iParaSetIdDelta[0]));
WelsUnloadNal (pCtx->pOut);
}
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,//available buffer to be written, so need to substract the used length
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalLength);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
pNalLen[iCountNal] =iNalLength;
pCtx->iPosBsBuffer += iNalLength;
iSize += iNalLength;
++ iIdx;
++ iCountNal;
}
/* write all PPS */
iIdx = 0;
while (iIdx < pCtx->iPpsNum) {
if (pCtx->pSvcParam->bEnableSpsPpsIdAddition) {
//para_set_type = 2: PPS, use MAX_PPS_COUNT
ParasetIdAdditionIdAdjust (&pCtx->sPSOVector.sParaSetOffsetVariable[PARA_SET_TYPE_PPS], pCtx->pPPSArray[iIdx].iPpsId,
MAX_PPS_COUNT);
}
iNal = pCtx->pOut->iNalIndex;
/* generate picture parameter set */
WelsLoadNal (pCtx->pOut, NAL_UNIT_PPS, NRI_PRI_HIGHEST);
WelsWritePpsSyntax (&pCtx->pPPSArray[iIdx], &pCtx->pOut->sBsWrite, & (pCtx->sPSOVector));
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize - pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalLength);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
pNalLen[iCountNal] = iNalLength;
pCtx->iPosBsBuffer += iNalLength;
iSize += iNalLength;
++ iIdx;
++ iCountNal;
}
*pNumNal = iCountNal;
return ENC_RETURN_SUCCESS;
}
static inline int32_t AddPrefixNal (sWelsEncCtx* pCtx,
SLayerBSInfo* pLayerBsInfo,
int32_t* pNalLen,
int32_t* pNalIdxInLayer,
const EWelsNalUnitType keNalType,
const EWelsNalRefIdc keNalRefIdc,
int32_t& iPayloadSize) {
int32_t iReturn = ENC_RETURN_SUCCESS;
iPayloadSize = 0;
if (keNalRefIdc != NRI_PRI_LOWEST) {
WelsLoadNal (pCtx->pOut, NAL_UNIT_PREFIX, keNalRefIdc);
WelsWriteSVCPrefixNal (&pCtx->pOut->sBsWrite, keNalRefIdc, (NAL_UNIT_CODED_SLICE_IDR == keNalType));
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs+pCtx->iPosBsBuffer,
&pNalLen[*pNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
iPayloadSize = pNalLen[*pNalIdxInLayer];
pCtx->iPosBsBuffer += iPayloadSize;
pLayerBsInfo->iNalLengthInByte[*pNalIdxInLayer] = iPayloadSize;
(*pNalIdxInLayer) ++;
} else { // No Prefix NAL Unit RBSP syntax here, but need add NAL Unit Header extension
WelsLoadNal (pCtx->pOut, NAL_UNIT_PREFIX, keNalRefIdc);
// No need write any syntax of prefix NAL Unit RBSP here
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs+pCtx->iPosBsBuffer,
&pNalLen[*pNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
iPayloadSize = pNalLen[*pNalIdxInLayer];
pCtx->iPosBsBuffer += iPayloadSize;
pLayerBsInfo->iNalLengthInByte[*pNalIdxInLayer] = iPayloadSize;
(*pNalIdxInLayer) ++;
}
return ENC_RETURN_SUCCESS;
}
int32_t WritePadding (sWelsEncCtx* pCtx, int32_t iLen, int32_t& iSize) {
int32_t i = 0;
int32_t iNal = 0;
SBitStringAux* pBs = NULL;
int32_t iNalLen;
iSize = 0;
iNal = pCtx->pOut->iNalIndex;
pBs = &pCtx->pOut->sBsWrite; // SBitStringAux instance for non VCL NALs decoding
if ((pBs->pBufEnd - pBs->pBufPtr) < iLen || iNal >= pCtx->pOut->iCountNals) {
#if GOM_TRACE_FLAG
WelsLog (pCtx, WELS_LOG_ERROR,
"[RC] paddingcal pBuffer overflow, bufferlen=%lld, paddinglen=%d, iNalIdx= %d, iCountNals= %d\n",
static_cast<long long int> (pBs->pBufEnd - pBs->pBufPtr), iLen, iNal, pCtx->pOut->iCountNals);
#endif
return ENC_RETURN_MEMOVERFLOWFOUND;
}
WelsLoadNal (pCtx->pOut, NAL_UNIT_FILLER_DATA, NRI_PRI_LOWEST);
for (i = 0; i < iLen; i++) {
BsWriteBits (pBs, 8, 0xff);
}
BsRbspTrailingBits (pBs);
BsFlush (pBs);
WelsUnloadNal (pCtx->pOut);
int32_t iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[iNal], NULL,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs + pCtx->iPosBsBuffer,
&iNalLen);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
pCtx->iPosBsBuffer += iNalLen;
iSize += iNalLen;
return ENC_RETURN_SUCCESS;
}
/*
* Force coding IDR as follows
*/
int32_t ForceCodingIDR (sWelsEncCtx* pCtx) {
if (NULL == pCtx)
return 1;
pCtx->bEncCurFrmAsIdrFlag = true;
pCtx->iCodingIndex = 0;
return 0;
}
int32_t WelsEncoderEncodeParameterSets (sWelsEncCtx* pCtx, void* pDst) {
SFrameBSInfo* pFbi = (SFrameBSInfo*)pDst;
SLayerBSInfo* pLayerBsInfo = &pFbi->sLayerInfo[0];
int32_t iNalLen[128] = {0};
int32_t iCountNal = 0;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs;
InitBits (&pCtx->pOut->sBsWrite, pCtx->pOut->pBsBuffer, pCtx->pOut->uiSize);
int32_t iReturn = WelsWriteParameterSets (pCtx, &iNalLen[0], &iCountNal);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
for (int32_t iNalIndex = 0; iNalIndex < iCountNal; ++ iNalIndex) {
pLayerBsInfo->iNalLengthInByte[iNalIndex] = iNalLen[iNalIndex];
}
pCtx->eLastNalPriority = NRI_PRI_HIGHEST;
pFbi->iLayerNum = 1;
WelsEmms();
return ENC_RETURN_SUCCESS;
}
/*!
