opencv/modules/objdetect/src/cascadedetect.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

1335 lines
41 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <cstdio>
#include "cascadedetect.hpp"
#include <string>
#if defined (LOG_CASCADE_STATISTIC)
struct Logger
{
enum { STADIES_NUM = 20 };
int gid;
cv::Mat mask;
cv::Size sz0;
int step;
Logger() : gid (0), step(2) {}
void setImage(const cv::Mat& image)
{
if (gid == 0)
sz0 = image.size();
mask.create(image.rows, image.cols * (STADIES_NUM + 1) + STADIES_NUM, CV_8UC1);
mask = cv::Scalar(0);
cv::Mat roi = mask(cv::Rect(cv::Point(0,0), image.size()));
image.copyTo(roi);
printf("%d) Size = (%d, %d)\n", gid, image.cols, image.rows);
for(int i = 0; i < STADIES_NUM; ++i)
{
int x = image.cols + i * (image.cols + 1);
cv::line(mask, cv::Point(x, 0), cv::Point(x, mask.rows-1), cv::Scalar(255));
}
if (sz0.width/image.cols > 2 && sz0.height/image.rows > 2)
step = 1;
}
void setPoint(const cv::Point& p, int passed_stadies)
{
int cols = mask.cols / (STADIES_NUM + 1);
passed_stadies = -passed_stadies;
passed_stadies = (passed_stadies == -1) ? STADIES_NUM : passed_stadies;
unsigned char* ptr = mask.ptr<unsigned char>(p.y) + cols + 1 + p.x;
for(int i = 0; i < passed_stadies; ++i, ptr += cols + 1)
{
*ptr = 255;
if (step == 2)
{
ptr[1] = 255;
ptr[mask.step] = 255;
ptr[mask.step + 1] = 255;
}
}
};
void write()
{
char buf[4096];
sprintf(buf, "%04d.png", gid++);
cv::imwrite(buf, mask);
}
} logger;
#endif
namespace cv
{
// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
class CV_EXPORTS SimilarRects
{
public:
SimilarRects(double _eps) : eps(_eps) {}
inline bool operator()(const Rect& r1, const Rect& r2) const
{
double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
return std::abs(r1.x - r2.x) <= delta &&
std::abs(r1.y - r2.y) <= delta &&
std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
}
double eps;
};
void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights)
{
if( groupThreshold <= 0 || rectList.empty() )
{
if( weights )
{
size_t i, sz = rectList.size();
weights->resize(sz);
for( i = 0; i < sz; i++ )
(*weights)[i] = 1;
}
return;
}
std::vector<int> labels;
int nclasses = partition(rectList, labels, SimilarRects(eps));
std::vector<Rect> rrects(nclasses);
std::vector<int> rweights(nclasses, 0);
std::vector<int> rejectLevels(nclasses, 0);
std::vector<double> rejectWeights(nclasses, DBL_MIN);
int i, j, nlabels = (int)labels.size();
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
rrects[cls].x += rectList[i].x;
rrects[cls].y += rectList[i].y;
rrects[cls].width += rectList[i].width;
rrects[cls].height += rectList[i].height;
rweights[cls]++;
}
if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() )
{
for( i = 0; i < nlabels; i++ )
{
int cls = labels[i];
if( (*weights)[i] > rejectLevels[cls] )
{
rejectLevels[cls] = (*weights)[i];
rejectWeights[cls] = (*levelWeights)[i];
}
else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )
rejectWeights[cls] = (*levelWeights)[i];
}
}
for( i = 0; i < nclasses; i++ )
{
Rect r = rrects[i];
float s = 1.f/rweights[i];
rrects[i] = Rect(saturate_cast<int>(r.x*s),
saturate_cast<int>(r.y*s),
saturate_cast<int>(r.width*s),
saturate_cast<int>(r.height*s));
}
rectList.clear();
if( weights )
weights->clear();
if( levelWeights )
levelWeights->clear();
for( i = 0; i < nclasses; i++ )
{
Rect r1 = rrects[i];
int n1 = levelWeights ? rejectLevels[i] : rweights[i];
double w1 = rejectWeights[i];
if( n1 <= groupThreshold )
continue;
// filter out small face rectangles inside large rectangles
for( j = 0; j < nclasses; j++ )
{
int n2 = rweights[j];
if( j == i || n2 <= groupThreshold )
continue;
Rect r2 = rrects[j];
int dx = saturate_cast<int>( r2.width * eps );
