1048 lines
27 KiB
C
1048 lines
27 KiB
C
#include "clapack.h"
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
|
|
/* *********************************************************************** */
|
|
|
|
doublereal dlamc3_(doublereal *a, doublereal *b)
|
|
{
|
|
/* System generated locals */
|
|
doublereal ret_val;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMC3 is intended to force A and B to be stored prior to doing */
|
|
/* the addition of A and B , for use in situations where optimizers */
|
|
/* might hold one of these in a register. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* A (input) DOUBLE PRECISION */
|
|
/* B (input) DOUBLE PRECISION */
|
|
/* The values A and B. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
ret_val = *a + *b;
|
|
|
|
return ret_val;
|
|
|
|
/* End of DLAMC3 */
|
|
|
|
} /* dlamc3_ */
|
|
|
|
|
|
#if 1
|
|
|
|
/* simpler version of dlamch for the case of IEEE754-compliant FPU module by Piotr Luszczek S.
|
|
taken from http://www.mail-archive.com/numpy-discussion@lists.sourceforge.net/msg02448.html */
|
|
|
|
#ifndef DBL_DIGITS
|
|
#define DBL_DIGITS 53
|
|
#endif
|
|
|
|
doublereal
|
|
dlamch_(char *cmach) {
|
|
char ch = cmach[0];
|
|
double eps = DBL_EPSILON, sfmin, small;
|
|
|
|
if ('B' == ch || 'b' == ch) {
|
|
return FLT_RADIX;
|
|
} else if ('E' == ch || 'e' == ch) {
|
|
return eps;
|
|
} else if ('L' == ch || 'l' == ch) {
|
|
return DBL_MAX_EXP;
|
|
} else if ('M' == ch || 'm' == ch) {
|
|
return DBL_MIN_EXP;
|
|
} else if ('N' == ch || 'n' == ch) {
|
|
return DBL_DIGITS;
|
|
} else if ('O' == ch || 'o' == ch) {
|
|
return DBL_MAX;
|
|
} else if ('P' == ch || 'p' == ch) {
|
|
return eps * FLT_RADIX;
|
|
} else if ('R' == ch || 'r' == ch) {
|
|
return FLT_ROUNDS < 2;
|
|
} else if ('S' == ch || 's' == ch) {
|
|
/* Use SMALL plus a bit, to avoid the possibility of rounding causing overflow
|
|
when computing 1/sfmin. */
|
|
sfmin = DBL_MIN;
|
|
small = 2. / DBL_MAX;
|
|
if (small <= sfmin) small = sfmin * (1 + eps);
|
|
return small;
|
|
} else if ('U' == ch || 'u' == ch) {
|
|
return DBL_MIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static doublereal c_b32 = 0.;
|
|
|
|
doublereal dlamch_(char *cmach)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal ret_val;
|
|
|
|
/* Builtin functions */
|
|
double pow_di(doublereal *, integer *);
|
|
|
|
/* Local variables */
|
|
static doublereal t;
|
|
integer it;
|
|
static doublereal rnd, eps, base;
|
|
integer beta;
|
|
static doublereal emin, prec, emax;
|
|
integer imin, imax;
|
|
logical lrnd;
|
|
static doublereal rmin, rmax;
|
|
doublereal rmach;
|
|
extern logical lsame_(char *, char *);
|
|
doublereal small;
|
|
static doublereal sfmin;
|
|
extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMCH determines double precision machine parameters. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* CMACH (input) CHARACTER*1 */
|
|
/* Specifies the value to be returned by DLAMCH: */
|
|
/* = 'E' or 'e', DLAMCH := eps */
|
|
/* = 'S' or 's , DLAMCH := sfmin */
|
|
/* = 'B' or 'b', DLAMCH := base */
|
|
/* = 'P' or 'p', DLAMCH := eps*base */
