openh264/codec/encoder/core/src/ratectl.cpp

952 lines
36 KiB
C++
Raw Normal View History

/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* ratectl.c
*
* Abstract
* Rate Control
*
* History
* 9/8/2009 Created
* 12/26/2011 Modified
*
*
*
*************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "rc.h"
#include "encoder_context.h"
#include "utils.h"
#include "svc_enc_golomb.h"
namespace WelsSVCEnc {
//#define _TEST_TEMP_RC_
#ifdef _TEST_TEMP_RC_
//#define _NOT_USE_AQ_FOR_TEST_
FILE* fp_test_rc = NULL;
FILE* fp_vgop = NULL;
#endif
#define _BITS_RANGE 0
void RcInitLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA, const int32_t kiMaxTl) {
const int32_t kiSliceNum = pWelsSvcRc->iSliceNum;
const int32_t kiGomSize = pWelsSvcRc->iGomSize;
const int32_t kiGomSizeD = kiGomSize * sizeof (double);
const int32_t kiGomSizeI = kiGomSize * sizeof (int32_t);
const int32_t kiLayerRcSize = kiGomSizeD + (kiGomSizeI * 3) + sizeof (SRCSlicing) * kiSliceNum + sizeof (
SRCTemporal) * kiMaxTl;
uint8_t* pBaseMem = (uint8_t*)pMA->WelsMalloc (kiLayerRcSize, "rc_layer_memory");
if (NULL == pBaseMem)
return;
pWelsSvcRc->pGomComplexity = (double*)pBaseMem;
pBaseMem += kiGomSizeD;
pWelsSvcRc->pGomForegroundBlockNum = (int32_t*)pBaseMem;
pBaseMem += kiGomSizeI;
pWelsSvcRc->pCurrentFrameGomSad = (int32_t*)pBaseMem;
pBaseMem += kiGomSizeI;
pWelsSvcRc->pGomCost = (int32_t*)pBaseMem;
pBaseMem += kiGomSizeI;
pWelsSvcRc->pSlicingOverRc = (SRCSlicing*)pBaseMem;
pBaseMem += sizeof (SRCSlicing) * kiSliceNum;
pWelsSvcRc->pTemporalOverRc = (SRCTemporal*)pBaseMem;
}
void RcFreeLayerMemory (SWelsSvcRc* pWelsSvcRc, CMemoryAlign* pMA) {
if (pWelsSvcRc != NULL && pWelsSvcRc->pGomComplexity != NULL) {
pMA->WelsFree (pWelsSvcRc->pGomComplexity, "rc_layer_memory");
pWelsSvcRc->pGomComplexity = NULL;
pWelsSvcRc->pGomForegroundBlockNum = NULL;
pWelsSvcRc->pCurrentFrameGomSad = NULL;
pWelsSvcRc->pGomCost = NULL;
pWelsSvcRc->pSlicingOverRc = NULL;
pWelsSvcRc->pTemporalOverRc = NULL;
}
}
static inline double RcConvertQp2QStep (double dQP) {
return pow (2.0, (dQP - 4.0) / 6.0);
}
static inline double RcConvertQStep2Qp (double dQpStep) {
return (6 * log (dQpStep) / log (2.0) + 4.0);
}
void RcInitSequenceParameter (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = NULL;
SDLayerParam* pDLayerParam = NULL;
int32_t j = 0;
int32_t iMbWidth = 0;
BOOL_T bMultiSliceMode = FALSE;
int32_t iGomRowMode0 = 1, iGomRowMode1 = 1;
#ifdef _TEST_TEMP_RC_
fp_test_rc = fopen ("testRC.dat", "w");
fp_vgop = fopen ("vgop.dat", "w");
#endif
for (j = 0; j < pEncCtx->pSvcParam->iNumDependencyLayer; j++) {
SSliceCtx* pSliceCtx = &pEncCtx->pSliceCtxList[j];
pWelsSvcRc = &pEncCtx->pWelsSvcRc[j];
pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[j];
iMbWidth = (pDLayerParam->iFrameWidth >> 4);
pWelsSvcRc->iNumberMbFrame = iMbWidth * (pDLayerParam->iFrameHeight >> 4);
pWelsSvcRc->iSliceNum = pSliceCtx->iSliceNumInFrame;
pWelsSvcRc->iRcVaryPercentage = _BITS_RANGE; // % -- for temp
pWelsSvcRc->dRcVaryRatio = (double)pWelsSvcRc->iRcVaryPercentage / MAX_BITS_VARY_PERCENTAGE;
pWelsSvcRc->dSkipBufferRatio = SKIP_RATIO;
pWelsSvcRc->iQpRangeUpperInFrame = QP_RANGE_UPPER_MODE1 - (int32_t) ((QP_RANGE_UPPER_MODE1 - QP_RANGE_MODE0) *
pWelsSvcRc->dRcVaryRatio + 0.5);
pWelsSvcRc->iQpRangeLowerInFrame = QP_RANGE_LOWER_MODE1 - (int32_t) ((QP_RANGE_LOWER_MODE1 - QP_RANGE_MODE0) *
pWelsSvcRc->dRcVaryRatio + 0.5);
if (iMbWidth <= MB_WIDTH_THRESHOLD_90P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_90P;
iGomRowMode0 = GOM_ROW_MODE0_90P;
iGomRowMode1 = GOM_ROW_MODE1_90P;
} else if (iMbWidth <= MB_WIDTH_THRESHOLD_180P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_180P;
iGomRowMode0 = GOM_ROW_MODE0_180P;
iGomRowMode1 = GOM_ROW_MODE1_180P;