int dy = saturate_cast<int>( r2.height * eps );
if( i != j &&
r1.x >= r2.x - dx &&
r1.y >= r2.y - dy &&
r1.x + r1.width <= r2.x + r2.width + dx &&
r1.y + r1.height <= r2.y + r2.height + dy &&
(n2 > std::max(3, n1) || n1 < 3) )
break;
}
if( j == nclasses )
{
rectList.push_back(r1);
if( weights )
weights->push_back(n1);
if( levelWeights )
levelWeights->push_back(w1);
}
}
}
class MeanshiftGrouping
{
public:
MeanshiftGrouping(const Point3d& densKer, const std::vector<Point3d>& posV,
const std::vector<double>& wV, double eps, int maxIter = 20)
{
densityKernel = densKer;
weightsV = wV;
positionsV = posV;
positionsCount = (int)posV.size();
meanshiftV.resize(positionsCount);
distanceV.resize(positionsCount);
iterMax = maxIter;
modeEps = eps;
for (unsigned i = 0; i<positionsV.size(); i++)
{
meanshiftV[i] = getNewValue(positionsV[i]);
distanceV[i] = moveToMode(meanshiftV[i]);
meanshiftV[i] -= positionsV[i];
}
}
void getModes(std::vector<Point3d>& modesV, std::vector<double>& resWeightsV, const double eps)
{
for (size_t i=0; i <distanceV.size(); i++)
{
bool is_found = false;
for(size_t j=0; j<modesV.size(); j++)
{
if ( getDistance(distanceV[i], modesV[j]) < eps)
{
is_found=true;
break;
}
}
if (!is_found)
{
modesV.push_back(distanceV[i]);
}
}
resWeightsV.resize(modesV.size());
for (size_t i=0; i<modesV.size(); i++)
{
resWeightsV[i] = getResultWeight(modesV[i]);
}
}
protected:
std::vector<Point3d> positionsV;
std::vector<double> weightsV;
Point3d densityKernel;
int positionsCount;
std::vector<Point3d> meanshiftV;
std::vector<Point3d> distanceV;
int iterMax;
double modeEps;
Point3d getNewValue(const Point3d& inPt) const
{
Point3d resPoint(.0);
Point3d ratPoint(.0);
for (size_t i=0; i<positionsV.size(); i++)
{
Point3d aPt= positionsV[i];
Point3d bPt = inPt;
Point3d sPt = densityKernel;
sPt.x *= std::exp(aPt.z);
sPt.y *= std::exp(aPt.z);
aPt.x /= sPt.x;
aPt.y /= sPt.y;
aPt.z /= sPt.z;
bPt.x /= sPt.x;
bPt.y /= sPt.y;
bPt.z /= sPt.z;
double w = (weightsV[i])*std::exp(-((aPt-bPt).dot(aPt-bPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
resPoint += w*aPt;
ratPoint.x += w/sPt.x;
ratPoint.y += w/sPt.y;
ratPoint.z += w/sPt.z;
}
resPoint.x /= ratPoint.x;
resPoint.y /= ratPoint.y;
resPoint.z /= ratPoint.z;
return resPoint;
}
double getResultWeight(const Point3d& inPt) const
{
double sumW=0;
for (size_t i=0; i<positionsV.size(); i++)
{
Point3d aPt = positionsV[i];
Point3d sPt = densityKernel;
sPt.x *= std::exp(aPt.z);
sPt.y *= std::exp(aPt.z);
aPt -= inPt;
aPt.x /= sPt.x;
aPt.y /= sPt.y;
aPt.z /= sPt.z;
sumW+=(weightsV[i])*std::exp(-(aPt.dot(aPt))/2)/std::sqrt(sPt.dot(Point3d(1,1,1)));
}
return sumW;
}
Point3d moveToMode(Point3d aPt) const
{
Point3d bPt;
for (int i = 0; i<iterMax; i++)
{
bPt = aPt;
aPt = getNewValue(bPt);
if ( getDistance(aPt, bPt) <= modeEps )
{
break;
}
}
return aPt;
}
double getDistance(Point3d p1, Point3d p2) const
{
Point3d ns = densityKernel;
ns.x *= std::exp(p2.z);
ns.y *= std::exp(p2.z);
p2 -= p1;
p2.x /= ns.x;
p2.y /= ns.y;
p2.z /= ns.z;
return p2.dot(p2);
}
};
//new grouping function with using meanshift
static void groupRectangles_meanshift(std::vector<Rect>& rectList, double detectThreshold, std::vector<double>* foundWeights,
std::vector<double>& scales, Size winDetSize)
{
int detectionCount = (int)rectList.size();
std::vector<Point3d> hits(detectionCount), resultHits;
std::vector<double> hitWeights(detectionCount), resultWeights;
Point2d hitCenter;
for (int i=0; i < detectionCount; i++)
{
hitWeights[i] = (*foundWeights)[i];
hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles
hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i]));
}
rectList.clear();
if (foundWeights)
foundWeights->clear();