|
|
/* = 'N' or 'n', DLAMCH := t */
|
|
/* = 'R' or 'r', DLAMCH := rnd */
|
|
/* = 'M' or 'm', DLAMCH := emin */
|
|
/* = 'U' or 'u', DLAMCH := rmin */
|
|
/* = 'L' or 'l', DLAMCH := emax */
|
|
/* = 'O' or 'o', DLAMCH := rmax */
|
|
|
|
/* where */
|
|
|
|
/* eps = relative machine precision */
|
|
/* sfmin = safe minimum, such that 1/sfmin does not overflow */
|
|
/* base = base of the machine */
|
|
/* prec = eps*base */
|
|
/* t = number of (base) digits in the mantissa */
|
|
/* rnd = 1.0 when rounding occurs in addition, 0.0 otherwise */
|
|
/* emin = minimum exponent before (gradual) underflow */
|
|
/* rmin = underflow threshold - base**(emin-1) */
|
|
/* emax = largest exponent before overflow */
|
|
/* rmax = overflow threshold - (base**emax)*(1-eps) */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Save statement .. */
|
|
/* .. */
|
|
/* .. Data statements .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
if (first) {
|
|
dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
|
|
base = (doublereal) beta;
|
|
t = (doublereal) it;
|
|
if (lrnd) {
|
|
rnd = 1.;
|
|
i__1 = 1 - it;
|
|
eps = pow_di(&base, &i__1) / 2;
|
|
} else {
|
|
rnd = 0.;
|
|
i__1 = 1 - it;
|
|
eps = pow_di(&base, &i__1);
|
|
}
|
|
prec = eps * base;
|
|
emin = (doublereal) imin;
|
|
emax = (doublereal) imax;
|
|
sfmin = rmin;
|
|
small = 1. / rmax;
|
|
if (small >= sfmin) {
|
|
|
|
/* Use SMALL plus a bit, to avoid the possibility of rounding */
|
|
/* causing overflow when computing 1/sfmin. */
|
|
|
|
sfmin = small * (eps + 1.);
|
|
}
|
|
}
|
|
|
|
if (lsame_(cmach, "E")) {
|
|
rmach = eps;
|
|
} else if (lsame_(cmach, "S")) {
|
|
rmach = sfmin;
|
|
} else if (lsame_(cmach, "B")) {
|
|
rmach = base;
|
|
} else if (lsame_(cmach, "P")) {
|
|
rmach = prec;
|
|
} else if (lsame_(cmach, "N")) {
|
|
rmach = t;
|
|
} else if (lsame_(cmach, "R")) {
|
|
rmach = rnd;
|
|
} else if (lsame_(cmach, "M")) {
|
|
rmach = emin;
|
|
} else if (lsame_(cmach, "U")) {
|
|
rmach = rmin;
|
|
} else if (lsame_(cmach, "L")) {
|
|
rmach = emax;
|
|
} else if (lsame_(cmach, "O")) {
|
|
rmach = rmax;
|
|
}
|
|
|
|
ret_val = rmach;
|
|
first = FALSE_;
|
|
return ret_val;
|
|
|
|
/* End of DLAMCH */
|
|
|
|
} /* dlamch_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical
|
|
*ieee1)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
|
|
/* System generated locals */
|
|
doublereal d__1, d__2;
|
|
|
|
/* Local variables */
|
|
doublereal a, b, c__, f, t1, t2;
|
|
static integer lt;
|
|
doublereal one, qtr;
|
|
static logical lrnd;
|
|
static integer lbeta;
|
|
doublereal savec;
|
|
extern doublereal dlamc3_(doublereal *, doublereal *);
|
|
static logical lieee1;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMC1 determines the machine parameters given by BETA, T, RND, and */
|
|
/* IEEE1. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* BETA (output) INTEGER */
|
|
/* The base of the machine. */
|
|
|
|
/* T (output) INTEGER */
|
|
/* The number of ( BETA ) digits in the mantissa. */
|
|
|
|
/* RND (output) LOGICAL */
|
|
/* Specifies whether proper rounding ( RND = .TRUE. ) or */