} else if (iMbWidth <= MB_WIDTH_THRESHOLD_360P) {
pWelsSvcRc->iSkipQpValue = SKIP_QP_360P;
iGomRowMode0 = GOM_ROW_MODE0_360P;
iGomRowMode1 = GOM_ROW_MODE1_360P;
} else {
pWelsSvcRc->iSkipQpValue = SKIP_QP_720P;
iGomRowMode0 = GOM_ROW_MODE0_720P;
iGomRowMode1 = GOM_ROW_MODE1_720P;
}
iGomRowMode0 = iGomRowMode1 + (int32_t) ((iGomRowMode0 - iGomRowMode1) * pWelsSvcRc->dRcVaryRatio + 0.5);
pWelsSvcRc->iNumberMbGom = iMbWidth * iGomRowMode0;
pWelsSvcRc->iMinQp = GOM_MIN_QP_MODE;
pWelsSvcRc->iMaxQp = GOM_MAX_QP_MODE;
pWelsSvcRc->iFrameDeltaQpUpper = LAST_FRAME_QP_RANGE_UPPER_MODE1 - (int32_t) ((LAST_FRAME_QP_RANGE_UPPER_MODE1 -
LAST_FRAME_QP_RANGE_UPPER_MODE0) * pWelsSvcRc->dRcVaryRatio + 0.5);
pWelsSvcRc->iFrameDeltaQpLower = LAST_FRAME_QP_RANGE_LOWER_MODE1 - (int32_t) ((LAST_FRAME_QP_RANGE_LOWER_MODE1 -
LAST_FRAME_QP_RANGE_LOWER_MODE0) * pWelsSvcRc->dRcVaryRatio + 0.5);
pWelsSvcRc->iSkipFrameNum = 0;
pWelsSvcRc->iGomSize = (pWelsSvcRc->iNumberMbFrame + pWelsSvcRc->iNumberMbGom - 1) / pWelsSvcRc->iNumberMbGom;
RcInitLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign, 1 + pDLayerParam->iHighestTemporalId);
bMultiSliceMode = ((SM_RASTER_SLICE == pDLayerParam->sMso.uiSliceMode) ||
(SM_ROWMB_SLICE == pDLayerParam->sMso.uiSliceMode) ||
(SM_DYN_SLICE == pDLayerParam->sMso.uiSliceMode));
if (bMultiSliceMode)
pWelsSvcRc->iNumberMbGom = pWelsSvcRc->iNumberMbFrame;
}
}
void RcInitTlWeight (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
const int32_t kiDecompositionStages = pDLayerParam->iDecompositionStages;
const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId;
//Index 0:Virtual GOP size, Index 1:Frame rate
double WeightArray[4][4] = { {1.0, 0, 0, 0}, {0.6, 0.4, 0, 0}, {0.4, 0.3, 0.15, 0}, {0.25, 0.15, 0.125, 0.0875}};
const int32_t kiGopSize = (1 << kiDecompositionStages);
int32_t i, k, n;
n = 0;
while (n <= kiHighestTid) {
pTOverRc[n].dTlayerWeight = WeightArray[kiDecompositionStages][n];
++ n;
}
//Calculate the frame index for the current frame and its reference frame
for (n = 0; n < VGOP_SIZE; n += kiGopSize) {
pWelsSvcRc->iTlOfFrames[n] = 0;
for (i = 1; i <= kiDecompositionStages; i++) {
for (k = 1 << (kiDecompositionStages - i); k < kiGopSize; k += (kiGopSize >> (i - 1))) {
pWelsSvcRc->iTlOfFrames[k + n] = i;
}
}
}
pWelsSvcRc->iPreviousGopSize = kiGopSize;
pWelsSvcRc->iGopNumberInVGop = VGOP_SIZE / kiGopSize;
}
void RcUpdateBitrateFps (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
const int32_t kiGopSize = (1 << pDLayerParam->iDecompositionStages);
const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId;
double input_dBitsPerFrame = pDLayerParam->iSpatialBitrate / pDLayerParam->fInputFrameRate;
const int32_t kiGopBits = (int32_t) (input_dBitsPerFrame * kiGopSize);
int32_t i;
pWelsSvcRc->iBitRate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->fFrameRate = pDLayerParam->fInputFrameRate;
double dTargetVaryRange = FRAME_iTargetBits_VARY_RANGE * (1.0 - pWelsSvcRc->dRcVaryRatio);
double dMinBitsRatio = 1.0 - dTargetVaryRange;
double dMaxBitsRatio = 1.0 + FRAME_iTargetBits_VARY_RANGE;//dTargetVaryRange;
for (i = 0; i <= kiHighestTid; i++) {
const double kdConstraitBits = kiGopBits * pTOverRc[i].dTlayerWeight;
pTOverRc[i].iMinBitsTl = (int32_t) (kdConstraitBits * dMinBitsRatio);
pTOverRc[i].iMaxBitsTl = (int32_t) (kdConstraitBits * dMaxBitsRatio);
}
//When bitrate is changed, pBuffer size should be updated
pWelsSvcRc->iBufferSizeSkip = (int32_t) (pWelsSvcRc->iBitRate * pWelsSvcRc->dSkipBufferRatio);
pWelsSvcRc->iBufferSizePadding = (int32_t) (pWelsSvcRc->iBitRate * PADDING_BUFFER_RATIO);
//change remaining bits
if (pWelsSvcRc->dBitsPerFrame > 0.1)
pWelsSvcRc->iRemainingBits = (int32_t) (pWelsSvcRc->iRemainingBits * input_dBitsPerFrame / pWelsSvcRc->dBitsPerFrame);
