opencv/modules/superres/src/btv_l1_ocl.cpp
2014-01-07 02:52:30 +04:00

724 lines
26 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
#include "precomp.hpp"
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL)
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
{
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<SuperResolution>();
}
#else
#include "opencl_kernels.hpp"
using namespace std;
using namespace cv;
using namespace cv::ocl;
using namespace cv::superres;
using namespace cv::superres::detail;
namespace cv
{
namespace ocl
{
float* btvWeights_ = NULL;
size_t btvWeights_size = 0;
oclMat c_btvRegWeights;
}
}
namespace btv_l1_device_ocl
{
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
const oclMat& backwardMotionX, const oclMat& bacwardMotionY,
oclMat& forwardMapX, oclMat& forwardMapY,
oclMat& backwardMapX, oclMat& backwardMapY);
void upscale(const oclMat& src, oclMat& dst, int scale);
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst);
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize);
}
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
const oclMat& backwardMotionX, const oclMat& backwardMotionY,
oclMat& forwardMapX, oclMat& forwardMapY,
oclMat& backwardMapX, oclMat& backwardMapY)
{
Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1};
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize());
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize());
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize());
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize());
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize());
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize());
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize());
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize());
String kernel_name = "buildMotionMapsKernel";
vector< pair<size_t, const void*> > args;
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale)
{
Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1};
int src_step = (int)(src.step/src.elemSize());
int dst_step = (int)(dst.step/dst.elemSize());
String kernel_name = "upscaleKernel";
vector< pair<size_t, const void*> > args;
int cn = src.oclchannels();
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&scale));
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
{
Context* clCxt = Context::getContext();
oclMat src1_ = src1.reshape(1);
oclMat src2_ = src2.reshape(1);
oclMat dst_ = dst.reshape(1);
int src1_step = (int)(src1_.step/src1_.elemSize());
int src2_step = (int)(src2_.step/src2_.elemSize());
int dst_step = (int)(dst_.step/dst_.elemSize());
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src1_.cols, src1_.rows, 1};
String kernel_name = "diffSignKernel";
vector< pair<size_t, const void*> > args;
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize)
{
Context* clCxt = Context::getContext();
oclMat src_ = src.reshape(1);
oclMat dst_ = dst.reshape(1);
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1};
int src_step = (int)(src_.step/src_.elemSize());
int dst_step = (int)(dst_.step/dst_.elemSize());
String kernel_name = "calcBtvRegularizationKernel";
vector< pair<size_t, const void*> > args;
int cn = src.oclchannels();
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize));
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights.data));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
namespace
{
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions,
int baseIdx, Size size)
{
const int count = static_cast<int>(forwardMotions.size());
relForwardMotions.resize(count);
relForwardMotions[baseIdx].first.create(size, CV_32FC1);
relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
relForwardMotions[baseIdx].second.create(size, CV_32FC1);
relForwardMotions[baseIdx].second.setTo(Scalar::all(0));
relBackwardMotions.resize(count);
relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));
for (int i = baseIdx - 1; i >= 0; --i)
{
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
}
for (int i = baseIdx + 1; i < count; ++i)
{
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
}
}
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale)
{
highResMotions.resize(lowResMotions.size());
for (size_t i = 0; i < lowResMotions.size(); ++i)
{
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR);
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR);
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first);
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second);
}
}
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion,
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap)