|
|
/* chopping ( RND = .FALSE. ) occurs in addition. This may not */
|
|
/* be a reliable guide to the way in which the machine performs */
|
|
/* its arithmetic. */
|
|
|
|
/* IEEE1 (output) LOGICAL */
|
|
/* Specifies whether rounding appears to be done in the IEEE */
|
|
/* 'round to nearest' style. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* The routine is based on the routine ENVRON by Malcolm and */
|
|
/* incorporates suggestions by Gentleman and Marovich. See */
|
|
|
|
/* Malcolm M. A. (1972) Algorithms to reveal properties of */
|
|
/* floating-point arithmetic. Comms. of the ACM, 15, 949-951. */
|
|
|
|
/* Gentleman W. M. and Marovich S. B. (1974) More on algorithms */
|
|
/* that reveal properties of floating point arithmetic units. */
|
|
/* Comms. of the ACM, 17, 276-277. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Save statement .. */
|
|
/* .. */
|
|
/* .. Data statements .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
if (first) {
|
|
one = 1.;
|
|
|
|
/* LBETA, LIEEE1, LT and LRND are the local values of BETA, */
|
|
/* IEEE1, T and RND. */
|
|
|
|
/* Throughout this routine we use the function DLAMC3 to ensure */
|
|
/* that relevant values are stored and not held in registers, or */
|
|
/* are not affected by optimizers. */
|
|
|
|
/* Compute a = 2.0**m with the smallest positive integer m such */
|
|
/* that */
|
|
|
|
/* fl( a + 1.0 ) = a. */
|
|
|
|
a = 1.;
|
|
c__ = 1.;
|
|
|
|
/* + WHILE( C.EQ.ONE )LOOP */
|
|
L10:
|
|
if (c__ == one) {
|
|
a *= 2;
|
|
c__ = dlamc3_(&a, &one);
|
|
d__1 = -a;
|
|
c__ = dlamc3_(&c__, &d__1);
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
/* Now compute b = 2.0**m with the smallest positive integer m */
|
|
/* such that */
|
|
|
|
/* fl( a + b ) .gt. a. */
|
|
|
|
b = 1.;
|
|
c__ = dlamc3_(&a, &b);
|
|
|
|
/* + WHILE( C.EQ.A )LOOP */
|
|
L20:
|
|
if (c__ == a) {
|
|
b *= 2;
|
|
c__ = dlamc3_(&a, &b);
|
|
goto L20;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
/* Now compute the base. a and c are neighbouring floating point */
|
|
/* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so */
|
|
/* their difference is beta. Adding 0.25 to c is to ensure that it */
|
|
/* is truncated to beta and not ( beta - 1 ). */
|
|
|
|
qtr = one / 4;
|
|
savec = c__;
|
|
d__1 = -a;
|
|
c__ = dlamc3_(&c__, &d__1);
|
|
lbeta = (integer) (c__ + qtr);
|
|
|
|
/* Now determine whether rounding or chopping occurs, by adding a */
|
|
/* bit less than beta/2 and a bit more than beta/2 to a. */
|
|
|
|
b = (doublereal) lbeta;
|
|
d__1 = b / 2;
|
|
d__2 = -b / 100;
|
|
f = dlamc3_(&d__1, &d__2);
|
|
c__ = dlamc3_(&f, &a);
|
|
if (c__ == a) {
|
|
lrnd = TRUE_;
|
|
} else {
|
|
lrnd = FALSE_;
|
|
}
|
|
d__1 = b / 2;
|
|
d__2 = b / 100;
|
|
f = dlamc3_(&d__1, &d__2);
|
|
c__ = dlamc3_(&f, &a);
|
|
if (lrnd && c__ == a) {
|
|
lrnd = FALSE_;
|
|
}
|
|
|
|
/* Try and decide whether rounding is done in the IEEE 'round to */
|
|
/* nearest' style. B/2 is half a unit in the last place of the two */
|
|
/* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit */
|
|