double logZ = std::log(1.3);
Point3d smothing(8, 16, logZ);
MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100);
msGrouping.getModes(resultHits, resultWeights, 1);
for (unsigned i=0; i < resultHits.size(); ++i)
{
double scale = std::exp(resultHits[i].z);
hitCenter.x = resultHits[i].x;
hitCenter.y = resultHits[i].y;
Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) );
Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2),
int(s.width), int(s.height) );
if (resultWeights[i] > detectThreshold)
{
rectList.push_back(resultRect);
foundWeights->push_back(resultWeights[i]);
}
}
}
void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, 0, 0);
}
void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& weights, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, &weights, 0);
}
//used for cascade detection algorithm for ROC-curve calculating
void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, int groupThreshold, double eps)
{
groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights);
}
//can be used for HOG detection algorithm only
void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
std::vector<double>& foundScales, double detectThreshold, Size winDetSize)
{
groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize);
}
FeatureEvaluator::~FeatureEvaluator() {}
bool FeatureEvaluator::read(const FileNode&) {return true;}
Ptr<FeatureEvaluator> FeatureEvaluator::clone() const { return Ptr<FeatureEvaluator>(); }
int FeatureEvaluator::getFeatureType() const {return -1;}
bool FeatureEvaluator::setImage(const Mat&, Size) {return true;}
bool FeatureEvaluator::setWindow(Point) { return true; }
double FeatureEvaluator::calcOrd(int) const { return 0.; }
int FeatureEvaluator::calcCat(int) const { return 0; }
//---------------------------------------------- HaarEvaluator ---------------------------------------
bool HaarEvaluator::Feature :: read( const FileNode& node )
{
FileNode rnode = node[CC_RECTS];
FileNodeIterator it = rnode.begin(), it_end = rnode.end();
int ri;
for( ri = 0; ri < RECT_NUM; ri++ )
{
rect[ri].r = Rect();
rect[ri].weight = 0.f;
}
for(ri = 0; it != it_end; ++it, ri++)
{
FileNodeIterator it2 = (*it).begin();
it2 >> rect[ri].r.x >> rect[ri].r.y >>
rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight;
}
tilted = (int)node[CC_TILTED] != 0;
return true;
}
HaarEvaluator::HaarEvaluator()
{
features = new std::vector<Feature>();
}
HaarEvaluator::~HaarEvaluator()
{
}
bool HaarEvaluator::read(const FileNode& node)
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
hasTiltedFeatures = false;
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
if( featuresPtr[i].tilted )
hasTiltedFeatures = true;
}
return true;
}
Ptr<FeatureEvaluator> HaarEvaluator::clone() const
{
HaarEvaluator* ret = new HaarEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->hasTiltedFeatures = hasTiltedFeatures;
ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0;
ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted;
ret->normrect = normrect;
memcpy( ret->p, p, 4*sizeof(p[0]) );
memcpy( ret->pq, pq, 4*sizeof(pq[0]) );
ret->offset = offset;
ret->varianceNormFactor = varianceNormFactor;
return ret;
}
bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize )
{
int rn = image.rows+1, cn = image.cols+1;
origWinSize = _origWinSize;
normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2);
if (image.cols < origWinSize.width || image.rows < origWinSize.height)
return false;
if( sum0.rows < rn || sum0.cols < cn )
{
sum0.create(rn, cn, CV_32S);
sqsum0.create(rn, cn, CV_64F);
if (hasTiltedFeatures)
tilted0.create( rn, cn, CV_32S);
}
sum = Mat(rn, cn, CV_32S, sum0.data);
sqsum = Mat(rn, cn, CV_64F, sqsum0.data);