{
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second,
backwardMotion.first, backwardMotion.second,
forwardMap.first, forwardMap.second,
backwardMap.first, backwardMap.second);
}
void upscale(const oclMat& src, oclMat& dst, int scale)
{
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
btv_l1_device_ocl::upscale(src, dst, scale);
}
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
{
dst.create(src1.size(), src1.type());
btv_l1_device_ocl::diffSign(src1, src2, dst);
}
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights)
{
const size_t size = btvKernelSize * btvKernelSize;
btvWeights.resize(size);
const int ksize = (btvKernelSize - 1) / 2;
const float alpha_f = static_cast<float>(alpha);
for (int m = 0, ind = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++ind)
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
}
btvWeights_ = &btvWeights[0];
btvWeights_size = size;
Mat btvWeights_mheader(1, static_cast<int>(size), CV_32FC1, btvWeights_);
c_btvRegWeights = btvWeights_mheader;
}
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize)
{
dst.create(src.size(), src.type());
const int ksize = (btvKernelSize - 1) / 2;
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize);
}
class BTVL1_OCL_Base
{
public:
BTVL1_OCL_Base();
void process(const vector<oclMat>& src, oclMat& dst,
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
int baseIdx);
void collectGarbage();
protected:
int scale_;
int iterations_;
double lambda_;
double tau_;
double alpha_;
int btvKernelSize_;
int blurKernelSize_;
double blurSigma_;
Ptr<DenseOpticalFlowExt> opticalFlow_;
private:
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_;
int curBlurKernelSize_;
double curBlurSigma_;
int curSrcType_;
vector<float> btvWeights_;
int curBtvKernelSize_;
double curAlpha_;
vector<pair<oclMat, oclMat> > lowResForwardMotions_;
vector<pair<oclMat, oclMat> > lowResBackwardMotions_;
vector<pair<oclMat, oclMat> > highResForwardMotions_;
vector<pair<oclMat, oclMat> > highResBackwardMotions_;
vector<pair<oclMat, oclMat> > forwardMaps_;
vector<pair<oclMat, oclMat> > backwardMaps_;
oclMat highRes_;
vector<oclMat> diffTerms_;
oclMat a_, b_, c_, d_;
oclMat regTerm_;
};
BTVL1_OCL_Base::BTVL1_OCL_Base()
{
scale_ = 4;
iterations_ = 180;
lambda_ = 0.03;
tau_ = 1.3;
alpha_ = 0.7;
btvKernelSize_ = 7;
blurKernelSize_ = 5;
blurSigma_ = 0.0;
opticalFlow_ = createOptFlow_Farneback_OCL();
curBlurKernelSize_ = -1;
curBlurSigma_ = -1.0;
curSrcType_ = -1;
curBtvKernelSize_ = -1;
curAlpha_ = -1.0;
}
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst,
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
int baseIdx)
{
CV_Assert( scale_ > 1 );
CV_Assert( iterations_ > 0 );
CV_Assert( tau_ > 0.0 );
CV_Assert( alpha_ > 0.0 );
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
CV_Assert( blurKernelSize_ > 0 );
CV_Assert( blurSigma_ >= 0.0 );
// update blur filter and btv weights
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
{
filters_.resize(src.size());
for (size_t i = 0; i < src.size(); ++i)
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
curBlurKernelSize_ = blurKernelSize_;
curBlurSigma_ = blurSigma_;
curSrcType_ = src[0].type();
}
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
{
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
curBtvKernelSize_ = btvKernelSize_;
curAlpha_ = alpha_;
}
// calc motions between input frames
calcRelativeMotions(forwardMotions, backwardMotions,
lowResForwardMotions_, lowResBackwardMotions_,
baseIdx, src[0].size());
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);
forwardMaps_.resize(highResForwardMotions_.size());
backwardMaps_.resize(highResForwardMotions_.size());
for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
{
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);
}
// initial estimation
const Size lowResSize = src[0].size();
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR);
// iterations
diffTerms_.resize(src.size());
bool d_inited = false;
a_.create(highRes_.size(), highRes_.type());
b_.create(highRes_.size(), highRes_.type());
c_.create(lowResSize, highRes_.type());
d_.create(highRes_.rows, highRes_.cols, highRes_.type());
for (int i = 0; i < iterations_; ++i)
{
if(!d_inited)
{
d_.setTo(0);
d_inited = true;
}
for (size_t k = 0; k < src.size(); ++k)
{
diffTerms_[k].create(highRes_.size(), highRes_.type());
// a = M * Ih
ocl::remap(highRes_, a_, backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
// b = HM * Ih
filters_[k]->apply(a_, b_, Rect(0,0,-1,-1));
// c = DHF * Ih
ocl::resize(b_, c_, lowResSize, 0, 0, INTER_NEAREST);
diffSign(src[k], c_, c_);