/* zero, and SAVEC is odd. Thus adding B/2 to A should not change */
|
|
/* A, but adding B/2 to SAVEC should change SAVEC. */
|
|
|
|
d__1 = b / 2;
|
|
t1 = dlamc3_(&d__1, &a);
|
|
d__1 = b / 2;
|
|
t2 = dlamc3_(&d__1, &savec);
|
|
lieee1 = t1 == a && t2 > savec && lrnd;
|
|
|
|
/* Now find the mantissa, t. It should be the integer part of */
|
|
/* log to the base beta of a, however it is safer to determine t */
|
|
/* by powering. So we find t as the smallest positive integer for */
|
|
/* which */
|
|
|
|
/* fl( beta**t + 1.0 ) = 1.0. */
|
|
|
|
lt = 0;
|
|
a = 1.;
|
|
c__ = 1.;
|
|
|
|
/* + WHILE( C.EQ.ONE )LOOP */
|
|
L30:
|
|
if (c__ == one) {
|
|
++lt;
|
|
a *= lbeta;
|
|
c__ = dlamc3_(&a, &one);
|
|
d__1 = -a;
|
|
c__ = dlamc3_(&c__, &d__1);
|
|
goto L30;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
}
|
|
|
|
*beta = lbeta;
|
|
*t = lt;
|
|
*rnd = lrnd;
|
|
*ieee1 = lieee1;
|
|
first = FALSE_;
|
|
return 0;
|
|
|
|
/* End of DLAMC1 */
|
|
|
|
} /* dlamc1_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd,
|
|
doublereal *eps, integer *emin, doublereal *rmin, integer *emax,
|
|
doublereal *rmax)
|
|
{
|
|
/* Initialized data */
|
|
|
|
static logical first = TRUE_;
|
|
static logical iwarn = FALSE_;
|
|
|
|
/* Format strings */
|
|
static char fmt_9999[] = "(//\002 WARNING. The value EMIN may be incorre"
|
|
"ct:-\002,\002 EMIN = \002,i8,/\002 If, after inspection, the va"
|
|
"lue EMIN looks\002,\002 acceptable please comment out \002,/\002"
|
|
" the IF block as marked within the code of routine\002,\002 DLAM"
|
|
"C2,\002,/\002 otherwise supply EMIN explicitly.\002,/)";
|
|
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1, d__2, d__3, d__4, d__5;
|
|
|
|
/* Builtin functions */
|
|
double pow_di(doublereal *, integer *);
|
|
//integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
|
|
|
|
/* Local variables */
|
|
doublereal a, b, c__;
|
|
integer i__;
|
|
static integer lt;
|
|
doublereal one, two;
|
|
logical ieee;
|
|
doublereal half;
|
|
logical lrnd;
|
|
static doublereal leps;
|
|
doublereal zero;
|
|
static integer lbeta;
|
|
doublereal rbase;
|
|
static integer lemin, lemax;
|
|
integer gnmin;
|
|
doublereal small;
|
|
integer gpmin;
|
|
doublereal third;
|
|
static doublereal lrmin, lrmax;
|
|
doublereal sixth;
|
|
extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *,
|
|
logical *);
|
|
extern doublereal dlamc3_(doublereal *, doublereal *);
|
|
logical lieee1;
|
|
extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *),
|
|
dlamc5_(integer *, integer *, integer *, logical *, integer *,
|
|
doublereal *);
|
|
integer ngnmin, ngpmin;
|
|
|
|
/* Fortran I/O blocks */
|
|
static cilist io___58 = { 0, 6, 0, fmt_9999, 0 };
|
|
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMC2 determines the machine parameters specified in its argument */
|
|
/* list. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* BETA (output) INTEGER */
|
|
/* The base of the machine. */
|
|
|
|
/* T (output) INTEGER */
|
|
/* The number of ( BETA ) digits in the mantissa. */
|
|
|
|
/* RND (output) LOGICAL */
|
|
/* Specifies whether proper rounding ( RND = .TRUE. ) or */
