338 lines
8.9 KiB
C
338 lines
8.9 KiB
C
/* slarrj.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int slarrj_(integer *n, real *d__, real *e2, integer *ifirst,
|
|
integer *ilast, real *rtol, integer *offset, real *w, real *werr,
|
|
real *work, integer *iwork, real *pivmin, real *spdiam, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
real r__1, r__2;
|
|
|
|
/* Builtin functions */
|
|
double log(doublereal);
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, p;
|
|
real s;
|
|
integer i1, i2, ii;
|
|
real fac, mid;
|
|
integer cnt;
|
|
real tmp, left;
|
|
integer iter, nint, prev, next, savi1;
|
|
real right, width, dplus;
|
|
integer olnint, maxitr;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* Given the initial eigenvalue approximations of T, SLARRJ */
|
|
/* does bisection to refine the eigenvalues of T, */
|
|
/* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
|
|
/* guesses for these eigenvalues are input in W, the corresponding estimate */
|
|
/* of the error in these guesses in WERR. During bisection, intervals */
|
|
/* [left, right] are maintained by storing their mid-points and */
|
|
/* semi-widths in the arrays W and WERR respectively. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix. */
|
|
|
|
/* D (input) REAL array, dimension (N) */
|
|
/* The N diagonal elements of T. */
|
|
|
|
/* E2 (input) REAL array, dimension (N-1) */
|
|
/* The Squares of the (N-1) subdiagonal elements of T. */
|
|
|
|
/* IFIRST (input) INTEGER */
|
|
/* The index of the first eigenvalue to be computed. */
|
|
|
|
/* ILAST (input) INTEGER */
|
|
/* The index of the last eigenvalue to be computed. */
|
|
|
|
/* RTOL (input) REAL */
|
|
/* Tolerance for the convergence of the bisection intervals. */
|
|
/* An interval [LEFT,RIGHT] has converged if */
|
|
/* RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). */
|
|
|
|
/* OFFSET (input) INTEGER */
|
|
/* Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET */
|
|
/* through ILAST-OFFSET elements of these arrays are to be used. */
|
|
|
|
/* W (input/output) REAL array, dimension (N) */
|
|
/* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
|
|
/* estimates of the eigenvalues of L D L^T indexed IFIRST through */
|
|
/* ILAST. */
|
|
/* On output, these estimates are refined. */
|
|
|
|
/* WERR (input/output) REAL array, dimension (N) */
|
|
/* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
|
|
/* the errors in the estimates of the corresponding elements in W. */
|
|
/* On output, these errors are refined. */
|
|
|
|
/* WORK (workspace) REAL array, dimension (2*N) */
|
|
/* Workspace. */
|
|
|
|
/* IWORK (workspace) INTEGER array, dimension (2*N) */
|
|
/* Workspace. */
|
|
|
|
/* PIVMIN (input) DOUBLE PRECISION */
|
|
/* The minimum pivot in the Sturm sequence for T. */
|
|
|
|
/* SPDIAM (input) DOUBLE PRECISION */
|
|
/* The spectral diameter of T. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* Error flag. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Beresford Parlett, University of California, Berkeley, USA */
|
|
/* Jim Demmel, University of California, Berkeley, USA */
|
|
/* Inderjit Dhillon, University of Texas, Austin, USA */
|
|
/* Osni Marques, LBNL/NERSC, USA */
|
|
/* Christof Voemel, University of California, Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--iwork;
|
|
--work;
|
|
--werr;
|
|
--w;
|
|
--e2;
|
|
--d__;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) +
|
|
2;
|
|
|
|
/* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
|
|
/* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
|
|
/* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
|
|
/* for an unconverged interval is set to the index of the next unconverged */
|
|
/* interval, and is -1 or 0 for a converged interval. Thus a linked */
|
|
/* list of unconverged intervals is set up. */
|
|
|
|
i1 = *ifirst;
|
|
i2 = *ilast;
|
|
/* The number of unconverged intervals */
|
|
nint = 0;
|
|
/* The last unconverged interval found */
|
|
prev = 0;
|
|
i__1 = i2;