pWelsSvcRc->dBitsPerFrame = input_dBitsPerFrame;
}
void RcInitVGop (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId;
pWelsSvcRc->iRemainingBits = (int32_t) (VGOP_SIZE * pWelsSvcRc->dBitsPerFrame);
pWelsSvcRc->dRemainingWeights = pWelsSvcRc->iGopNumberInVGop;
pWelsSvcRc->iFrameCodedInVGop = 0;
pWelsSvcRc->iGopIndexInVGop = 0;
for (int32_t i = 0; i <= kiHighestTid; ++ i)
pTOverRc[i].iGopBitsDq = 0;
pWelsSvcRc->iSkipFrameInVGop = 0;
}
void RcInitRefreshParameter (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid];
const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId;
int32_t i;
//I frame R-Q Model
pWelsSvcRc->iIntraComplexity = 0;
pWelsSvcRc->iIntraMbCount = 0;
//P frame R-Q Model
for (i = 0; i <= kiHighestTid; i++) {
pTOverRc[i].iPFrameNum = 0;
pTOverRc[i].dLinearCmplx = 0.0;
pTOverRc[i].iFrameCmplxMean = 0;
}
pWelsSvcRc->iBufferFullnessSkip = 0;
pWelsSvcRc->iBufferFullnessPadding = 0;
pWelsSvcRc->iGopIndexInVGop = 0;
pWelsSvcRc->iRemainingBits = 0;
pWelsSvcRc->dBitsPerFrame = 0.0;
//Backup the initial bitrate and fps
pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->dPreviousFps = pDLayerParam->fInputFrameRate;
memset (pWelsSvcRc->pCurrentFrameGomSad, 0, pWelsSvcRc->iGomSize * sizeof (int32_t));
RcInitTlWeight (pEncCtx);
RcUpdateBitrateFps (pEncCtx);
RcInitVGop (pEncCtx);
}
bool_t RcJudgeBitrateFpsUpdate (sWelsEncCtx* pEncCtx) {
int32_t iCurDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[iCurDid];
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[iCurDid];
if ((pWelsSvcRc->iPreviousBitrate != pDLayerParam->iSpatialBitrate) ||
(pWelsSvcRc->dPreviousFps - pDLayerParam->fInputFrameRate) > EPSN ||
(pWelsSvcRc->dPreviousFps - pDLayerParam->fInputFrameRate) < -EPSN) {
pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate;
pWelsSvcRc->dPreviousFps = pDLayerParam->fInputFrameRate;
return true;
} else
return false;
}
#if GOM_TRACE_FLAG
void RcTraceVGopBitrate (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
if (pWelsSvcRc->iFrameCodedInVGop) {
const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId;
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
int32_t iVGopBitrate;
int32_t iTotalBits = pWelsSvcRc->iPaddingBitrateStat;
int32_t iTid = 0;
while (iTid <= kiHighestTid) {
iTotalBits += pTOverRc[iTid].iGopBitsDq;
++ iTid;
}
int32_t iFrameInVGop = pWelsSvcRc->iFrameCodedInVGop + pWelsSvcRc->iSkipFrameInVGop;
if (0 != iFrameInVGop)
iVGopBitrate = (int32_t) (iTotalBits / iFrameInVGop * pWelsSvcRc->fFrameRate);
#ifdef _TEST_TEMP_Rc_
fprintf (fp_vgop, "%d\n", (int32_t) ((double)iTotalBits / iFrameInVGop));
#endif
WelsLog (pEncCtx, WELS_LOG_INFO, "[Rc] VGOPbitrate%d: %d \n", kiDid, iVGopBitrate);
if (iTotalBits > 0) {
iTid = 0;
while (iTid <= kiHighestTid) {
WelsLog (pEncCtx, WELS_LOG_INFO, "T%d=%8.3f \n", iTid, (double) (pTOverRc[iTid].iGopBitsDq / iTotalBits));
++ iTid;
}
}
}
}
#endif
void RcUpdateTemporalZero (sWelsEncCtx* pEncCtx) {
const int32_t kiDid = pEncCtx->uiDependencyId;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid];
const int32_t kiGopSize = (1 << pDLayerParam->iDecompositionStages);
if (pWelsSvcRc->iPreviousGopSize != kiGopSize) {
#if GOM_TRACE_FLAG
RcTraceVGopBitrate (pEncCtx);
#endif
RcInitTlWeight (pEncCtx);
RcInitVGop (pEncCtx);
} else if (pWelsSvcRc->iGopIndexInVGop == pWelsSvcRc->iGopNumberInVGop || pEncCtx->eSliceType == I_SLICE) {
#if GOM_TRACE_FLAG
RcTraceVGopBitrate (pEncCtx);
#endif
RcInitVGop (pEncCtx);
}
pWelsSvcRc->iGopIndexInVGop++;
}
void RcInitIdrQp (sWelsEncCtx* pEncCtx) {
double dBpp = 0;
int32_t i;
//64k@6fps for 90p: bpp 0.74 QP:24
//192k@12fps for 180p: bpp 0.28 QP:26
//512k@24fps for 360p: bpp 0.09 QP:30
//1500k@30fps for 720p: bpp 0.05 QP:32
double dBppArray[4][3] = {{0.5, 0.75, 1.0}, {0.2, 0.3, 0.4}, {0.05, 0.09, 0.13}, {0.03, 0.06, 0.1}};