// a = Dt * diff
upscale(c_, d_, scale_);
// b = HtDt * diff
filters_[k]->apply(d_, b_, Rect(0,0,-1,-1));
// diffTerm = MtHtDt * diff
ocl::remap(b_, diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
}
if (lambda_ > 0)
{
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
}
for (size_t k = 0; k < src.size(); ++k)
{
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
}
}
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
highRes_(inner).copyTo(dst);
}
void BTVL1_OCL_Base::collectGarbage()
{
filters_.clear();
lowResForwardMotions_.clear();
lowResBackwardMotions_.clear();
highResForwardMotions_.clear();
highResBackwardMotions_.clear();
forwardMaps_.clear();
backwardMaps_.clear();
highRes_.release();
diffTerms_.clear();
a_.release();
b_.release();
c_.release();
regTerm_.release();
c_btvRegWeights.release();
}
////////////////////////////////////////////////////////////
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base
{
public:
AlgorithmInfo* info() const;
BTVL1_OCL();
void collectGarbage();
protected:
void initImpl(Ptr<FrameSource>& frameSource);
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);
private:
int temporalAreaRadius_;
void readNextFrame(Ptr<FrameSource>& frameSource);
void processFrame(int idx);
oclMat curFrame_;
oclMat prevFrame_;
vector<oclMat> frames_;
vector<pair<oclMat, oclMat> > forwardMotions_;
vector<pair<oclMat, oclMat> > backwardMotions_;
vector<oclMat> outputs_;
int storePos_;
int procPos_;
int outPos_;
vector<oclMat> srcFrames_;
vector<pair<oclMat, oclMat> > srcForwardMotions_;
vector<pair<oclMat, oclMat> > srcBackwardMotions_;
oclMat finalOutput_;
};
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL",
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor.");
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count.");
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method.");
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term.");
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV.");
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter.");
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."))
BTVL1_OCL::BTVL1_OCL()
{
temporalAreaRadius_ = 4;
}
void BTVL1_OCL::collectGarbage()
{
curFrame_.release();
prevFrame_.release();
frames_.clear();
forwardMotions_.clear();
backwardMotions_.clear();
outputs_.clear();
srcFrames_.clear();
srcForwardMotions_.clear();
srcBackwardMotions_.clear();
finalOutput_.release();
SuperResolution::collectGarbage();
BTVL1_OCL_Base::collectGarbage();
}
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource)
{
const int cacheSize = 2 * temporalAreaRadius_ + 1;
frames_.resize(cacheSize);
forwardMotions_.resize(cacheSize);
backwardMotions_.resize(cacheSize);
outputs_.resize(cacheSize);
storePos_ = -1;
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
readNextFrame(frameSource);
for (int i = 0; i <= temporalAreaRadius_; ++i)
processFrame(i);
procPos_ = temporalAreaRadius_;
outPos_ = -1;
}
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
{
if (outPos_ >= storePos_)
{
if(_output.kind() == _InputArray::OCL_MAT)
{
getOclMatRef(_output).release();
}
else
{
_output.release();
}
return;
}
readNextFrame(frameSource);
if (procPos_ < storePos_)
{
++procPos_;
processFrame(procPos_);
}
++outPos_;
const oclMat& curOutput = at(outPos_, outputs_);
if (_output.kind() == _InputArray::OCL_MAT)
curOutput.convertTo(getOclMatRef(_output), CV_8U);
else
{
curOutput.convertTo(finalOutput_, CV_8U);
arrCopy(finalOutput_, _output);
}
}
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource)
{
curFrame_.release();
frameSource->nextFrame(curFrame_);
if (curFrame_.empty())
return;
++storePos_;
curFrame_.convertTo(at(storePos_, frames_), CV_32F);
if (storePos_ > 0)
{
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_);
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
}
curFrame_.copyTo(prevFrame_);
}
void BTVL1_OCL::processFrame(int idx)
{
const int startIdx = max(idx - temporalAreaRadius_, 0);
const int procIdx = idx;
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_);
const int count = endIdx - startIdx + 1;
srcFrames_.resize(count);
srcForwardMotions_.resize(count);
srcBackwardMotions_.resize(count);
int baseIdx = -1;
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
{
if (i == procIdx)
baseIdx = k;
srcFrames_[k] = at(i, frames_);
if (i < endIdx)
srcForwardMotions_[k] = at(i, forwardMotions_);
if (i > startIdx)
srcBackwardMotions_[k] = at(i, backwardMotions_);
}
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
}
}
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
{
return new BTVL1_OCL;
}
#endif