* \brief core svc encoding process
*
* \pParam pCtx sWelsEncCtx*, encoder context
* \pParam pFbi FrameBSInfo*
* \pParam pSrcPic Source Picture
* \return EFrameType (videoFrameTypeIDR/videoFrameTypeI/videoFrameTypeP)
*/
int32_t WelsEncoderEncodeExt (sWelsEncCtx* pCtx, SFrameBSInfo * pFbi, const SSourcePicture* pSrcPic) {
SLayerBSInfo* pLayerBsInfo = &pFbi->sLayerInfo[0];
SWelsSvcCodingParam* pSvcParam = pCtx->pSvcParam;
SSpatialPicIndex* pSpatialIndexMap = &pCtx->sSpatialIndexMap[0];
#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
SPicture* fsnr = NULL;
#endif//ENABLE_FRAME_DUMP || ENABLE_PSNR_CALC
SPicture* pEncPic = NULL; // to be decided later
#if defined(MT_ENABLED)
int32_t did_list[MAX_DEPENDENCY_LAYER] = {0};
#endif//MT_ENABLED
int32_t iLayerNum = 0;
int32_t iLayerSize = 0;
int32_t iSpatialNum = 0; // available count number of spatial layers due to frame size changed in this given frame
int32_t iSpatialIdx = 0; // iIndex of spatial layers due to frame size changed in this given frame
int32_t iFrameSize = 0;
int32_t iNalLen[128] = {0};
int32_t iNalIdxInLayer = 0;
int32_t iCountNal = 0;
EVideoFrameType eFrameType = videoFrameTypeInvalid;
int32_t iCurWidth = 0;
int32_t iCurHeight = 0;
EWelsNalUnitType eNalType = NAL_UNIT_UNSPEC_0;
EWelsNalRefIdc eNalRefIdc = NRI_PRI_LOWEST;
int8_t iCurDid = 0;
int8_t iCurTid = 0;
bool bAvcBased = false;
#if defined(ENABLE_PSNR_CALC)
float snr_y = .0f, snr_u = .0f, snr_v = .0f;
#endif//ENABLE_PSNR_CALC
#if defined(_DEBUG)
int32_t i = 0, j = 0, k = 0;
#endif//_DEBUG
pCtx->iEncoderError = ENC_RETURN_SUCCESS;
pFbi->iLayerNum = 0; // for initialization
pFbi->uiTimeStamp = pSrcPic->uiTimeStamp;
// perform csc/denoise/downsample/padding, generate spatial layers
iSpatialNum = pCtx->pVpp->BuildSpatialPicList (pCtx, pSrcPic);
if (iSpatialNum < 1) { // skip due to temporal layer settings (different frame rate)
++ pCtx->iCodingIndex;
pFbi->eOutputFrameType = videoFrameTypeSkip;
return ENC_RETURN_SUCCESS;
}
eFrameType = DecideFrameType (pCtx, iSpatialNum);
if (eFrameType == videoFrameTypeSkip) {
pFbi->eOutputFrameType = eFrameType;
return ENC_RETURN_SUCCESS;
}
InitFrameCoding (pCtx, eFrameType);
iCurTid = GetTemporalLevel (&pSvcParam->sDependencyLayers[pSpatialIndexMap->iDid], pCtx->iCodingIndex,
pSvcParam->uiGopSize);
pCtx->uiTemporalId = iCurTid;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs ;
if (eFrameType == videoFrameTypeIDR) {
++ pCtx->sPSOVector.uiIdrPicId;
//if ( pSvcParam->bEnableSSEI )
// write parameter sets bitstream here
pCtx->iEncoderError = WelsWriteParameterSets (pCtx, &iNalLen[0], &iCountNal);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = iCountNal;
for (int32_t iNalIndex = 0; iNalIndex < iCountNal; ++ iNalIndex) {
pLayerBsInfo->iNalLengthInByte[iNalIndex] = iNalLen[iNalIndex];
}
++ pLayerBsInfo;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
++ iLayerNum;
}
pCtx->pCurDqLayer = pCtx->ppDqLayerList[pSpatialIndexMap->iDid];
pCtx->pCurDqLayer->pRefLayer = NULL;
while (iSpatialIdx < iSpatialNum) {
const int32_t d_idx = (pSpatialIndexMap + iSpatialIdx)->iDid; // get iDid
SDLayerParam* param_d = &pSvcParam->sDependencyLayers[d_idx];
pCtx->uiDependencyId = iCurDid = (int8_t)d_idx;
pCtx->pVpp->AnalyzeSpatialPic (pCtx, d_idx);
pCtx->pEncPic = pEncPic = (pSpatialIndexMap + iSpatialIdx)->pSrc;
pCtx->pEncPic->iPictureType = pCtx->eSliceType;
pCtx->pEncPic->iFramePoc = pCtx->iPOC;
iCurWidth = param_d->iFrameWidth;
iCurHeight = param_d->iFrameHeight;
#if defined(MT_ENABLED)
did_list[iSpatialIdx] = iCurDid;
#endif//MT_ENABLED
// Encoding this picture might mulitiple sQualityStat layers potentially be encoded as followed
switch (param_d->sSliceCfg.uiSliceMode) {
case SM_FIXEDSLCNUM_SLICE:
case SM_AUTO_SLICE:{
#if defined(MT_ENABLED)
if ((iCurDid > 0) && (pSvcParam->iMultipleThreadIdc > 1) &&
(pSvcParam->sDependencyLayers[iCurDid].sSliceCfg.uiSliceMode == SM_FIXEDSLCNUM_SLICE
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sDependencyLayers[iCurDid].sSliceCfg.sSliceArgument.uiSliceNum)
)
AdjustEnhanceLayer (pCtx, iCurDid);
#endif//MT_ENABLED
break;
}
case SM_DYN_SLICE: {
int32_t iPicIPartitionNum = PicPartitionNumDecision (pCtx);
// MT compatibility
pCtx->iActiveThreadsNum =
iPicIPartitionNum; // we try to active number of threads, equal to number of picture partitions
WelsInitCurrentDlayerMltslc (pCtx, iPicIPartitionNum);
break;
}
default: {
break;
}
}
/* coding each spatial layer, only one sQualityStat layer within spatial support */
int32_t iSliceCount = 1;
if (iLayerNum >= MAX_LAYER_NUM_OF_FRAME) { // check available layer_bs_info writing as follows
WelsLog (pCtx, WELS_LOG_ERROR, "WelsEncoderEncodeExt(), iLayerNum(%d) overflow(max:%d)!", iLayerNum,
MAX_LAYER_NUM_OF_FRAME);
return ENC_RETURN_UNSUPPORTED_PARA;
}
iNalIdxInLayer = 0;
bAvcBased = (iCurDid == BASE_DEPENDENCY_ID);
pCtx->bNeedPrefixNalFlag = (bAvcBased &&
(pSvcParam->bPrefixNalAddingCtrl ||
(pSvcParam->iSpatialLayerNum > 1)));
if (eFrameType == videoFrameTypeP) {
eNalType = bAvcBased ? NAL_UNIT_CODED_SLICE : NAL_UNIT_CODED_SLICE_EXT;
} else if (eFrameType == videoFrameTypeIDR) {
eNalType = bAvcBased ? NAL_UNIT_CODED_SLICE_IDR : NAL_UNIT_CODED_SLICE_EXT;
}
if (iCurTid == 0 || pCtx->eSliceType == I_SLICE)
eNalRefIdc = NRI_PRI_HIGHEST;
else if (iCurTid == pSvcParam->iDecompStages)
eNalRefIdc = NRI_PRI_LOWEST;
else if (1 + iCurTid == pSvcParam->iDecompStages)
eNalRefIdc = NRI_PRI_LOW;
else // more details for other temporal layers?