if( hasTiltedFeatures )
{
tilted = Mat(rn, cn, CV_32S, tilted0.data);
integral(image, sum, sqsum, tilted);
}
else
integral(image, sum, sqsum);
const int* sdata = (const int*)sum.data;
const double* sqdata = (const double*)sqsum.data;
size_t sumStep = sum.step/sizeof(sdata[0]);
size_t sqsumStep = sqsum.step/sizeof(sqdata[0]);
CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep );
CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep );
size_t fi, nfeatures = features->size();
for( fi = 0; fi < nfeatures; fi++ )
featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted );
return true;
}
bool HaarEvaluator::setWindow( Point pt )
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= sum.cols ||
pt.y + origWinSize.height >= sum.rows )
return false;
size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x;
size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x;
int valsum = CALC_SUM(p, pOffset);
double valsqsum = CALC_SUM(pq, pqOffset);
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
if( nf > 0. )
nf = std::sqrt(nf);
else
nf = 1.;
varianceNormFactor = 1./nf;
offset = (int)pOffset;
return true;
}
//---------------------------------------------- LBPEvaluator -------------------------------------
bool LBPEvaluator::Feature :: read(const FileNode& node )
{
FileNode rnode = node[CC_RECT];
FileNodeIterator it = rnode.begin();
it >> rect.x >> rect.y >> rect.width >> rect.height;
return true;
}
LBPEvaluator::LBPEvaluator()
{
features = new std::vector<Feature>();
}
LBPEvaluator::~LBPEvaluator()
{
}
bool LBPEvaluator::read( const FileNode& node )
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
}
return true;
}
Ptr<FeatureEvaluator> LBPEvaluator::clone() const
{
LBPEvaluator* ret = new LBPEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->sum0 = sum0, ret->sum = sum;
ret->normrect = normrect;
ret->offset = offset;
return ret;
}
bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize )
{
int rn = image.rows+1, cn = image.cols+1;
origWinSize = _origWinSize;
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
return false;
if( sum0.rows < rn || sum0.cols < cn )
sum0.create(rn, cn, CV_32S);
sum = Mat(rn, cn, CV_32S, sum0.data);
integral(image, sum);
size_t fi, nfeatures = features->size();
for( fi = 0; fi < nfeatures; fi++ )
featuresPtr[fi].updatePtrs( sum );
return true;
}
bool LBPEvaluator::setWindow( Point pt )
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= sum.cols ||
pt.y + origWinSize.height >= sum.rows )
return false;
offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x;
return true;
}
//---------------------------------------------- HOGEvaluator ---------------------------------------
bool HOGEvaluator::Feature :: read( const FileNode& node )
{
FileNode rnode = node[CC_RECT];
FileNodeIterator it = rnode.begin();
it >> rect[0].x >> rect[0].y >> rect[0].width >> rect[0].height >> featComponent;
rect[1].x = rect[0].x + rect[0].width;
rect[1].y = rect[0].y;
rect[2].x = rect[0].x;
rect[2].y = rect[0].y + rect[0].height;
rect[3].x = rect[0].x + rect[0].width;
rect[3].y = rect[0].y + rect[0].height;
rect[1].width = rect[2].width = rect[3].width = rect[0].width;
rect[1].height = rect[2].height = rect[3].height = rect[0].height;
return true;
}
HOGEvaluator::HOGEvaluator()
{
features = new std::vector<Feature>();
}
HOGEvaluator::~HOGEvaluator()
{
}
bool HOGEvaluator::read( const FileNode& node )
{
features->resize(node.size());
featuresPtr = &(*features)[0];
FileNodeIterator it = node.begin(), it_end = node.end();
for(int i = 0; it != it_end; ++it, i++)
{
if(!featuresPtr[i].read(*it))
return false;
}
return true;
}
Ptr<FeatureEvaluator> HOGEvaluator::clone() const
{
