205 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // The "Square Detector" program.
 | |
| // It loads several images sequentially and tries to find squares in
 | |
| // each image
 | |
| 
 | |
| #include "opencv2/core.hpp"
 | |
| #include "opencv2/core/ocl.hpp"
 | |
| #include "opencv2/core/utility.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include <iostream>
 | |
| #include <string.h>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| int thresh = 50, N = 11;
 | |
| const char* wndname = "Square Detection Demo";
 | |
| 
 | |
| // helper function:
 | |
| // finds a cosine of angle between vectors
 | |
| // from pt0->pt1 and from pt0->pt2
 | |
| static double angle( Point pt1, Point pt2, Point pt0 )
 | |
| {
 | |
|     double dx1 = pt1.x - pt0.x;
 | |
|     double dy1 = pt1.y - pt0.y;
 | |
|     double dx2 = pt2.x - pt0.x;
 | |
|     double dy2 = pt2.y - pt0.y;
 | |
|     return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
 | |
| }
 | |
| 
 | |
| 
 | |
| // returns sequence of squares detected on the image.
 | |
| // the sequence is stored in the specified memory storage
 | |
| static void findSquares( const UMat& image, vector<vector<Point> >& squares )
 | |
| {
 | |
|     squares.clear();
 | |
|     UMat pyr, timg, gray0(image.size(), CV_8U), gray;
 | |
| 
 | |
|     // down-scale and upscale the image to filter out the noise
 | |
|     pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
 | |
|     pyrUp(pyr, timg, image.size());
 | |
|     vector<vector<Point> > contours;
 | |
| 
 | |
|     // find squares in every color plane of the image
 | |
|     for( int c = 0; c < 3; c++ )
 | |
|     {
 | |
|         int ch[] = {c, 0};
 | |
|         mixChannels(timg, gray0, ch, 1);
 | |
| 
 | |
|         // try several threshold levels
 | |
|         for( int l = 0; l < N; l++ )
 | |
|         {
 | |
|             // hack: use Canny instead of zero threshold level.
 | |
|             // Canny helps to catch squares with gradient shading
 | |
|             if( l == 0 )
 | |
|             {
 | |
|                 // apply Canny. Take the upper threshold from slider
 | |
|                 // and set the lower to 0 (which forces edges merging)
 | |
|                 Canny(gray0, gray, 0, thresh, 5);
 | |
|                 // dilate canny output to remove potential
 | |
|                 // holes between edge segments
 | |
|                 dilate(gray, gray, UMat(), Point(-1,-1));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // apply threshold if l!=0:
 | |
|                 //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 | |
|                 cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
 | |
|             }
 | |
| 
 | |
|             // find contours and store them all as a list
 | |
|             findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
 | |
| 
 | |
|             vector<Point> approx;
 | |
| 
 | |
|             // test each contour
 | |
|             for( size_t i = 0; i < contours.size(); i++ )
 | |
|             {
 | |
|                 // approximate contour with accuracy proportional
 | |
|                 // to the contour perimeter
 | |
| 
 | |
|                 approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
 | |
| 
 | |
|                 // square contours should have 4 vertices after approximation
 | |
|                 // relatively large area (to filter out noisy contours)
 | |
|                 // and be convex.
 | |
|                 // Note: absolute value of an area is used because
 | |
|                 // area may be positive or negative - in accordance with the
 | |
|                 // contour orientation
 | |
|                 if( approx.size() == 4 &&
 | |
|                         fabs(contourArea(Mat(approx))) > 1000 &&
 | |
|                         isContourConvex(Mat(approx)) )
 | |
|                 {
 | |
|                     double maxCosine = 0;
 | |
| 
 | |
|                     for( int j = 2; j < 5; j++ )
 | |
|                     {
 | |
|                         // find the maximum cosine of the angle between joint edges
 | |
|                         double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
 | |
|                         maxCosine = MAX(maxCosine, cosine);
 | |
|                     }
 | |
| 
 | |
|                     // if cosines of all angles are small
 | |
|                     // (all angles are ~90 degree) then write quandrange
 | |
|                     // vertices to resultant sequence
 | |
|                     if( maxCosine < 0.3 )
 | |
|                         squares.push_back(approx);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // the function draws all the squares in the image
 | |
| static void drawSquares( UMat& _image, const vector<vector<Point> >& squares )
 | |
| {
 | |
|     Mat image = _image.getMat(ACCESS_WRITE);
 | |
|     for( size_t i = 0; i < squares.size(); i++ )
 | |
|     {
 | |
|         const Point* p = &squares[i][0];
 | |
|         int n = (int)squares[i].size();
 | |
|         polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // draw both pure-C++ and ocl square results onto a single image
 | |
| static UMat drawSquaresBoth( const UMat& image,
 | |
|                             const vector<vector<Point> >& sqs)
 | |
| {
 | |
|     UMat imgToShow(Size(image.cols, image.rows), image.type());
 | |
|     image.copyTo(imgToShow);
 | |
| 
 | |
|     drawSquares(imgToShow, sqs);
 | |
| 
 | |
|     return imgToShow;
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     const char* keys =
 | |
|         "{ i input    | pic1.png           | specify input image }"
 | |
|         "{ o output   | squares_output.jpg | specify output save path}"
 | |
|         "{ h help     | false              | print help message }"
 | |
|         "{ m cpu_mode | false              | run without OpenCL }";
 | |
| 
 | |
|     CommandLineParser cmd(argc, argv, keys);
 | |
| 
 | |
|     if(cmd.has("help"))
 | |
|     {
 | |
|         cout << "Usage : squares [options]" << endl;
 | |
|         cout << "Available options:" << endl;
 | |
|         cmd.printMessage();
 | |
|         return EXIT_SUCCESS;
 | |
|     }
 | |
|     if (cmd.has("cpu_mode"))
 | |
|     {
 | |
|         ocl::setUseOpenCL(false);
 | |
|         std::cout << "OpenCL was disabled" << std::endl;
 | |
|     }
 | |
| 
 | |
|     string inputName = cmd.get<string>("i");
 | |
|     string outfile = cmd.get<string>("o");
 | |
| 
 | |
|     int iterations = 10;
 | |
|     namedWindow( wndname, WINDOW_AUTOSIZE );
 | |
|     vector<vector<Point> > squares;
 | |
| 
 | |
|     UMat image;
 | |
|     imread(inputName, 1).copyTo(image);
 | |
|     if( image.empty() )
 | |
|     {
 | |
|         cout << "Couldn't load " << inputName << endl;
 | |
|         cmd.printMessage();
 | |
|         return EXIT_FAILURE;
 | |
|     }
 | |
| 
 | |
|     int j = iterations;
 | |
|     int64 t_cpp = 0;
 | |
|     //warm-ups
 | |
|     cout << "warming up ..." << endl;
 | |
|     findSquares(image, squares);
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         int64 t_start = cv::getTickCount();
 | |
|         findSquares(image, squares);
 | |
|         t_cpp += cv::getTickCount() - t_start;
 | |
| 
 | |
|         t_start  = cv::getTickCount();
 | |
| 
 | |
|         cout << "run loop: " << j << endl;
 | |
|     }
 | |
|     while(--j);
 | |
|     cout << "average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
 | |
| 
 | |
|     UMat result = drawSquaresBoth(image, squares);
 | |
|     imshow(wndname, result);
 | |
|     imwrite(outfile, result);
 | |
|     waitKey(0);
 | |
| 
 | |
|     return EXIT_SUCCESS;
 | |
| }
 | 