eNalRefIdc = NRI_PRI_HIGHEST;
pCtx->eNalType = eNalType;
pCtx->eNalPriority = eNalRefIdc;
pCtx->pDecPic = pCtx->ppRefPicListExt[iCurDid]->pNextBuffer;
#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
fsnr = pCtx->pDecPic;
#endif//#if defined(ENABLE_FRAME_DUMP) || defined(ENABLE_PSNR_CALC)
pCtx->pDecPic->iPictureType = pCtx->eSliceType;
pCtx->pDecPic->iFramePoc = pCtx->iPOC;
WelsInitCurrentLayer (pCtx, iCurWidth, iCurHeight);
WelsMarkPic (pCtx);
if (!WelsBuildRefList (pCtx, pCtx->iPOC)) {
// Force coding IDR as followed
ForceCodingIDR (pCtx);
WelsLog (pCtx, WELS_LOG_WARNING, "WelsEncoderEncodeExt(), WelsBuildRefList failed for P frames, pCtx->iNumRef0= %d. ForceCodingIDR!\n",
pCtx->iNumRef0);
pFbi->eOutputFrameType = videoFrameTypeIDR;
pCtx->iEncoderError = ENC_RETURN_CORRECTED;
return ENC_RETURN_CORRECTED;
}
#ifdef LONG_TERM_REF_DUMP
dump_ref (pCtx);
#endif
WelsUpdateRefSyntax (pCtx, pCtx->iPOC,
eFrameType); //get reordering syntax used for writing slice header and transmit to encoder.
PrefetchReferencePicture (pCtx, eFrameType); // update reference picture for current pDq layer
pCtx->pFuncList->pfRc.pfWelsRcPictureInit (pCtx);
PreprocessSliceCoding (pCtx); // MUST be called after pfWelsRcPictureInit() and WelsInitCurrentLayer()
iLayerSize = 0;
if (SM_SINGLE_SLICE == param_d->sSliceCfg.uiSliceMode) { // only one slice within a sQualityStat layer
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (pCtx->bNeedPrefixNalFlag) {
pCtx->iEncoderError = AddPrefixNal (pCtx, pLayerBsInfo, &iNalLen[0], &iNalIdxInLayer, eNalType, eNalRefIdc, iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iLayerSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, eNalType, eNalRefIdc);
pCtx->iEncoderError = WelsCodeOneSlice (pCtx, 0, eNalType);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
pCtx->iEncoderError = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs+pCtx->iPosBsBuffer,
&iNalLen[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iSliceSize = iNalLen[iNalIdxInLayer];
iLayerSize += iSliceSize;
pCtx->iPosBsBuffer += iSliceSize;
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = iCurDid;
pLayerBsInfo->uiTemporalId = iCurTid;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->iNalLengthInByte[iNalIdxInLayer] = iSliceSize;
pLayerBsInfo->iNalCount = ++ iNalIdxInLayer;
}
// for dynamic slicing single threading..
#ifndef MT_ENABLED
else if (SM_DYN_SLICE == param_d->sSliceCfg.uiSliceMode)
#else // MT_ENABLED
else if ((SM_DYN_SLICE == param_d->sSliceCfg.uiSliceMode) && (pSvcParam->iMultipleThreadIdc <= 1))
#endif//MT_ENABLED
{
const int32_t kiLastMbInFrame = pCtx->pCurDqLayer->pSliceEncCtx->iMbNumInFrame;
pCtx->iEncoderError = WelsCodeOnePicPartition (pCtx, pLayerBsInfo, &iNalIdxInLayer, &iLayerSize, 0, kiLastMbInFrame, 0);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
} else {
//other multi-slice uiSliceMode
#if defined(MT_ENABLED)
int err = 0;
// THREAD_FULLY_FIRE_MODE/THREAD_PICK_UP_MODE for any mode of non-SM_DYN_SLICE
if ((SM_DYN_SLICE != param_d->sSliceCfg.uiSliceMode) && (pSvcParam->iMultipleThreadIdc > 1)) {
iSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer->pSliceEncCtx);
if (iLayerNum + 1 >= MAX_LAYER_NUM_OF_FRAME) { // check available layer_bs_info for further writing as followed
WelsLog (pCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), iLayerNum(%d) overflow(max:%d) at iDid= %d uiSliceMode= %d, iSliceCount= %d!",
iLayerNum, MAX_LAYER_NUM_OF_FRAME, iCurDid, param_d->sSliceCfg.uiSliceMode, iSliceCount);
return ENC_RETURN_UNSUPPORTED_PARA;
}
if (iSliceCount <= 1) {
WelsLog (pCtx, WELS_LOG_ERROR,
"WelsEncoderEncodeExt(), iSliceCount(%d) from GetCurrentSliceNum() is untrusted due stack/heap crupted!\n",
iSliceCount);
return ENC_RETURN_UNEXPECTED;
}
if (pSvcParam->iCountThreadsNum >= iSliceCount) { //THREAD_FULLY_FIRE_MODE
#if defined(MT_DEBUG)
int64_t t_bs_append = 0;
#endif
pCtx->iActiveThreadsNum = iSliceCount;
// to fire slice coding threads
err = FiredSliceThreads (&pCtx->pSliceThreading->pThreadPEncCtx[0], &pCtx->pSliceThreading->pReadySliceCodingEvent[0],
&pCtx->pSliceThreading->pThreadMasterEvent[0],
pLayerBsInfo, iSliceCount, pCtx->pCurDqLayer->pSliceEncCtx, false);
if (err) {
WelsLog (pCtx, WELS_LOG_ERROR,