HOGEvaluator* ret = new HOGEvaluator;
ret->origWinSize = origWinSize;
ret->features = features;
ret->featuresPtr = &(*ret->features)[0];
ret->offset = offset;
ret->hist = hist;
ret->normSum = normSum;
return ret;
}
bool HOGEvaluator::setImage( const Mat& image, Size winSize )
{
int rows = image.rows + 1;
int cols = image.cols + 1;
origWinSize = winSize;
if( image.cols < origWinSize.width || image.rows < origWinSize.height )
return false;
hist.clear();
for( int bin = 0; bin < Feature::BIN_NUM; bin++ )
{
hist.push_back( Mat(rows, cols, CV_32FC1) );
}
normSum.create( rows, cols, CV_32FC1 );
integralHistogram( image, hist, normSum, Feature::BIN_NUM );
size_t featIdx, featCount = features->size();
for( featIdx = 0; featIdx < featCount; featIdx++ )
{
featuresPtr[featIdx].updatePtrs( hist, normSum );
}
return true;
}
bool HOGEvaluator::setWindow(Point pt)
{
if( pt.x < 0 || pt.y < 0 ||
pt.x + origWinSize.width >= hist[0].cols-2 ||
pt.y + origWinSize.height >= hist[0].rows-2 )
return false;
offset = pt.y * ((int)hist[0].step/sizeof(float)) + pt.x;
return true;
}
void HOGEvaluator::integralHistogram(const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins) const
{
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
int x, y, binIdx;
Size gradSize(img.size());
Size histSize(histogram[0].size());
Mat grad(gradSize, CV_32F);
Mat qangle(gradSize, CV_8U);
AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
int* xmap = (int*)mapbuf + 1;
int* ymap = xmap + gradSize.width + 2;
const int borderType = (int)BORDER_REPLICATE;
for( x = -1; x < gradSize.width + 1; x++ )
xmap[x] = borderInterpolate(x, gradSize.width, borderType);
for( y = -1; y < gradSize.height + 1; y++ )
ymap[y] = borderInterpolate(y, gradSize.height, borderType);
int width = gradSize.width;
AutoBuffer<float> _dbuf(width*4);
float* dbuf = _dbuf;
Mat Dx(1, width, CV_32F, dbuf);
Mat Dy(1, width, CV_32F, dbuf + width);
Mat Mag(1, width, CV_32F, dbuf + width*2);
Mat Angle(1, width, CV_32F, dbuf + width*3);
float angleScale = (float)(nbins/CV_PI);
for( y = 0; y < gradSize.height; y++ )
{
const uchar* currPtr = img.data + img.step*ymap[y];
const uchar* prevPtr = img.data + img.step*ymap[y-1];
const uchar* nextPtr = img.data + img.step*ymap[y+1];
float* gradPtr = (float*)grad.ptr(y);
uchar* qanglePtr = (uchar*)qangle.ptr(y);
for( x = 0; x < width; x++ )
{
dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
}
cartToPolar( Dx, Dy, Mag, Angle, false );
for( x = 0; x < width; x++ )
{
float mag = dbuf[x+width*2];
float angle = dbuf[x+width*3];
angle = angle*angleScale - 0.5f;
int bidx = cvFloor(angle);
angle -= bidx;
if( bidx < 0 )
bidx += nbins;
else if( bidx >= nbins )
bidx -= nbins;
qanglePtr[x] = (uchar)bidx;
gradPtr[x] = mag;
}
}
integral(grad, norm, grad.depth());
float* histBuf;
const float* magBuf;
const uchar* binsBuf;
int binsStep = (int)( qangle.step / sizeof(uchar) );
int histStep = (int)( histogram[0].step / sizeof(float) );
int magStep = (int)( grad.step / sizeof(float) );
for( binIdx = 0; binIdx < nbins; binIdx++ )
{
histBuf = (float*)histogram[binIdx].data;
magBuf = (const float*)grad.data;
binsBuf = (const uchar*)qangle.data;
memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
histBuf += histStep + 1;
for( y = 0; y < qangle.rows; y++ )
{
histBuf[-1] = 0.f;
float strSum = 0.f;
for( x = 0; x < qangle.cols; x++ )
{
if( binsBuf[x] == binIdx )
strSum += magBuf[x];
histBuf[x] = histBuf[-histStep + x] + strSum;
}
histBuf += histStep;
binsBuf += binsStep;
magBuf += magStep;
}
}
}
Ptr<FeatureEvaluator> FeatureEvaluator::create( int featureType )
{
return featureType == HAAR ? Ptr<FeatureEvaluator>(new HaarEvaluator) :
featureType == LBP ? Ptr<FeatureEvaluator>(new LBPEvaluator) :