int32_t dInitialQPArray[4][4] = {{28, 26, 24, 22}, {30, 28, 26, 24}, {32, 30, 28, 26}, {34, 32, 30, 28}};
int32_t iBppIndex = 0;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
if (pDLayerParam->fOutputFrameRate > EPSN && pDLayerParam->iFrameWidth && pDLayerParam->iFrameHeight)
dBpp = (double) (pDLayerParam->iSpatialBitrate) / (double) (pDLayerParam->fOutputFrameRate * pDLayerParam->iFrameWidth *
pDLayerParam->iFrameHeight);
else
dBpp = 0.1;
//Area*2
if (pDLayerParam->iFrameWidth * pDLayerParam->iFrameHeight <= 28800) // 90p video:160*90
iBppIndex = 0;
else if (pDLayerParam->iFrameWidth * pDLayerParam->iFrameHeight <= 115200) // 180p video:320*180
iBppIndex = 1;
else if (pDLayerParam->iFrameWidth * pDLayerParam->iFrameHeight <= 460800) // 360p video:640*360
iBppIndex = 2;
else
iBppIndex = 3;
//Search
for (i = 0; i < 3; i++) {
if (dBpp <= dBppArray[iBppIndex][i])
break;
}
pWelsSvcRc->iInitialQp = dInitialQPArray[iBppIndex][i];
pWelsSvcRc->iInitialQp = (int32_t)WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP);
pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp;
pWelsSvcRc->dQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp);
pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp;
}
void RcCalculateIdrQp (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
//obtain the idr qp using previous idr complexity
if (pWelsSvcRc->iNumberMbFrame != pWelsSvcRc->iIntraMbCount) {
pWelsSvcRc->iIntraComplexity = (int32_t) ((double)pWelsSvcRc->iIntraComplexity * pWelsSvcRc->iNumberMbFrame /
pWelsSvcRc->iIntraMbCount + 0.5);
}
pWelsSvcRc->iInitialQp = (int32_t)RcConvertQStep2Qp ((double)pWelsSvcRc->iIntraComplexity / pWelsSvcRc->iTargetBits);
pWelsSvcRc->iInitialQp = (int32_t)WELS_CLIP3 (pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP);
pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp;
pWelsSvcRc->dQStep = RcConvertQp2QStep (pEncCtx->iGlobalQp);
pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp;
}
void RcCalculatePictureQp (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
int32_t iTl = pEncCtx->uiTemporalId;
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[iTl];
int32_t iLumaQp = 0;
if (0 == pTOverRc->iPFrameNum) {
iLumaQp = pWelsSvcRc->iInitialQp;
} else {
double dCmplxRatio = (double)pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity / pTOverRc->iFrameCmplxMean;
dCmplxRatio = WELS_CLIP3 (dCmplxRatio, 1.0 - FRAME_CMPLX_RATIO_RANGE, 1.0 + FRAME_CMPLX_RATIO_RANGE);
pWelsSvcRc->dQStep = pTOverRc->dLinearCmplx * dCmplxRatio / pWelsSvcRc->iTargetBits;
iLumaQp = (int32_t) (RcConvertQStep2Qp (pWelsSvcRc->dQStep) + 0.5);
//limit QP
int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1;
if (iLastIdxCodecInVGop < 0)
iLastIdxCodecInVGop += VGOP_SIZE;
int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop];
int32_t iDeltaQpTemporal = iTl - iTlLast;
if (0 == iTlLast && iTl > 0)
iDeltaQpTemporal += 3;
else if (0 == iTl && iTlLast > 0)
iDeltaQpTemporal -= 3;
iLumaQp = WELS_CLIP3 (iLumaQp,
pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal,
pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal);
}
iLumaQp = WELS_CLIP3 (iLumaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE);
pWelsSvcRc->dQStep = RcConvertQp2QStep (iLumaQp);
pWelsSvcRc->iLastCalculatedQScale = iLumaQp;
#ifndef _NOT_USE_AQ_FOR_TEST_
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
iLumaQp = (int32_t)WELS_CLIP3 (iLumaQp - pEncCtx->pVaa->sAdaptiveQuantParam.dAverMotionTextureIndexToDeltaQp,
pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp);
}
#endif
pEncCtx->iGlobalQp = iLumaQp;
}
void RcInitSliceInformation (sWelsEncCtx* pEncCtx) {
SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
const int32_t kiSliceNum = pCurSliceCtx->iSliceNumInFrame;