"[MT] WelsEncoderEncodeExt(), FiredSliceThreads return(%d) failed and exit encoding frame, iCountThreadsNum= %d, iSliceCount= %d, uiSliceMode= %d, iMultipleThreadIdc= %d!!\n",
err, pSvcParam->iCountThreadsNum, iSliceCount, param_d->sSliceCfg.uiSliceMode, pSvcParam->iMultipleThreadIdc);
return ENC_RETURN_UNEXPECTED;
}
WelsMultipleEventsWaitAllBlocking (iSliceCount, &pCtx->pSliceThreading->pSliceCodedEvent[0], &pCtx->pSliceThreading->pSliceCodedMasterEvent);
// all slices are finished coding here
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
// append exclusive slice 0 bs to pFrameBs
#if defined(MT_DEBUG)
t_bs_append = WelsTime();
#endif//MT_DEBUG
iLayerSize = AppendSliceToFrameBs (pCtx, pLayerBsInfo, iSliceCount);
#if defined(MT_DEBUG)
t_bs_append = WelsTime() - t_bs_append;
if (pCtx->pSliceThreading->pFSliceDiff) {
fprintf (pCtx->pSliceThreading->pFSliceDiff,
"%6"PRId64" us consumed at AppendSliceToFrameBs() for coding_idx: %d iDid: %d qid: %d\n",
t_bs_append, pCtx->iCodingIndex, iCurDid, 0);
}
#endif//MT_DEBUG
} else { //THREAD_PICK_UP_MODE
int32_t iNumThreadsRunning = 0;
int32_t iNumThreadsScheduled = 0;
int32_t iIndexOfSliceToBeCoded = 0;
pCtx->iActiveThreadsNum = pSvcParam->iCountThreadsNum;
iNumThreadsScheduled = pCtx->iActiveThreadsNum;
iNumThreadsRunning = iNumThreadsScheduled;
// to fire slice coding threads
err = FiredSliceThreads (&pCtx->pSliceThreading->pThreadPEncCtx[0], &pCtx->pSliceThreading->pReadySliceCodingEvent[0],
&pCtx->pSliceThreading->pThreadMasterEvent[0],
pLayerBsInfo, iNumThreadsRunning, pCtx->pCurDqLayer->pSliceEncCtx, false);
if (err) {
WelsLog (pCtx, WELS_LOG_ERROR,
"[MT] WelsEncoderEncodeExt(), FiredSliceThreads return(%d) failed and exit encoding frame, iCountThreadsNum= %d, iSliceCount= %d, uiSliceMode= %d, iMultipleThreadIdc= %d!!\n",
err, pSvcParam->iCountThreadsNum, iSliceCount, param_d->sSliceCfg.uiSliceMode, pSvcParam->iMultipleThreadIdc);
return ENC_RETURN_UNEXPECTED;
}
iIndexOfSliceToBeCoded = iNumThreadsRunning;
while (1) {
if (iIndexOfSliceToBeCoded >= iSliceCount && iNumThreadsRunning <= 0)
break;
WELS_THREAD_ERROR_CODE lwait = 0;
int32_t iEventId = -1;
lwait = WelsMultipleEventsWaitSingleBlocking (iNumThreadsScheduled,
&pCtx->pSliceThreading->pSliceCodedEvent[0],
&pCtx->pSliceThreading->pSliceCodedMasterEvent);
iEventId = (int32_t) (lwait - WELS_THREAD_ERROR_WAIT_OBJECT_0);
if (iEventId >= 0 && iEventId < iNumThreadsScheduled) {
if (iIndexOfSliceToBeCoded < iSliceCount) {
// pick up succeeding slice for threading
// thread_id equal to iEventId per implementation here
pCtx->pSliceThreading->pThreadPEncCtx[iEventId].iSliceIndex = iIndexOfSliceToBeCoded;
WelsEventSignal (&pCtx->pSliceThreading->pReadySliceCodingEvent[iEventId]);
WelsEventSignal (&pCtx->pSliceThreading->pThreadMasterEvent[iEventId]);
++ iIndexOfSliceToBeCoded;
} else { // no other slices left for coding
-- iNumThreadsRunning;
}
}
}//while(1)
// all slices are finished coding here
// append exclusive slice 0 bs to pFrameBs
iLayerSize = AppendSliceToFrameBs (pCtx, pLayerBsInfo, iSliceCount);
}
}
// THREAD_FULLY_FIRE_MODE && SM_DYN_SLICE
else if ((SM_DYN_SLICE == param_d->sSliceCfg.uiSliceMode) && (pSvcParam->iMultipleThreadIdc > 1)) {
const int32_t kiPartitionCnt = pCtx->iActiveThreadsNum; //pSvcParam->iCountThreadsNum;
// to fire slice coding threads
err = FiredSliceThreads (&pCtx->pSliceThreading->pThreadPEncCtx[0], &pCtx->pSliceThreading->pReadySliceCodingEvent[0],
&pCtx->pSliceThreading->pThreadMasterEvent[0],
pLayerBsInfo, kiPartitionCnt, pCtx->pCurDqLayer->pSliceEncCtx, true);
if (err) {
WelsLog (pCtx, WELS_LOG_ERROR,
"[MT] WelsEncoderEncodeExt(), FiredSliceThreads return(%d) failed and exit encoding frame, iCountThreadsNum= %d, iSliceCount= %d, uiSliceMode= %d, iMultipleThreadIdc= %d!!\n",
err, pSvcParam->iCountThreadsNum, iSliceCount, param_d->sSliceCfg.uiSliceMode, pSvcParam->iMultipleThreadIdc);
return ENC_RETURN_UNEXPECTED;
}
WelsMultipleEventsWaitAllBlocking (kiPartitionCnt, &pCtx->pSliceThreading->pSliceCodedEvent[0], &pCtx->pSliceThreading->pSliceCodedMasterEvent);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iLayerSize = AppendSliceToFrameBs (pCtx, pLayerBsInfo, kiPartitionCnt);
} else // for non-dynamic-slicing mode single threading branch..