|
|
/* chopping ( RND = .FALSE. ) occurs in addition. This may not */
|
|
/* be a reliable guide to the way in which the machine performs */
|
|
/* its arithmetic. */
|
|
|
|
/* EPS (output) DOUBLE PRECISION */
|
|
/* The smallest positive number such that */
|
|
|
|
/* fl( 1.0 - EPS ) .LT. 1.0, */
|
|
|
|
/* where fl denotes the computed value. */
|
|
|
|
/* EMIN (output) INTEGER */
|
|
/* The minimum exponent before (gradual) underflow occurs. */
|
|
|
|
/* RMIN (output) DOUBLE PRECISION */
|
|
/* The smallest normalized number for the machine, given by */
|
|
/* BASE**( EMIN - 1 ), where BASE is the floating point value */
|
|
/* of BETA. */
|
|
|
|
/* EMAX (output) INTEGER */
|
|
/* The maximum exponent before overflow occurs. */
|
|
|
|
/* RMAX (output) DOUBLE PRECISION */
|
|
/* The largest positive number for the machine, given by */
|
|
/* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point */
|
|
/* value of BETA. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* The computation of EPS is based on a routine PARANOIA by */
|
|
/* W. Kahan of the University of California at Berkeley. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Save statement .. */
|
|
/* .. */
|
|
/* .. Data statements .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
if (first) {
|
|
zero = 0.;
|
|
one = 1.;
|
|
two = 2.;
|
|
|
|
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of */
|
|
/* BETA, T, RND, EPS, EMIN and RMIN. */
|
|
|
|
/* Throughout this routine we use the function DLAMC3 to ensure */
|
|
/* that relevant values are stored and not held in registers, or */
|
|
/* are not affected by optimizers. */
|
|
|
|
/* DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. */
|
|
|
|
dlamc1_(&lbeta, <, &lrnd, &lieee1);
|
|
|
|
/* Start to find EPS. */
|
|
|
|
b = (doublereal) lbeta;
|
|
i__1 = -lt;
|
|
a = pow_di(&b, &i__1);
|
|
leps = a;
|
|
|
|
/* Try some tricks to see whether or not this is the correct EPS. */
|
|
|
|
b = two / 3;
|
|
half = one / 2;
|
|
d__1 = -half;
|
|
sixth = dlamc3_(&b, &d__1);
|
|
third = dlamc3_(&sixth, &sixth);
|
|
d__1 = -half;
|
|
b = dlamc3_(&third, &d__1);
|
|
b = dlamc3_(&b, &sixth);
|
|
b = abs(b);
|
|
if (b < leps) {
|
|
b = leps;
|
|
}
|
|
|
|
leps = 1.;
|
|
|
|
/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
|
|
L10:
|
|
if (leps > b && b > zero) {
|
|
leps = b;
|
|
d__1 = half * leps;
|
|
/* Computing 5th power */
|
|
d__3 = two, d__4 = d__3, d__3 *= d__3;
|
|
/* Computing 2nd power */
|
|
d__5 = leps;
|
|
d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5);
|
|
c__ = dlamc3_(&d__1, &d__2);
|
|
d__1 = -c__;
|
|
c__ = dlamc3_(&half, &d__1);
|
|
b = dlamc3_(&half, &c__);
|
|
d__1 = -b;
|
|
c__ = dlamc3_(&half, &d__1);
|
|
b = dlamc3_(&half, &c__);
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
if (a < leps) {
|
|
leps = a;
|
|
}
|
|
|
|
/* Computation of EPS complete. */
|
|
|
|
/* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)). */
|
|
/* Keep dividing A by BETA until (gradual) underflow occurs. This */
|
|
/* is detected when we cannot recover the previous A. */
|
|
|
|
rbase = one / lbeta;