const double kdBitsPerMb = (double)pWelsSvcRc->iTargetBits / pWelsSvcRc->iNumberMbFrame;
for (int32_t i = 0; i < kiSliceNum; i++) {
pSOverRc->iStartMbSlice =
pSOverRc->iEndMbSlice = pCurSliceCtx->pFirstMbInSlice[i];
pSOverRc->iEndMbSlice += (pCurSliceCtx->pCountMbNumInSlice[i] - 1);
pSOverRc->iTotalQpSlice = 0;
pSOverRc->iTotalMbSlice = 0;
pSOverRc->iTargetBitsSlice = (int32_t) (kdBitsPerMb * pCurSliceCtx->pCountMbNumInSlice[i]);
pSOverRc->iFrameBitsSlice = 0;
pSOverRc->iGomBitsSlice = 0;
++ pSOverRc;
}
}
void RcDecideTargetBits (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId];
//allocate bits
if (pEncCtx->eSliceType == I_SLICE) {
pWelsSvcRc->iTargetBits = (int32_t) (pWelsSvcRc->dBitsPerFrame * IDR_BITRATE_RATIO);
} else {
pWelsSvcRc->iTargetBits = (int32_t) (pWelsSvcRc->iRemainingBits * pTOverRc->dTlayerWeight /
pWelsSvcRc->dRemainingWeights);
pWelsSvcRc->iTargetBits = WELS_CLIP3 (pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl, pTOverRc->iMaxBitsTl);
}
pWelsSvcRc->dRemainingWeights -= pTOverRc->dTlayerWeight;
}
void RcInitGoomParameters (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
const int32_t kiSliceNum = pWelsSvcRc->iSliceNum;
const int32_t kiGlobalQp = pEncCtx->iGlobalQp;
pWelsSvcRc->iAverageFrameQp = 0;
for (int32_t i = 0; i < kiSliceNum; ++i) {
pSOverRc->iComplexityIndexSlice = 0;
pSOverRc->iCalculatedQpSlice = kiGlobalQp;
++ pSOverRc;
}
memset (pWelsSvcRc->pGomComplexity, 0, pWelsSvcRc->iGomSize * sizeof (double));
memset (pWelsSvcRc->pGomCost, 0, pWelsSvcRc->iGomSize * sizeof (int32_t));
}
void RcCalculateMbQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, const int32_t kiSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
int32_t iLumaQp = pSOverRc->iCalculatedQpSlice;
#ifndef _NOT_USE_AQ_FOR_TEST_
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp +
pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinQp, 51);
}
#endif
pCurMb->uiChromaQp = g_kuiChromaQpTable[iLumaQp];
pCurMb->uiLumaQp = iLumaQp;
}
SWelsSvcRc* RcJudgeBaseUsability (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = NULL, *pWelsSvcRc_Base = NULL;
SDLayerParam* pDlpBase = NULL, *pDLayerParam = NULL;
if (pEncCtx->uiDependencyId <= 0)
return NULL;
pDlpBase = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId - 1];
pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1];
if (pEncCtx->uiTemporalId <= pDlpBase->iDecompositionStages) {
pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId - 1];
pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
pDlpBase = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId - 1];
if ((pDLayerParam->iFrameWidth * pDLayerParam->iFrameHeight / pWelsSvcRc->iNumberMbGom) ==
(pDlpBase->iFrameWidth * pDlpBase->iFrameHeight / pWelsSvcRc_Base->iNumberMbGom))
return pWelsSvcRc_Base;
else
return NULL;
} else
return NULL;
}
void RcGomTargetBits (sWelsEncCtx* pEncCtx, const int32_t kiSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SWelsSvcRc* pWelsSvcRc_Base = NULL;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
double dAllocateBits = 0;
int32_t iSumSad = 0;
int32_t iLastGomIndex = 0;
int32_t iLeftBits = 0;
const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;
int32_t i;
iLastGomIndex = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom;
iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;
if (iLeftBits <= 0) {
pSOverRc->iGomTargetBits = 0;
return;
} else if (kiComplexityIndex >= iLastGomIndex) {
dAllocateBits = iLeftBits;
} else {
pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx);
pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc;
for (i = kiComplexityIndex; i <= iLastGomIndex; i++) {
iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i];
}
if (0 == iSumSad)