#endif//MT_ENABLED
{
const bool bNeedPrefix = pCtx->bNeedPrefixNalFlag;
int32_t iSliceIdx = 0;
iSliceCount = GetCurrentSliceNum (pCtx->pCurDqLayer->pSliceEncCtx);
while (iSliceIdx < iSliceCount) {
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (bNeedPrefix) {
pCtx->iEncoderError = AddPrefixNal (pCtx, pLayerBsInfo, &iNalLen[0], &iNalIdxInLayer, eNalType, eNalRefIdc, iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iLayerSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, eNalType, eNalRefIdc);
pCtx->iEncoderError = WelsCodeOneSlice (pCtx, iSliceIdx, eNalType);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
pCtx->iEncoderError = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs+pCtx->iPosBsBuffer, &iNalLen[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
iSliceSize = iNalLen[iNalIdxInLayer];
pCtx->iPosBsBuffer += iSliceSize;
iLayerSize += iSliceSize;
pLayerBsInfo->iNalLengthInByte[iNalIdxInLayer] = iSliceSize;
#if defined(SLICE_INFO_OUTPUT)
fprintf (stderr,
"@slice=%-6d sliceType:%c idc:%d size:%-6d\n",
iSliceIdx,
(pCtx->eSliceType == P_SLICE ? 'P' : 'I'),
eNalRefIdc,
iSliceSize);
#endif//SLICE_INFO_OUTPUT
++ iNalIdxInLayer;
++ iSliceIdx;
}
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = iCurDid;
pLayerBsInfo->uiTemporalId = iCurTid;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->iNalCount = iNalIdxInLayer;
}
}
// deblocking filter
if (
#if defined(MT_ENABLED)
(!pCtx->pCurDqLayer->bDeblockingParallelFlag) &&
#endif//MT_ENABLED
#if !defined(ENABLE_FRAME_DUMP)
((eNalRefIdc != NRI_PRI_LOWEST) && (param_d->iHighestTemporalId == 0 || iCurTid < param_d->iHighestTemporalId)) &&
#endif//!ENABLE_FRAME_DUMP
true
) {
PerformDeblockingFilter (pCtx);
}
// reference picture list update
if (eNalRefIdc != NRI_PRI_LOWEST) {
if (!WelsUpdateRefList (pCtx)) {
// Force coding IDR as followed
ForceCodingIDR (pCtx);
WelsLog (pCtx, WELS_LOG_WARNING, "WelsEncoderEncodeExt(), WelsUpdateRefList failed. ForceCodingIDR!\n");
//the above is to set the next frame to be IDR
pFbi->eOutputFrameType = eFrameType;
return ENC_RETURN_CORRECTED;
}
}
iFrameSize += iLayerSize;
pCtx->pFuncList->pfRc.pfWelsRcPictureInfoUpdate (pCtx, iLayerSize);
#ifdef ENABLE_FRAME_DUMP
// Dump reconstruction picture for each sQualityStat layer
if (iCurDid + 1 < pSvcParam->iSpatialLayerNum)
DumpDependencyRec (fsnr, &param_d->sRecFileName[0], iCurDid);
#endif//ENABLE_FRAME_DUMP
#if defined(ENABLE_PSNR_CALC)
snr_y = WelsCalcPsnr (fsnr->pData[0],
fsnr->iLineSize[0],
pEncPic->pData[0],
pEncPic->iLineSize[0],
iCurWidth,
iCurHeight);
snr_u = WelsCalcPsnr (fsnr->pData[1],
fsnr->iLineSize[1],
pEncPic->pData[1],
pEncPic->iLineSize[1],
(iCurWidth >> 1),
(iCurHeight >> 1));
snr_v = WelsCalcPsnr (fsnr->pData[2],
fsnr->iLineSize[2],
pEncPic->pData[2],
pEncPic->iLineSize[2],
(iCurWidth >> 1),
(iCurHeight >> 1));
#endif//ENABLE_PSNR_CALC
#if defined(LAYER_INFO_OUTPUT)
fprintf (stderr, "%2s %5d: %-5d %2s T%1d D%1d Q%-2d QP%3d Y%2.2f U%2.2f V%2.2f %8d bits\n",
(iSpatialIdx == 0) ? "#AU" : " ",
pCtx->iPOC,
pCtx->iFrameNum,
(uiFrameType == videoFrameTypeI || uiFrameType == videoFrameTypeIDR) ? "I" : "P",
iCurTid,
iCurDid,
0,
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iAverageFrameQp,
snr_y,
snr_u,
snr_v,
(iLayerSize << 3));
#endif//LAYER_INFO_OUTPUT
#if defined(STAT_OUTPUT)
#if defined(ENABLE_PSNR_CALC)
{
pCtx->sStatData[iCurDid][0].sQualityStat.rYPsnr[pCtx->eSliceType] += snr_y;
pCtx->sStatData[iCurDid][0].sQualityStat.rUPsnr[pCtx->eSliceType] += snr_u;
pCtx->sStatData[iCurDid][0].sQualityStat.rVPsnr[pCtx->eSliceType] += snr_v;
}
#endif//ENABLE_PSNR_CALC
#if defined(MB_TYPES_CHECK) //091025, frame output
if (pCtx->eSliceType == P_SLICE) {
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Intra4x4] += pCtx->sPerInfo.iMbCount[P_SLICE][Intra4x4];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Intra16x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Intra16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter16x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter16x8] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter16x8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter8x16] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter8x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][Inter8x8] += pCtx->sPerInfo.iMbCount[P_SLICE][Inter8x8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][PSkip] += pCtx->sPerInfo.iMbCount[P_SLICE][PSkip];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][8] += pCtx->sPerInfo.iMbCount[P_SLICE][8];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][9] += pCtx->sPerInfo.iMbCount[P_SLICE][9];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][10] += pCtx->sPerInfo.iMbCount[P_SLICE][10];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[P_SLICE][11] += pCtx->sPerInfo.iMbCount[P_SLICE][11];