|
|
small = one;
|
|
for (i__ = 1; i__ <= 3; ++i__) {
|
|
d__1 = small * rbase;
|
|
small = dlamc3_(&d__1, &zero);
|
|
/* L20: */
|
|
}
|
|
a = dlamc3_(&one, &small);
|
|
dlamc4_(&ngpmin, &one, &lbeta);
|
|
d__1 = -one;
|
|
dlamc4_(&ngnmin, &d__1, &lbeta);
|
|
dlamc4_(&gpmin, &a, &lbeta);
|
|
d__1 = -a;
|
|
dlamc4_(&gnmin, &d__1, &lbeta);
|
|
ieee = FALSE_;
|
|
|
|
if (ngpmin == ngnmin && gpmin == gnmin) {
|
|
if (ngpmin == gpmin) {
|
|
lemin = ngpmin;
|
|
/* ( Non twos-complement machines, no gradual underflow; */
|
|
/* e.g., VAX ) */
|
|
} else if (gpmin - ngpmin == 3) {
|
|
lemin = ngpmin - 1 + lt;
|
|
ieee = TRUE_;
|
|
/* ( Non twos-complement machines, with gradual underflow; */
|
|
/* e.g., IEEE standard followers ) */
|
|
} else {
|
|
lemin = min(ngpmin,gpmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else if (ngpmin == gpmin && ngnmin == gnmin) {
|
|
if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
|
|
lemin = max(ngpmin,ngnmin);
|
|
/* ( Twos-complement machines, no gradual underflow; */
|
|
/* e.g., CYBER 205 ) */
|
|
} else {
|
|
lemin = min(ngpmin,ngnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
|
|
{
|
|
if (gpmin - min(ngpmin,ngnmin) == 3) {
|
|
lemin = max(ngpmin,ngnmin) - 1 + lt;
|
|
/* ( Twos-complement machines with gradual underflow; */
|
|
/* no known machine ) */
|
|
} else {
|
|
lemin = min(ngpmin,ngnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
|
|
} else {
|
|
/* Computing MIN */
|
|
i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin);
|
|
lemin = min(i__1,gnmin);
|
|
/* ( A guess; no known machine ) */
|
|
iwarn = TRUE_;
|
|
}
|
|
first = FALSE_;
|
|
/* ** */
|
|
/* Comment out this if block if EMIN is ok */
|
|
if (iwarn) {
|
|
first = TRUE_;
|
|
printf("\n\n WARNING. The value EMIN may be incorrect:- ");
|
|
printf("EMIN = %8i\n",lemin);
|
|
printf("If, after inspection, the value EMIN looks acceptable");
|
|
printf("please comment out \n the IF block as marked within the");
|
|
printf("code of routine DLAMC2, \n otherwise supply EMIN");
|
|
printf("explicitly.\n");
|
|
/*
|
|
s_wsfe(&io___58);
|
|
do_fio(&c__1, (char *)&lemin, (ftnlen)sizeof(integer));
|
|
e_wsfe();
|
|
*/
|
|
}
|
|
/* ** */
|
|
|
|
/* Assume IEEE arithmetic if we found denormalised numbers above, */
|
|
/* or if arithmetic seems to round in the IEEE style, determined */
|
|
/* in routine DLAMC1. A true IEEE machine should have both things */
|
|
/* true; however, faulty machines may have one or the other. */
|
|
|
|
ieee = ieee || lieee1;
|
|
|
|
/* Compute RMIN by successive division by BETA. We could compute */
|
|
/* RMIN as BASE**( EMIN - 1 ), but some machines underflow during */
|
|
/* this computation. */
|
|
|
|
lrmin = 1.;
|
|
i__1 = 1 - lemin;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d__1 = lrmin * rbase;
|
|
lrmin = dlamc3_(&d__1, &zero);
|
|
/* L30: */
|
|
}
|
|
|
|
/* Finally, call DLAMC5 to compute EMAX and RMAX. */
|
|
|
|
dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax);
|
|
}
|
|
|
|
*beta = lbeta;
|
|
*t = lt;
|
|
*rnd = lrnd;
|
|
*eps = leps;
|
|
*emin = lemin;
|
|
*rmin = lrmin;
|
