198 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			198 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                          License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "precomp.hpp"
 | |
| #include "opencv2/core/hal/hal.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static inline bool decomposeCholesky(double* A, size_t astep, int m)
 | |
| {
 | |
|     if (!hal::Cholesky64f(A, astep, m, 0, 0, 0))
 | |
|         return false;
 | |
|     astep /= sizeof(A[0]);
 | |
|     for (int i = 0; i < m; ++i)
 | |
|         A[i*astep + i] = (double)(1./A[i*astep + i]);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| 
 | |
| namespace cv {
 | |
| namespace detail {
 | |
| 
 | |
| void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok)
 | |
| {
 | |
|     CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3));
 | |
| 
 | |
|     const double* h = H.ptr<double>();
 | |
| 
 | |
|     double d1, d2; // Denominators
 | |
|     double v1, v2; // Focal squares value candidates
 | |
| 
 | |
|     f1_ok = true;
 | |
|     d1 = h[6] * h[7];
 | |
|     d2 = (h[7] - h[6]) * (h[7] + h[6]);
 | |
|     v1 = -(h[0] * h[1] + h[3] * h[4]) / d1;
 | |
|     v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2;
 | |
|     if (v1 < v2) std::swap(v1, v2);
 | |
|     if (v1 > 0 && v2 > 0) f1 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
 | |
|     else if (v1 > 0) f1 = std::sqrt(v1);
 | |
|     else f1_ok = false;
 | |
| 
 | |
|     f0_ok = true;
 | |
|     d1 = h[0] * h[3] + h[1] * h[4];
 | |
|     d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4];
 | |
|     v1 = -h[2] * h[5] / d1;
 | |
|     v2 = (h[5] * h[5] - h[2] * h[2]) / d2;
 | |
|     if (v1 < v2) std::swap(v1, v2);
 | |
|     if (v1 > 0 && v2 > 0) f0 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
 | |
|     else if (v1 > 0) f0 = std::sqrt(v1);
 | |
|     else f0_ok = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void estimateFocal(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
 | |
|                        std::vector<double> &focals)
 | |
| {
 | |
|     const int num_images = static_cast<int>(features.size());
 | |
|     focals.resize(num_images);
 | |
| 
 | |
|     std::vector<double> all_focals;
 | |
| 
 | |
|     for (int i = 0; i < num_images; ++i)
 | |
|     {
 | |
|         for (int j = 0; j < num_images; ++j)
 | |
|         {
 | |
|             const MatchesInfo &m = pairwise_matches[i*num_images + j];
 | |
|             if (m.H.empty())
 | |
|                 continue;
 | |
|             double f0, f1;
 | |
|             bool f0ok, f1ok;
 | |
|             focalsFromHomography(m.H, f0, f1, f0ok, f1ok);
 | |
|             if (f0ok && f1ok)
 | |
|                 all_focals.push_back(std::sqrt(f0 * f1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (static_cast<int>(all_focals.size()) >= num_images - 1)
 | |
|     {
 | |
|         double median;
 | |
| 
 | |
|         std::sort(all_focals.begin(), all_focals.end());
 | |
|         if (all_focals.size() % 2 == 1)
 | |
|             median = all_focals[all_focals.size() / 2];
 | |
|         else
 | |
|             median = (all_focals[all_focals.size() / 2 - 1] + all_focals[all_focals.size() / 2]) * 0.5;
 | |
| 
 | |
|         for (int i = 0; i < num_images; ++i)
 | |
|             focals[i] = median;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         LOGLN("Can't estimate focal length, will use naive approach");
 | |
|         double focals_sum = 0;
 | |
|         for (int i = 0; i < num_images; ++i)
 | |
|             focals_sum += features[i].img_size.width + features[i].img_size.height;
 | |
|         for (int i = 0; i < num_images; ++i)
 | |
|             focals[i] = focals_sum / num_images;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K)
 | |
| {
 | |
|     int m = static_cast<int>(Hs.size());
 | |
|     CV_Assert(m >= 1);
 | |
| 
 | |
|     std::vector<Mat> Hs_(m);
 | |
|     for (int i = 0; i < m; ++i)
 | |
|     {
 | |
|         CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F);
 | |
|         Hs_[i] = Hs[i] / std::pow(determinant(Hs[i]), 1./3.);
 | |
|     }
 | |
| 
 | |
|     const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};
 | |
|     Mat_<double> A(6*m, 6);
 | |
|     A.setTo(0);
 | |
| 
 | |
|     int eq_idx = 0;
 | |
|     for (int k = 0; k < m; ++k)
 | |
|     {
 | |
|         Mat_<double> H(Hs_[k]);
 | |
|         for (int i = 0; i < 3; ++i)
 | |
|         {
 | |
|             for (int j = i; j < 3; ++j, ++eq_idx)
 | |
|             {
 | |
|                 for (int l = 0; l < 3; ++l)
 | |
|                 {
 | |
|                     for (int s = 0; s < 3; ++s)
 | |
|                     {
 | |
|                         int idx = idx_map[l][s];
 | |
|                         A(eq_idx, idx) += H(i,l) * H(j,s);
 | |
|                     }
 | |
|                 }
 | |
|                 A(eq_idx, idx_map[i][j]) -= 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Mat_<double> wcoef;
 | |
|     SVD::solveZ(A, wcoef);
 | |
| 
 | |
|     Mat_<double> W(3,3);
 | |
|     for (int i = 0; i < 3; ++i)
 | |
|         for (int j = i; j < 3; ++j)
 | |
|             W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0);
 | |
|     if (!decomposeCholesky(W.ptr<double>(), W.step, 3))
 | |
|         return false;
 | |
|     W(0,1) = W(0,2) = W(1,2) = 0;
 | |
|     K = W.t();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| } // namespace cv
 | 