} else if (pCtx->eSliceType == I_SLICE) {
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][Intra4x4] += pCtx->sPerInfo.iMbCount[I_SLICE][Intra4x4];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][Intra16x16] += pCtx->sPerInfo.iMbCount[I_SLICE][Intra16x16];
pCtx->sStatData[iCurDid][0].sSliceData.iMbCount[I_SLICE][7] += pCtx->sPerInfo.iMbCount[I_SLICE][7];
}
memset (pCtx->sPerInfo.iMbCount[P_SLICE], 0, 18 * sizeof (int32_t));
memset (pCtx->sPerInfo.iMbCount[I_SLICE], 0, 18 * sizeof (int32_t));
#endif//MB_TYPES_CHECK
{
++ pCtx->sStatData[iCurDid][0].sSliceData.iSliceCount[pCtx->eSliceType]; // for multiple slices coding
pCtx->sStatData[iCurDid][0].sSliceData.iSliceSize[pCtx->eSliceType] += (iLayerSize << 3); // bits
}
#endif//STAT_OUTPUT
++ iLayerNum;
++ pLayerBsInfo;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
if (pSvcParam->iPaddingFlag && pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize > 0) {
int32_t iPaddingNalSize = 0;
pCtx->iEncoderError = WritePadding (pCtx, pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize, iPaddingNalSize);
WELS_VERIFY_RETURN_IFNEQ(pCtx->iEncoderError, ENC_RETURN_SUCCESS)
#if GOM_TRACE_FLAG
WelsLog (pCtx, WELS_LOG_INFO, "[RC] encoding_qp%d Padding: %d\n", pCtx->uiDependencyId,
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize);
#endif
if (iPaddingNalSize <= 0)
return ENC_RETURN_UNEXPECTED;
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingBitrateStat += pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize;
pCtx->pWelsSvcRc[pCtx->uiDependencyId].iPaddingSize = 0;
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->uiSpatialId = 0;
pLayerBsInfo->uiTemporalId = 0;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiLayerType = NON_VIDEO_CODING_LAYER;
pLayerBsInfo->iNalCount = 1;
pLayerBsInfo->iNalLengthInByte[0] = iPaddingNalSize;
++ pLayerBsInfo;
pLayerBsInfo->pBsBuf = pCtx->pFrameBs + pCtx->iPosBsBuffer;
++ iLayerNum;
}
#if defined(MT_ENABLED)
if ((param_d->sSliceCfg.uiSliceMode == SM_FIXEDSLCNUM_SLICE||param_d->sSliceCfg.uiSliceMode == SM_AUTO_SLICE) && pSvcParam->iMultipleThreadIdc > 1 &&
pSvcParam->iMultipleThreadIdc >= param_d->sSliceCfg.sSliceArgument.uiSliceNum) {
CalcSliceComplexRatio (pCtx->pSliceThreading->pSliceComplexRatio[iCurDid], pCtx->pCurDqLayer->pSliceEncCtx,
pCtx->pSliceThreading->pSliceConsumeTime[iCurDid]);
#if defined(MT_DEBUG)
TrackSliceComplexities (pCtx, iCurDid);
#endif//#if defined(MT_DEBUG)
}
#endif//MT_ENABLED
++ iSpatialIdx;
if (iCurDid + 1 < pSvcParam->iSpatialLayerNum) {
WelsSwapDqLayers (pCtx);
}
if (pSvcParam->bEnableLongTermReference && (pCtx->pLtr[pCtx->uiDependencyId].bLTRMarkingFlag
&& (pCtx->pLtr[pCtx->uiDependencyId].iLTRMarkMode == LTR_DELAY_MARK))) {
pCtx->bLongTermRefFlag[d_idx][0] = true;
}
if( pCtx->pVpp->UpdateSpatialPictures(pCtx, pSvcParam, iCurTid, d_idx) != 0 ){
ForceCodingIDR(pCtx);
WelsLog (pCtx, WELS_LOG_WARNING, "WelsEncoderEncodeExt(), Logic Error Found in temporal level. ForceCodingIDR!\n");
//the above is to set the next frame IDR
pFbi->eOutputFrameType = eFrameType;
return ENC_RETURN_CORRECTED;
}
if (pSvcParam->bEnableLongTermReference && ((pCtx->pLtr[pCtx->uiDependencyId].bLTRMarkingFlag
&& (pCtx->pLtr[pCtx->uiDependencyId].iLTRMarkMode == LTR_DIRECT_MARK)) || eFrameType == videoFrameTypeIDR)) {
pCtx->bLongTermRefFlag[d_idx][iCurTid] = true;
}
}
#if defined(MT_ENABLED) && defined(MT_DEBUG)
TrackSliceConsumeTime (pCtx, did_list, iSpatialNum);
#endif//MT_ENABLED && MT_DEBUG
#if defined(MT_ENABLED)
if (pSvcParam->iMultipleThreadIdc > 1 && did_list[0] == BASE_DEPENDENCY_ID
&& ((pSvcParam->sDependencyLayers[0].sSliceCfg.uiSliceMode == SM_FIXEDSLCNUM_SLICE)||(pSvcParam->sDependencyLayers[0].sSliceCfg.uiSliceMode == SM_AUTO_SLICE))
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sDependencyLayers[0].sSliceCfg.sSliceArgument.uiSliceNum
&& ((pSvcParam->sDependencyLayers[did_list[iSpatialNum - 1]].sSliceCfg.uiSliceMode == SM_FIXEDSLCNUM_SLICE)||(pSvcParam->sDependencyLayers[did_list[iSpatialNum - 1]].sSliceCfg.uiSliceMode == SM_AUTO_SLICE))
&& pSvcParam->iMultipleThreadIdc >= pSvcParam->sDependencyLayers[did_list[iSpatialNum -
1]].sSliceCfg.sSliceArgument.uiSliceNum) {
AdjustBaseLayer (pCtx);
}
#endif
#ifdef ENABLE_FRAME_DUMP
DumpRecFrame (fsnr, &pSvcParam->sDependencyLayers[pSvcParam->iSpatialLayerNum -
1].sRecFileName[0]); // pDecPic: final reconstruction output
#endif//ENABLE_FRAME_DUMP
++ pCtx->iCodingIndex;
pCtx->eLastNalPriority = eNalRefIdc;
pFbi->iLayerNum = iLayerNum;
WelsEmms();
pFbi->eOutputFrameType = eFrameType;
return ENC_RETURN_SUCCESS;
}
/*!