dAllocateBits = (double)iLeftBits / (iLastGomIndex - kiComplexityIndex);
else
dAllocateBits = (double)iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1] / iSumSad;
}
pSOverRc->iGomTargetBits = int32_t (dAllocateBits + 0.5);
}
void RcCalculateGomQp (sWelsEncCtx* pEncCtx, SMB* pCurMb, int32_t iSliceId) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId];
double dBitsRatio = 1.0;
int32_t iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;
int32_t iTargetLeftBits = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits;
if (iLeftBits <= 0) {
pSOverRc->iCalculatedQpSlice += 2;
} else {
//globe decision
dBitsRatio = iLeftBits / (iTargetLeftBits + 0.1);
if (dBitsRatio < 0.8409) //2^(-1.5/6)
pSOverRc->iCalculatedQpSlice += 2;
else if (dBitsRatio < 0.9439) //2^(-0.5/6)
pSOverRc->iCalculatedQpSlice += 1;
else if (dBitsRatio > 1.06) //2^(0.5/6)
pSOverRc->iCalculatedQpSlice -= 1;
else if (dBitsRatio > 1.19) //2^(1.5/6)
pSOverRc->iCalculatedQpSlice -= 2;
}
pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice,
pEncCtx->iGlobalQp - pWelsSvcRc->iQpRangeLowerInFrame, pEncCtx->iGlobalQp + pWelsSvcRc->iQpRangeUpperInFrame);
pSOverRc->iCalculatedQpSlice = WELS_CLIP3 (pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp);
pSOverRc->iGomBitsSlice = 0;
}
void RcVBufferCalculationSkip (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCTemporal* pTOverRc = pWelsSvcRc->pTemporalOverRc;
const int32_t kiOutputBits = (int32_t) (pWelsSvcRc->dBitsPerFrame + 0.5);
//condition 1: whole pBuffer fullness
pWelsSvcRc->iBufferFullnessSkip += (pWelsSvcRc->iFrameDqBits - kiOutputBits);
//condition 2: VGOP bits constraint
const int32_t kiVGopBits = (int32_t) (pWelsSvcRc->dBitsPerFrame * VGOP_SIZE);
int32_t iVGopBitsPred = 0;
for (int32_t i = pWelsSvcRc->iFrameCodedInVGop + 1; i < VGOP_SIZE; i++)
iVGopBitsPred += pTOverRc[pWelsSvcRc->iTlOfFrames[i]].iMinBitsTl;
iVGopBitsPred -= pWelsSvcRc->iRemainingBits;
double dIncPercent = iVGopBitsPred * 100.0 / kiVGopBits - (double)VGOP_BITS_PERCENTAGE_DIFF;
if ((pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip
&& pWelsSvcRc->iAverageFrameQp > pWelsSvcRc->iSkipQpValue)
|| (dIncPercent > pWelsSvcRc->iRcVaryPercentage)) {
pEncCtx->iSkipFrameFlag = 1;
pWelsSvcRc->iBufferFullnessSkip = pWelsSvcRc->iBufferFullnessSkip - kiOutputBits;
#ifdef FRAME_INFO_OUTPUT
fprintf (stderr, "skip one frame\n");
#endif
}
if (pWelsSvcRc->iBufferFullnessSkip < 0)
pWelsSvcRc->iBufferFullnessSkip = 0;
if (pEncCtx->iSkipFrameFlag == 1) {
pWelsSvcRc->iRemainingBits += (int32_t) (pWelsSvcRc->dBitsPerFrame + 0.5);
pWelsSvcRc->iSkipFrameNum++;
pWelsSvcRc->iSkipFrameInVGop++;
}
}
void RcVBufferCalculationPadding (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiOutputBits = (int32_t) (pWelsSvcRc->dBitsPerFrame + 0.5);
const int32_t kiBufferThreshold = (int32_t) (PADDING_THRESHOLD * (-pWelsSvcRc->iBufferSizePadding));
pWelsSvcRc->iBufferFullnessPadding += (pWelsSvcRc->iFrameDqBits - kiOutputBits);
if (pWelsSvcRc->iBufferFullnessPadding < kiBufferThreshold) {
pWelsSvcRc->iPaddingSize = -pWelsSvcRc->iBufferFullnessPadding;
pWelsSvcRc->iPaddingSize >>= 3; // /8
pWelsSvcRc->iBufferFullnessPadding = 0;
} else
pWelsSvcRc->iPaddingSize = 0;
}
void RcTraceFrameBits (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
WelsLog (pEncCtx, WELS_LOG_INFO,
"[Rc] encoding_qp%d, qp = %3d, index = %8d, iTid = %1d, used = %8d, target = %8d, remaingbits = %8d\n",
pEncCtx->uiDependencyId, pWelsSvcRc->iAverageFrameQp, pEncCtx->uiFrameIdxRc, pEncCtx->uiTemporalId,
pWelsSvcRc->iFrameDqBits,
pWelsSvcRc->iTargetBits, pWelsSvcRc->iRemainingBits);
}
void RcUpdatePictureQpBits (sWelsEncCtx* pEncCtx, int32_t iCodedBits) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[0];
SSliceCtx* pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx;