featureType == HOG ? Ptr<FeatureEvaluator>(new HOGEvaluator) :
Ptr<FeatureEvaluator>();
}
//---------------------------------------- Classifier Cascade --------------------------------------------
CascadeClassifier::CascadeClassifier()
{
}
CascadeClassifier::CascadeClassifier(const std::string& filename)
{
load(filename);
}
CascadeClassifier::~CascadeClassifier()
{
}
bool CascadeClassifier::empty() const
{
return oldCascade.empty() && data.stages.empty();
}
bool CascadeClassifier::load(const std::string& filename)
{
oldCascade.release();
data = Data();
featureEvaluator.release();
FileStorage fs(filename, FileStorage::READ);
if( !fs.isOpened() )
return false;
if( read(fs.getFirstTopLevelNode()) )
return true;
fs.release();
oldCascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
return !oldCascade.empty();
}
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& evaluator, Point pt, double& weight )
{
CV_Assert( oldCascade.empty() );
assert( data.featureType == FeatureEvaluator::HAAR ||
data.featureType == FeatureEvaluator::LBP ||
data.featureType == FeatureEvaluator::HOG );
if( !evaluator->setWindow(pt) )
return -1;
if( data.isStumpBased )
{
if( data.featureType == FeatureEvaluator::HAAR )
return predictOrderedStump<HaarEvaluator>( *this, evaluator, weight );
else if( data.featureType == FeatureEvaluator::LBP )
return predictCategoricalStump<LBPEvaluator>( *this, evaluator, weight );
else if( data.featureType == FeatureEvaluator::HOG )
return predictOrderedStump<HOGEvaluator>( *this, evaluator, weight );
else
return -2;
}
else
{
if( data.featureType == FeatureEvaluator::HAAR )
return predictOrdered<HaarEvaluator>( *this, evaluator, weight );
else if( data.featureType == FeatureEvaluator::LBP )
return predictCategorical<LBPEvaluator>( *this, evaluator, weight );
else if( data.featureType == FeatureEvaluator::HOG )
return predictOrdered<HOGEvaluator>( *this, evaluator, weight );
else
return -2;
}
}
bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& evaluator, const Mat& image )
{
return empty() ? false : evaluator->setImage(image, data.origWinSize);
}
void CascadeClassifier::setMaskGenerator(Ptr<MaskGenerator> _maskGenerator)
{
maskGenerator=_maskGenerator;
}
Ptr<CascadeClassifier::MaskGenerator> CascadeClassifier::getMaskGenerator()
{
return maskGenerator;
}
void CascadeClassifier::setFaceDetectionMaskGenerator()
{
#ifdef HAVE_TEGRA_OPTIMIZATION
setMaskGenerator(tegra::getCascadeClassifierMaskGenerator(*this));
#else
setMaskGenerator(Ptr<CascadeClassifier::MaskGenerator>());
#endif
}
class CascadeClassifierInvoker : public ParallelLoopBody
{
public:
CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor,
std::vector<Rect>& _vec, std::vector<int>& _levels, std::vector<double>& _weights, bool outputLevels, const Mat& _mask, Mutex* _mtx)
{
classifier = &_cc;
processingRectSize = _sz1;
stripSize = _stripSize;
yStep = _yStep;
scalingFactor = _factor;
rectangles = &_vec;
rejectLevels = outputLevels ? &_levels : 0;
levelWeights = outputLevels ? &_weights : 0;
mask = _mask;
mtx = _mtx;
}
void operator()(const Range& range) const
{
Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone();
Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor));
int y1 = range.start * stripSize;
int y2 = std::min(range.end * stripSize, processingRectSize.height);
for( int y = y1; y < y2; y += yStep )
{
for( int x = 0; x < processingRectSize.width; x += yStep )
{
if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) {
continue;
}
double gypWeight;
int result = classifier->runAt(evaluator, Point(x, y), gypWeight);
#if defined (LOG_CASCADE_STATISTIC)
logger.setPoint(Point(x, y), result);
#endif
if( rejectLevels )
{