* \brief Wels SVC encoder parameters adjustment
* SVC adjustment results in new requirement in memory blocks adjustment
*/
int32_t WelsEncoderParamAdjust (sWelsEncCtx** ppCtx, SWelsSvcCodingParam* pNewParam) {
SWelsSvcCodingParam* pOldParam = NULL;
int32_t iReturn = ENC_RETURN_SUCCESS;
int8_t iIndexD = 0;
bool bNeedReset = false;
if (NULL == ppCtx || NULL == *ppCtx || NULL == pNewParam) return 1;
/* Check validation in new parameters */
iReturn = ParamValidationExt (*ppCtx,pNewParam);
if (iReturn != ENC_RETURN_SUCCESS) return iReturn;
pOldParam = (*ppCtx)->pSvcParam;
/* Decide whether need reset for IDR frame based on adjusting prarameters changed */
/* Temporal levels, spatial settings and/ or quality settings changed need update parameter sets related. */
bNeedReset = (pOldParam == NULL) ||
(pOldParam->iTemporalLayerNum != pNewParam->iTemporalLayerNum) ||
(pOldParam->uiGopSize != pNewParam->uiGopSize) ||
(pOldParam->iSpatialLayerNum != pNewParam->iSpatialLayerNum) ||
(pOldParam->iDecompStages != pNewParam->iDecompStages) ||
(pOldParam->iPicWidth != pNewParam->iPicWidth
|| pOldParam->iPicHeight != pNewParam->iPicHeight) ||
(pOldParam->SUsedPicRect.iWidth != pNewParam->SUsedPicRect.iWidth
|| pOldParam->SUsedPicRect.iHeight != pNewParam->SUsedPicRect.iHeight) ||
(pOldParam->bEnableLongTermReference != pNewParam->bEnableLongTermReference);
if (!bNeedReset) { // Check its picture resolutions/quality settings respectively in each dependency layer
iIndexD = 0;
assert (pOldParam->iSpatialLayerNum == pNewParam->iSpatialLayerNum);
do {
const SDLayerParam* kpOldDlp = &pOldParam->sDependencyLayers[iIndexD];
const SDLayerParam* kpNewDlp = &pNewParam->sDependencyLayers[iIndexD];
float fT1 = .0f;
float fT2 = .0f;
// check frame size settings
if (kpOldDlp->iFrameWidth != kpNewDlp->iFrameWidth ||
kpOldDlp->iFrameHeight != kpNewDlp->iFrameHeight ||
kpOldDlp->iActualWidth != kpNewDlp->iActualWidth ||
kpOldDlp->iActualHeight != kpNewDlp->iActualHeight) {
bNeedReset = true;
break;
}
if (kpOldDlp->sSliceCfg.uiSliceMode != kpNewDlp->sSliceCfg.uiSliceMode ||
kpOldDlp->sSliceCfg.sSliceArgument.uiSliceNum != kpNewDlp->sSliceCfg.sSliceArgument.uiSliceNum) {
bNeedReset = true;
break;
}
// check frame rate
// we can not check whether corresponding fFrameRate is equal or not,
// only need to check d_max/d_min and max_fr/d_max whether it is equal or not
if (kpNewDlp->fInputFrameRate > EPSN && kpOldDlp->fInputFrameRate > EPSN)
fT1 = kpNewDlp->fOutputFrameRate / kpNewDlp->fInputFrameRate - kpOldDlp->fOutputFrameRate / kpOldDlp->fInputFrameRate;
if (kpNewDlp->fOutputFrameRate > EPSN && kpOldDlp->fOutputFrameRate > EPSN)
fT2 = pNewParam->fMaxFrameRate / kpNewDlp->fOutputFrameRate - pOldParam->fMaxFrameRate / kpOldDlp->fOutputFrameRate;
if (fT1 > EPSN || fT1 < -EPSN || fT2 > EPSN || fT2 < -EPSN) {
bNeedReset = true;
break;
}
if (kpOldDlp->iHighestTemporalId != kpNewDlp->iHighestTemporalId) {
bNeedReset = true;
break;
}
++ iIndexD;
} while (iIndexD < pOldParam->iSpatialLayerNum);
}
if (bNeedReset) {
SParaSetOffsetVariable sTmpPsoVariable[PARA_SET_TYPE];
uint16_t uiTmpIdrPicId;//this is for LTR!
memcpy (sTmpPsoVariable, (*ppCtx)->sPSOVector.sParaSetOffsetVariable,
(PARA_SET_TYPE)*sizeof (SParaSetOffsetVariable)); // confirmed_safe_unsafe_usage
uiTmpIdrPicId = (*ppCtx)->sPSOVector.uiIdrPicId;
WelsUninitEncoderExt (ppCtx);
/* Update new parameters */
if (WelsInitEncoderExt (ppCtx, pNewParam))
return 1;
// reset the scaled spatial picture size
(*ppCtx)->pVpp->WelsPreprocessReset (*ppCtx);
//if WelsInitEncoderExt succeed
//for FLEXIBLE_PARASET_ID
memcpy ((*ppCtx)->sPSOVector.sParaSetOffsetVariable, sTmpPsoVariable,
(PARA_SET_TYPE)*sizeof (SParaSetOffsetVariable)); // confirmed_safe_unsafe_usage
(*ppCtx)->sPSOVector.uiIdrPicId = uiTmpIdrPicId;
} else {
/* maybe adjustment introduced in bitrate or little settings adjustment and so on.. */
pNewParam->iNumRefFrame = WELS_CLIP3 (pNewParam->iNumRefFrame, MIN_REF_PIC_COUNT,
MAX_REFERENCE_PICTURE_COUNT_NUM);
pNewParam->iLoopFilterDisableIdc = WELS_CLIP3 (pNewParam->iLoopFilterDisableIdc, 0, 6);
pNewParam->iLoopFilterAlphaC0Offset = WELS_CLIP3 (pNewParam->iLoopFilterAlphaC0Offset, -6, 6);
pNewParam->iLoopFilterBetaOffset = WELS_CLIP3 (pNewParam->iLoopFilterBetaOffset, -6, 6);
pNewParam->fMaxFrameRate = WELS_CLIP3 (pNewParam->fMaxFrameRate, MIN_FRAME_RATE, MAX_FRAME_RATE);
// we can not use direct struct based memcpy due some fields need keep unchanged as before
pOldParam->fMaxFrameRate = pNewParam->fMaxFrameRate; // maximal frame rate [Hz / fps]
pOldParam->iInputCsp = pNewParam->iInputCsp; // color space of input sequence
pOldParam->uiIntraPeriod = pNewParam->uiIntraPeriod; // intra period (multiple of GOP size as desired)
pOldParam->bEnableSpsPpsIdAddition = pNewParam->bEnableSpsPpsIdAddition;
pOldParam->bPrefixNalAddingCtrl = pNewParam->bPrefixNalAddingCtrl;
pOldParam->iNumRefFrame = pNewParam->iNumRefFrame; // number of reference frame used
/* denoise control */
pOldParam->bEnableDenoise = pNewParam->bEnableDenoise;
/* background detection control */
pOldParam->bEnableBackgroundDetection = pNewParam->bEnableBackgroundDetection;
/* adaptive quantization control */
pOldParam->bEnableAdaptiveQuant = pNewParam->bEnableAdaptiveQuant;