int32_t iTotalQp = 0, iTotalMb = 0;
int32_t i;
if (pEncCtx->eSliceType == P_SLICE) {
for (i = 0; i < pCurSliceCtx->iSliceNumInFrame; i++) {
iTotalQp += pSOverRc->iTotalQpSlice;
iTotalMb += pSOverRc->iTotalMbSlice;
++ pSOverRc;
}
if (iTotalMb > 0)
pWelsSvcRc->iAverageFrameQp = (int32_t) (1.0 * iTotalQp / iTotalMb + 0.5);
else
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
} else {
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
}
pWelsSvcRc->iFrameDqBits = iCodedBits;
pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId].iGopBitsDq += pWelsSvcRc->iFrameDqBits;
}
void RcUpdateIntraComplexity (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
double iAlpha = 1.0 / (1 + pWelsSvcRc->iIdrNum);
if (iAlpha < 0.25) iAlpha = 0.25;
double dIntraCmplx = pWelsSvcRc->dQStep * pWelsSvcRc->iFrameDqBits;
dIntraCmplx = (1.0 - iAlpha) * pWelsSvcRc->iIntraComplexity + iAlpha * dIntraCmplx;
pWelsSvcRc->iIntraComplexity = (int32_t) (dIntraCmplx + 0.5);
pWelsSvcRc->iIntraMbCount = pWelsSvcRc->iNumberMbFrame;
pWelsSvcRc->iIdrNum++;
if (pWelsSvcRc->iIdrNum > 255)
pWelsSvcRc->iIdrNum = 255;
}
void RcUpdateFrameComplexity (sWelsEncCtx* pEncCtx) {
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiTl = pEncCtx->uiTemporalId;
SRCTemporal* pTOverRc = &pWelsSvcRc->pTemporalOverRc[kiTl];
if (0 == pTOverRc->iPFrameNum) {
pTOverRc->dLinearCmplx = pWelsSvcRc->iFrameDqBits * pWelsSvcRc->dQStep;
} else {
pTOverRc->dLinearCmplx = LINEAR_MODEL_DECAY_FACTOR * pTOverRc->dLinearCmplx
+ (1.0 - LINEAR_MODEL_DECAY_FACTOR) * (pWelsSvcRc->iFrameDqBits * pWelsSvcRc->dQStep);
}
double iAlpha = 1.0 / (1 + pTOverRc->iPFrameNum);
if (iAlpha < SMOOTH_FACTOR_MIN_VALUE)
iAlpha = SMOOTH_FACTOR_MIN_VALUE;
pTOverRc->iFrameCmplxMean = (int32_t) ((1.0 - iAlpha) * pTOverRc->iFrameCmplxMean + iAlpha *
pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity + 0.5);
pTOverRc->iPFrameNum++;
if (pTOverRc->iPFrameNum > 255)
pTOverRc->iPFrameNum = 255;
}
int32_t RcCalculateCascadingQp (struct TagWelsEncCtx* pEncCtx, int32_t iQp) {
int32_t iTemporalQp = 0;
if (pEncCtx->pSvcParam->iDecompStages) {
if (pEncCtx->uiTemporalId == 0)
iTemporalQp = iQp - 3 - (pEncCtx->pSvcParam->iDecompStages - 1);
else
iTemporalQp = iQp - (pEncCtx->pSvcParam->iDecompStages - pEncCtx->uiTemporalId);
iTemporalQp = WELS_CLIP3 (iTemporalQp, 1, 51);
} else
iTemporalQp = iQp;
return iTemporalQp;
}
void WelsRcPictureInitGom (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
if (pEncCtx->eSliceType == I_SLICE) {
if (0 == pWelsSvcRc->iIdrNum) { //iIdrNum == 0 means encoder has been initialed
RcInitRefreshParameter (pEncCtx);
}
}
if (RcJudgeBitrateFpsUpdate (pEncCtx)) {
RcUpdateBitrateFps (pEncCtx);
}
if (pEncCtx->uiTemporalId == 0) {
RcUpdateTemporalZero (pEncCtx);
}
RcDecideTargetBits (pEncCtx);
//decide globe_qp
if (pEncCtx->eSliceType == I_SLICE) {
if (0 == pWelsSvcRc->iIdrNum)
RcInitIdrQp (pEncCtx);
else {
RcCalculateIdrQp (pEncCtx);
}
} else {
RcCalculatePictureQp (pEncCtx);
}
RcInitSliceInformation (pEncCtx);
RcInitGoomParameters (pEncCtx);
}
void WelsRcPictureInfoUpdateGom (void* pCtx, int32_t layer_size) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
int32_t iCodedBits = (layer_size << 3);
RcUpdatePictureQpBits (pEncCtx, iCodedBits);
if (pEncCtx->eSliceType == P_SLICE) {
RcUpdateFrameComplexity (pEncCtx);
} else {
RcUpdateIntraComplexity (pEncCtx);
}
pWelsSvcRc->iRemainingBits -= pWelsSvcRc->iFrameDqBits;
#if GOM_TRACE_FLAG
RcTraceFrameBits (pEncCtx);
#endif
if (pEncCtx->pSvcParam->bEnableFrameSkip &&
pEncCtx->uiDependencyId == pEncCtx->pSvcParam->iNumDependencyLayer - 1) {
RcVBufferCalculationSkip (pEncCtx);
}
if (pEncCtx->pSvcParam->iPaddingFlag)
RcVBufferCalculationPadding (pEncCtx);
pWelsSvcRc->iFrameCodedInVGop++;