|
*emax = lemax;
|
|
*rmax = lrmax;
|
|
|
|
return 0;
|
|
|
|
|
|
/* End of DLAMC2 */
|
|
|
|
} /* dlamc2_ */
|
|
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
doublereal a;
|
|
integer i__;
|
|
doublereal b1, b2, c1, c2, d1, d2, one, zero, rbase;
|
|
extern doublereal dlamc3_(doublereal *, doublereal *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMC4 is a service routine for DLAMC2. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* EMIN (output) INTEGER */
|
|
/* The minimum exponent before (gradual) underflow, computed by */
|
|
/* setting A = START and dividing by BASE until the previous A */
|
|
/* can not be recovered. */
|
|
|
|
/* START (input) DOUBLE PRECISION */
|
|
/* The starting point for determining EMIN. */
|
|
|
|
/* BASE (input) INTEGER */
|
|
/* The base of the machine. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
a = *start;
|
|
one = 1.;
|
|
rbase = one / *base;
|
|
zero = 0.;
|
|
*emin = 1;
|
|
d__1 = a * rbase;
|
|
b1 = dlamc3_(&d__1, &zero);
|
|
c1 = a;
|
|
c2 = a;
|
|
d1 = a;
|
|
d2 = a;
|
|
/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. */
|
|
/* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
|
|
L10:
|
|
if (c1 == a && c2 == a && d1 == a && d2 == a) {
|
|
--(*emin);
|
|
a = b1;
|
|
d__1 = a / *base;
|
|
b1 = dlamc3_(&d__1, &zero);
|
|
d__1 = b1 * *base;
|
|
c1 = dlamc3_(&d__1, &zero);
|
|
d1 = zero;
|
|
i__1 = *base;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d1 += b1;
|
|
/* L20: */
|
|
}
|
|
d__1 = a * rbase;
|
|
b2 = dlamc3_(&d__1, &zero);
|
|
d__1 = b2 / rbase;
|
|
c2 = dlamc3_(&d__1, &zero);
|
|
d2 = zero;
|
|
i__1 = *base;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d2 += b2;
|
|
/* L30: */
|
|
}
|
|
goto L10;
|
|
}
|
|
/* + END WHILE */
|
|
|
|
return 0;
|
|
|
|
/* End of DLAMC4 */
|
|
|
|
} /* dlamc4_ */
|
|
|
|
|
|
/* *********************************************************************** */
|
|
|
|
/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin,
|
|
logical *ieee, integer *emax, doublereal *rmax)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublereal y, z__;
|
|
integer try__, lexp;
|
|
doublereal oldy;
|
|
integer uexp, nbits;
|
|
extern doublereal dlamc3_(doublereal *, doublereal *);
|
|
doublereal recbas;
|
|
integer exbits, expsum;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLAMC5 attempts to compute RMAX, the largest machine floating-point */
|
|
/* number, without overflow. It assumes that EMAX + abs(EMIN) sum */
|
|
/* approximately to a power of 2. It will fail on machines where this */
|
|
/* assumption does not hold, for example, the Cyber 205 (EMIN = -28625, */
|
|
/* EMAX = 28718). It will also fail if the value supplied for EMIN is */
|
|
/* too large (i.e. too close to zero), probably with overflow. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* BETA (input) INTEGER */
|
|
/* The base of floating-point arithmetic. */
|
|
|
|
/* P (input) INTEGER */
|
|
/* The number of base BETA digits in the mantissa of a */
|
|
/* floating-point value. */
|
|
|
|
/* EMIN (input) INTEGER */
|
|
/* The minimum exponent before (gradual) underflow. */