if( result == 1 )
result = -(int)classifier->data.stages.size();
if( classifier->data.stages.size() + result < 4 )
{
mtx->lock();
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height));
rejectLevels->push_back(-result);
levelWeights->push_back(gypWeight);
mtx->unlock();
}
}
else if( result > 0 )
{
mtx->lock();
rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor),
winSize.width, winSize.height));
mtx->unlock();
}
if( result == 0 )
x += yStep;
}
}
}
CascadeClassifier* classifier;
std::vector<Rect>* rectangles;
Size processingRectSize;
int stripSize, yStep;
double scalingFactor;
std::vector<int> *rejectLevels;
std::vector<double> *levelWeights;
Mat mask;
Mutex* mtx;
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& levels, std::vector<double>& weights, bool outputRejectLevels )
{
if( !featureEvaluator->setImage( image, data.origWinSize ) )
return false;
#if defined (LOG_CASCADE_STATISTIC)
logger.setImage(image);
#endif
Mat currentMask;
if (!maskGenerator.empty()) {
currentMask=maskGenerator->generateMask(image);
}
std::vector<Rect> candidatesVector;
std::vector<int> rejectLevels;
std::vector<double> levelWeights;
Mutex mtx;
if( outputRejectLevels )
{
parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
candidatesVector, rejectLevels, levelWeights, true, currentMask, &mtx));
levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() );
weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() );
}
else
{
parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,
candidatesVector, rejectLevels, levelWeights, false, currentMask, &mtx));
}
candidates.insert( candidates.end(), candidatesVector.begin(), candidatesVector.end() );
#if defined (LOG_CASCADE_STATISTIC)
logger.write();
#endif
return true;
}
bool CascadeClassifier::isOldFormatCascade() const
{
return !oldCascade.empty();
}
int CascadeClassifier::getFeatureType() const
{
return featureEvaluator->getFeatureType();
}
Size CascadeClassifier::getOriginalWindowSize() const
{
return data.origWinSize;
}
bool CascadeClassifier::setImage(const Mat& image)
{
return featureEvaluator->setImage(image, data.origWinSize);
}
void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
{
const double GROUP_EPS = 0.2;
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
if( empty() )
return;
if( isOldFormatCascade() )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
std::vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
return;
}
objects.clear();
if (!maskGenerator.empty()) {
maskGenerator->initializeMask(image);
}
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
maxObjectSize = image.size();
Mat grayImage = image;
if( grayImage.channels() > 1 )
{
Mat temp;
cvtColor(grayImage, temp, CV_BGR2GRAY);
grayImage = temp;
}
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
std::vector<Rect> candidates;
for( double factor = 1; ; factor *= scaleFactor )
{
Size originalWindowSize = getOriginalWindowSize();
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
Size processingRectSize( scaledImageSize.width - originalWindowSize.width + 1, scaledImageSize.height - originalWindowSize.height + 1 );
if( processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
continue;
Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data );
resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR );
int yStep;
if( getFeatureType() == cv::FeatureEvaluator::HOG )
{
yStep = 4;
}
else
{
yStep = factor > 2. ? 1 : 2;
}
int stripCount, stripSize;
#ifdef HAVE_TBB
const int PTS_PER_THREAD = 1000;
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = std::min(std::max(stripCount, 1), 100);
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
#else
stripCount = 1;
stripSize = processingRectSize.height;