#ifdef _TEST_TEMP_Rc_
fprintf (fp_test_rc, "%d\n", pWelsSvcRc->iFrameDqBits);
if (pEncCtx->iSkipFrameFlag)
fprintf (fp_test_rc, "0\n");
fflush (fp_test_rc);
#endif
}
void WelsRcMbInitGom (void* pCtx, SMB* pCurMb, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
const int32_t kiSliceId = pSlice->uiSliceIdx;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId];
SBitStringAux* bs = pSlice->pSliceBsa;
pSOverRc->iBsPosSlice = BsGetBitsPos (bs);
if (pEncCtx->eSliceType == I_SLICE)
return;
//calculate gom qp and target bits at the beginning of gom
if (0 == (pCurMb->iMbXY % pWelsSvcRc->iNumberMbGom)) {
if (pCurMb->iMbXY != pSOverRc->iStartMbSlice) {
pSOverRc->iComplexityIndexSlice++;
RcCalculateGomQp (pEncCtx, pCurMb, kiSliceId);
}
RcGomTargetBits (pEncCtx, kiSliceId);
}
RcCalculateMbQp (pEncCtx, pCurMb, kiSliceId);
}
void WelsRcMbInfoUpdateGom (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SBitStringAux* bs = pSlice->pSliceBsa;
int32_t iSliceId = pSlice->uiSliceIdx;
SRCSlicing* pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId];
const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice;
int32_t cur_mb_bits = BsGetBitsPos (bs) - pSOverRc->iBsPosSlice;
pSOverRc->iFrameBitsSlice += cur_mb_bits;
pSOverRc->iGomBitsSlice += cur_mb_bits;
pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma;
if (cur_mb_bits > 0) {
pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp;
pSOverRc->iTotalMbSlice++;
}
}
void WelsRcPictureInitDisable (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
SDLayerParam* pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
const int32_t kiQp = pDLayerParam->iDLayerQp;
pEncCtx->iGlobalQp = RcCalculateCascadingQp (pEncCtx, kiQp);
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) {
pEncCtx->iGlobalQp = (int32_t)WELS_CLIP3 (pEncCtx->iGlobalQp -
pEncCtx->pVaa->sAdaptiveQuantParam.dAverMotionTextureIndexToDeltaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE);
}
pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp;
}
void WelsRcPictureInfoUpdateDisable (void* pCtx, int32_t layer_size) {
}
void WelsRcMbInitDisable (void* pCtx, SMB* pCurMb, SSlice* pSlice) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
int32_t iLumaQp = pEncCtx->iGlobalQp;
if (pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE)) {
iLumaQp = (int8_t)WELS_CLIP3 (iLumaQp +
pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], GOM_MIN_QP_MODE, 51);
}
pCurMb->uiChromaQp = g_kuiChromaQpTable[iLumaQp];
pCurMb->uiLumaQp = iLumaQp;
}
void WelsRcMbInfoUpdateDisable (void* pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice* pSlice) {
}
void WelsRcInitModule (void* pCtx, int32_t iModule) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsRcFunc* pRcf = &pEncCtx->pFuncList->pfRc;
switch (iModule) {
case WELS_RC_DISABLE:
pRcf->pfWelsRcPictureInit = WelsRcPictureInitDisable;
pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateDisable;
pRcf->pfWelsRcMbInit = WelsRcMbInitDisable;
pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateDisable;
break;
case WELS_RC_GOM:
default:
pRcf->pfWelsRcPictureInit = WelsRcPictureInitGom;
pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateGom;
pRcf->pfWelsRcMbInit = WelsRcMbInitGom;
pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateGom;
break;
}
RcInitSequenceParameter (pEncCtx);
}
void WelsRcFreeMemory (void* pCtx) {
sWelsEncCtx* pEncCtx = (sWelsEncCtx*)pCtx;
SWelsSvcRc* pWelsSvcRc = NULL;
int32_t i = 0;
#ifdef _TEST_TEMP_Rc_
if (fp_test_rc)
fclose (fp_test_rc);
fp_test_rc = NULL;
if (fp_vgop)
fclose (fp_vgop);
fp_vgop = NULL;
#endif
for (i = 0; i < pEncCtx->pSvcParam->iNumDependencyLayer; i++) {
pWelsSvcRc = &pEncCtx->pWelsSvcRc[i];
RcFreeLayerMemory (pWelsSvcRc, pEncCtx->pMemAlign);
}
}
}//end of namespace