|
|
|
|
/* IEEE (input) LOGICAL */
|
|
/* A logical flag specifying whether or not the arithmetic */
|
|
/* system is thought to comply with the IEEE standard. */
|
|
|
|
/* EMAX (output) INTEGER */
|
|
/* The largest exponent before overflow */
|
|
|
|
/* RMAX (output) DOUBLE PRECISION */
|
|
/* The largest machine floating-point number. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* First compute LEXP and UEXP, two powers of 2 that bound */
|
|
/* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum */
|
|
/* approximately to the bound that is closest to abs(EMIN). */
|
|
/* (EMAX is the exponent of the required number RMAX). */
|
|
|
|
lexp = 1;
|
|
exbits = 1;
|
|
L10:
|
|
try__ = lexp << 1;
|
|
if (try__ <= -(*emin)) {
|
|
lexp = try__;
|
|
++exbits;
|
|
goto L10;
|
|
}
|
|
if (lexp == -(*emin)) {
|
|
uexp = lexp;
|
|
} else {
|
|
uexp = try__;
|
|
++exbits;
|
|
}
|
|
|
|
/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater */
|
|
/* than or equal to EMIN. EXBITS is the number of bits needed to */
|
|
/* store the exponent. */
|
|
|
|
if (uexp + *emin > -lexp - *emin) {
|
|
expsum = lexp << 1;
|
|
} else {
|
|
expsum = uexp << 1;
|
|
}
|
|
|
|
/* EXPSUM is the exponent range, approximately equal to */
|
|
/* EMAX - EMIN + 1 . */
|
|
|
|
*emax = expsum + *emin - 1;
|
|
nbits = exbits + 1 + *p;
|
|
|
|
/* NBITS is the total number of bits needed to store a */
|
|
/* floating-point number. */
|
|
|
|
if (nbits % 2 == 1 && *beta == 2) {
|
|
|
|
/* Either there are an odd number of bits used to store a */
|
|
/* floating-point number, which is unlikely, or some bits are */
|
|
/* not used in the representation of numbers, which is possible, */
|
|
/* (e.g. Cray machines) or the mantissa has an implicit bit, */
|
|
/* (e.g. IEEE machines, Dec Vax machines), which is perhaps the */
|
|
/* most likely. We have to assume the last alternative. */
|
|
/* If this is true, then we need to reduce EMAX by one because */
|
|
/* there must be some way of representing zero in an implicit-bit */
|
|
/* system. On machines like Cray, we are reducing EMAX by one */
|
|
/* unnecessarily. */
|
|
|
|
--(*emax);
|
|
}
|
|
|
|
if (*ieee) {
|
|
|
|
/* Assume we are on an IEEE machine which reserves one exponent */
|
|
/* for infinity and NaN. */
|
|
|
|
--(*emax);
|
|
}
|
|
|
|
/* Now create RMAX, the largest machine number, which should */
|
|
/* be equal to (1.0 - BETA**(-P)) * BETA**EMAX . */
|
|
|
|
/* First compute 1.0 - BETA**(-P), being careful that the */
|
|
/* result is less than 1.0 . */
|
|
|
|
recbas = 1. / *beta;
|
|
z__ = *beta - 1.;
|
|
y = 0.;
|
|
i__1 = *p;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
z__ *= recbas;
|
|
if (y < 1.) {
|
|
oldy = y;
|
|
}
|
|
y = dlamc3_(&y, &z__);
|
|
/* L20: */
|
|
}
|
|
if (y >= 1.) {
|
|
y = oldy;
|
|
}
|
|
|
|
/* Now multiply by BETA**EMAX to get RMAX. */
|
|
|
|
i__1 = *emax;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d__1 = y * *beta;
|
|
y = dlamc3_(&d__1, &c_b32);
|
|
/* L30: */
|
|
}
|
|
|
|
*rmax = y;
|
|
return 0;
|
|
|
|
/* End of DLAMC5 */
|
|
|
|
} /* dlamc5_ */
|
|
|
|
#endif
|