|
|
for (i__ = i1; i__ <= i__1; ++i__) {
|
|
k = i__ << 1;
|
|
ii = i__ - *offset;
|
|
left = w[ii] - werr[ii];
|
|
mid = w[ii];
|
|
right = w[ii] + werr[ii];
|
|
width = right - mid;
|
|
/* Computing MAX */
|
|
r__1 = dabs(left), r__2 = dabs(right);
|
|
tmp = dmax(r__1,r__2);
|
|
/* The following test prevents the test of converged intervals */
|
|
if (width < *rtol * tmp) {
|
|
/* This interval has already converged and does not need refinement. */
|
|
/* (Note that the gaps might change through refining the */
|
|
/* eigenvalues, however, they can only get bigger.) */
|
|
/* Remove it from the list. */
|
|
iwork[k - 1] = -1;
|
|
/* Make sure that I1 always points to the first unconverged interval */
|
|
if (i__ == i1 && i__ < i2) {
|
|
i1 = i__ + 1;
|
|
}
|
|
if (prev >= i1 && i__ <= i2) {
|
|
iwork[(prev << 1) - 1] = i__ + 1;
|
|
}
|
|
} else {
|
|
/* unconverged interval found */
|
|
prev = i__;
|
|
/* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
|
|
|
|
/* Do while( CNT(LEFT).GT.I-1 ) */
|
|
|
|
fac = 1.f;
|
|
L20:
|
|
cnt = 0;
|
|
s = left;
|
|
dplus = d__[1] - s;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
i__2 = *n;
|
|
for (j = 2; j <= i__2; ++j) {
|
|
dplus = d__[j] - s - e2[j - 1] / dplus;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
/* L30: */
|
|
}
|
|
if (cnt > i__ - 1) {
|
|
left -= werr[ii] * fac;
|
|
fac *= 2.f;
|
|
goto L20;
|
|
}
|
|
|
|
/* Do while( CNT(RIGHT).LT.I ) */
|
|
|
|
fac = 1.f;
|
|
L50:
|
|
cnt = 0;
|
|
s = right;
|
|
dplus = d__[1] - s;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
i__2 = *n;
|
|
for (j = 2; j <= i__2; ++j) {
|
|
dplus = d__[j] - s - e2[j - 1] / dplus;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
/* L60: */
|
|
}
|
|
if (cnt < i__) {
|
|
right += werr[ii] * fac;
|
|
fac *= 2.f;
|
|
goto L50;
|
|
}
|
|
++nint;
|
|
iwork[k - 1] = i__ + 1;
|
|
iwork[k] = cnt;
|
|
}
|
|
work[k - 1] = left;
|
|
work[k] = right;
|
|
/* L75: */
|
|
}
|
|
savi1 = i1;
|
|
|
|
/* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
|
|
/* and while (ITER.LT.MAXITR) */
|
|
|
|
iter = 0;
|
|
L80:
|
|
prev = i1 - 1;
|
|
i__ = i1;
|
|
olnint = nint;
|
|
i__1 = olnint;
|
|
for (p = 1; p <= i__1; ++p) {
|
|
k = i__ << 1;
|
|
ii = i__ - *offset;
|
|
next = iwork[k - 1];
|
|
left = work[k - 1];
|
|
right = work[k];
|
|
mid = (left + right) * .5f;
|
|
/* semiwidth of interval */
|
|
width = right - mid;
|
|
/* Computing MAX */
|
|
r__1 = dabs(left), r__2 = dabs(right);
|
|
tmp = dmax(r__1,r__2);
|
|
if (width < *rtol * tmp || iter == maxitr) {
|
|
/* reduce number of unconverged intervals */
|
|
--nint;
|
|
/* Mark interval as converged. */
|
|
iwork[k - 1] = 0;
|
|
if (i1 == i__) {
|
|
i1 = next;
|
|
} else {
|
|
/* Prev holds the last unconverged interval previously examined */
|
|
if (prev >= i1) {
|
|
iwork[(prev << 1) - 1] = next;
|
|
}
|
|
}
|
|
i__ = next;
|
|
goto L100;
|
|
}
|
|
prev = i__;
|
|
|
|
/* Perform one bisection step */
|
|
|
|
cnt = 0;
|
|
s = mid;
|
|
dplus = d__[1] - s;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
i__2 = *n;
|
|
for (j = 2; j <= i__2; ++j) {
|
|
dplus = d__[j] - s - e2[j - 1] / dplus;
|
|
if (dplus < 0.f) {
|
|
++cnt;
|
|
}
|
|
/* L90: */
|
|
}
|
|
if (cnt <= i__ - 1) {
|
|
work[k - 1] = mid;
|
|
} else {
|
|
work[k] = mid;
|
|
}
|
|
i__ = next;
|
|
L100:
|
|
;
|
|
}
|
|
++iter;
|
|
/* do another loop if there are still unconverged intervals */
|
|
/* However, in the last iteration, all intervals are accepted */
|
|
/* since this is the best we can do. */
|
|
if (nint > 0 && iter <= maxitr) {
|
|
goto L80;
|
|
}
|
|
|
|
|
|
/* At this point, all the intervals have converged */
|
|
i__1 = *ilast;
|
|
for (i__ = savi1; i__ <= i__1; ++i__) {
|
|
k = i__ << 1;
|
|
ii = i__ - *offset;
|
|
/* All intervals marked by '0' have been refined. */
|
|
if (iwork[k - 1] == 0) {
|
|
w[ii] = (work[k - 1] + work[k]) * .5f;
|
|
werr[ii] = work[k] - w[ii];
|
|
}
|
|
/* L110: */
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SLARRJ */
|
|
|
|
} /* slarrj_ */
|