/* int32_t term reference control */
pOldParam->bEnableLongTermReference = pNewParam->bEnableLongTermReference;
pOldParam->iLtrMarkPeriod = pNewParam->iLtrMarkPeriod;
// keep below values unchanged as before
pOldParam->bEnableSSEI = pNewParam->bEnableSSEI;
pOldParam->bEnableFrameCroppingFlag = pNewParam->bEnableFrameCroppingFlag; // enable frame cropping flag
/* Motion search */
/* Deblocking loop filter */
pOldParam->iLoopFilterDisableIdc = pNewParam->iLoopFilterDisableIdc; // 0: on, 1: off, 2: on except for slice boundaries
pOldParam->iLoopFilterAlphaC0Offset = pNewParam->iLoopFilterAlphaC0Offset;// AlphaOffset: valid range [-6, 6], default 0
pOldParam->iLoopFilterBetaOffset = pNewParam->iLoopFilterBetaOffset; // BetaOffset: valid range [-6, 6], default 0
/* Rate Control */
pOldParam->bEnableRc = pNewParam->bEnableRc;
pOldParam->iRCMode = pNewParam->iRCMode;
pOldParam->iTargetBitrate = pNewParam->iTargetBitrate; // overall target bitrate introduced in RC module
pOldParam->iPaddingFlag = pNewParam->iPaddingFlag;
/* Layer definition */
pOldParam->bPrefixNalAddingCtrl = pNewParam->bPrefixNalAddingCtrl;
// d
iIndexD = 0;
do {
SDLayerParam* pOldDlp = &pOldParam->sDependencyLayers[iIndexD];
SDLayerParam* pNewDlp = &pNewParam->sDependencyLayers[iIndexD];
pOldDlp->fInputFrameRate = pNewDlp->fInputFrameRate; // input frame rate
pOldDlp->fOutputFrameRate = pNewDlp->fOutputFrameRate; // output frame rate
pOldDlp->iSpatialBitrate = pNewDlp->iSpatialBitrate;
pOldDlp->uiProfileIdc = pNewDlp->uiProfileIdc; // value of profile IDC (0 for auto-detection)
/* Derived variants below */
pOldDlp->iTemporalResolution = pNewDlp->iTemporalResolution;
pOldDlp->iDecompositionStages = pNewDlp->iDecompositionStages;
memcpy (pOldDlp->uiCodingIdx2TemporalId, pNewDlp->uiCodingIdx2TemporalId,
sizeof (pOldDlp->uiCodingIdx2TemporalId)); // confirmed_safe_unsafe_usage
++ iIndexD;
} while (iIndexD < pOldParam->iSpatialLayerNum);
}
/* Any else initialization/reset for rate control here? */
return 0;
}
int32_t WelsCodeOnePicPartition (sWelsEncCtx* pCtx,
SLayerBSInfo* pLayerBsInfo,
int32_t* pNalIdxInLayer,
int32_t* pLayerSize,
int32_t iFirstMbInPartition, // first mb inclusive in partition
int32_t iEndMbInPartition, // end mb exclusive in partition
int32_t iStartSliceIdx
) {
SDqLayer* pCurLayer = pCtx->pCurDqLayer;
SSliceCtx* pSliceCtx = pCurLayer->pSliceEncCtx;
int32_t iNalLen[MAX_NAL_UNITS_IN_LAYER] = {0};
int32_t iNalIdxInLayer = *pNalIdxInLayer;
int32_t iSliceIdx = iStartSliceIdx;
const int32_t kiSliceStep = pCtx->iActiveThreadsNum;
const int32_t kiPartitionId = iStartSliceIdx % kiSliceStep;
int32_t iPartitionBsSize = 0;
int32_t iAnyMbLeftInPartition = iEndMbInPartition - iFirstMbInPartition;
const EWelsNalUnitType keNalType = pCtx->eNalType;
const EWelsNalRefIdc keNalRefIdc = pCtx->eNalPriority;
const bool kbNeedPrefix = pCtx->bNeedPrefixNalFlag;
int32_t iReturn = ENC_RETURN_SUCCESS;
//init
{
pSliceCtx->pFirstMbInSlice[iSliceIdx] = iFirstMbInPartition;
pCurLayer->pNumSliceCodedOfPartition[kiPartitionId] = 1; // one slice per partition intialized, dynamic slicing inside
pCurLayer->pLastMbIdxOfPartition[kiPartitionId] = iEndMbInPartition - 1;
}
pCurLayer->pLastCodedMbIdxOfPartition[kiPartitionId] = 0;
while (iAnyMbLeftInPartition > 0) {
int32_t iSliceSize = 0;
int32_t iPayloadSize = 0;
if (iSliceIdx >= pSliceCtx->iMaxSliceNumConstraint) { // insufficient memory in pSliceInLayer[]
// TODO: need exception handler for not large enough of MAX_SLICES_NUM related memory usage
// No idea about its solution due MAX_SLICES_NUM is fixed lenght in relevent pData structure
return ENC_RETURN_MEMALLOCERR;
}
if (kbNeedPrefix) {
iReturn = AddPrefixNal (pCtx, pLayerBsInfo, &iNalLen[0], &iNalIdxInLayer, keNalType, keNalRefIdc, iPayloadSize);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
iPartitionBsSize += iPayloadSize;
}
WelsLoadNal (pCtx->pOut, keNalType, keNalRefIdc);
iReturn=WelsCodeOneSlice (pCtx, iSliceIdx, keNalType);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
WelsUnloadNal (pCtx->pOut);
iReturn = WelsEncodeNal (&pCtx->pOut->sNalList[pCtx->pOut->iNalIndex - 1],
&pCtx->pCurDqLayer->sLayerInfo.sNalHeaderExt,
pCtx->iFrameBsSize-pCtx->iPosBsBuffer,
pCtx->pFrameBs+pCtx->iPosBsBuffer,
&iNalLen[iNalIdxInLayer]);
WELS_VERIFY_RETURN_IFNEQ(iReturn, ENC_RETURN_SUCCESS)
iSliceSize = iNalLen[iNalIdxInLayer];
pCtx->iPosBsBuffer += iSliceSize;
iPartitionBsSize += iSliceSize;
pLayerBsInfo->iNalLengthInByte[iNalIdxInLayer] = iSliceSize;
#if defined(SLICE_INFO_OUTPUT)
fprintf (stderr,
"@slice=%-6d sliceType:%c idc:%d size:%-6d\n",
iSliceIdx,
(pCtx->eSliceType == P_SLICE ? 'P' : 'I'),
eNalRefIdc,
iSliceSize);
#endif//SLICE_INFO_OUTPUT
++ iNalIdxInLayer;
iSliceIdx += kiSliceStep; //if uiSliceIdx is not continuous
iAnyMbLeftInPartition = iEndMbInPartition - (1 + pCurLayer->pLastCodedMbIdxOfPartition[kiPartitionId]);
}
*pLayerSize = iPartitionBsSize;
*pNalIdxInLayer = iNalIdxInLayer;
// slice based packing???
pLayerBsInfo->uiLayerType = VIDEO_CODING_LAYER;
pLayerBsInfo->uiSpatialId = pCtx->uiDependencyId;
pLayerBsInfo->uiTemporalId = pCtx->uiTemporalId;
pLayerBsInfo->uiQualityId = 0;
pLayerBsInfo->uiPriorityId = 0;
pLayerBsInfo->iNalCount = iNalIdxInLayer;
return ENC_RETURN_SUCCESS;
}
} // namespace WelsSVCEnc