#endif
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )
break;
}
objects.resize(candidates.size());
std::copy(candidates.begin(), candidates.end(), objects.begin());
if( outputRejectLevels )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
}
void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& objects,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize)
{
std::vector<int> fakeLevels;
std::vector<double> fakeWeights;
detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, false );
}
bool CascadeClassifier::Data::read(const FileNode &root)
{
static const float THRESHOLD_EPS = 1e-5f;
// load stage params
std::string stageTypeStr = (std::string)root[CC_STAGE_TYPE];
if( stageTypeStr == CC_BOOST )
stageType = BOOST;
else
return false;
std::string featureTypeStr = (std::string)root[CC_FEATURE_TYPE];
if( featureTypeStr == CC_HAAR )
featureType = FeatureEvaluator::HAAR;
else if( featureTypeStr == CC_LBP )
featureType = FeatureEvaluator::LBP;
else if( featureTypeStr == CC_HOG )
featureType = FeatureEvaluator::HOG;
else
return false;
origWinSize.width = (int)root[CC_WIDTH];
origWinSize.height = (int)root[CC_HEIGHT];
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
// load feature params
FileNode fn = root[CC_FEATURE_PARAMS];
if( fn.empty() )
return false;
ncategories = fn[CC_MAX_CAT_COUNT];
int subsetSize = (ncategories + 31)/32,
nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 );
// load stages
fn = root[CC_STAGES];
if( fn.empty() )
return false;
stages.reserve(fn.size());
classifiers.clear();
nodes.clear();
FileNodeIterator it = fn.begin(), it_end = fn.end();
for( int si = 0; it != it_end; si++, ++it )
{
FileNode fns = *it;
Stage stage;
stage.threshold = (float)fns[CC_STAGE_THRESHOLD] - THRESHOLD_EPS;
fns = fns[CC_WEAK_CLASSIFIERS];
if(fns.empty())
return false;
stage.ntrees = (int)fns.size();
stage.first = (int)classifiers.size();
stages.push_back(stage);
classifiers.reserve(stages[si].first + stages[si].ntrees);
FileNodeIterator it1 = fns.begin(), it1_end = fns.end();
for( ; it1 != it1_end; ++it1 ) // weak trees
{
FileNode fnw = *it1;
FileNode internalNodes = fnw[CC_INTERNAL_NODES];
FileNode leafValues = fnw[CC_LEAF_VALUES];
if( internalNodes.empty() || leafValues.empty() )
return false;
DTree tree;
tree.nodeCount = (int)internalNodes.size()/nodeStep;
classifiers.push_back(tree);
nodes.reserve(nodes.size() + tree.nodeCount);
leaves.reserve(leaves.size() + leafValues.size());
if( subsetSize > 0 )
subsets.reserve(subsets.size() + tree.nodeCount*subsetSize);
FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end();
for( ; internalNodesIter != internalNodesEnd; ) // nodes
{
DTreeNode node;
node.left = (int)*internalNodesIter; ++internalNodesIter;
node.right = (int)*internalNodesIter; ++internalNodesIter;
node.featureIdx = (int)*internalNodesIter; ++internalNodesIter;
if( subsetSize > 0 )
{
for( int j = 0; j < subsetSize; j++, ++internalNodesIter )
subsets.push_back((int)*internalNodesIter);
node.threshold = 0.f;
}
else
{
node.threshold = (float)*internalNodesIter; ++internalNodesIter;
}
nodes.push_back(node);
}
internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end();
for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves
leaves.push_back((float)*internalNodesIter);
}
}
return true;
}
bool CascadeClassifier::read(const FileNode& root)
{
if( !data.read(root) )
return false;
// load features
featureEvaluator = FeatureEvaluator::create(data.featureType);
FileNode fn = root[CC_FEATURES];
if( fn.empty() )
return false;
return featureEvaluator->read(fn);
}
template<> void Ptr<CvHaarClassifierCascade>::delete_obj()
{ cvReleaseHaarClassifierCascade(&obj); }
} // namespace cv