380 lines
14 KiB
ReStructuredText
380 lines
14 KiB
ReStructuredText
HDR imaging
|
||
=============
|
||
|
||
.. highlight:: cpp
|
||
|
||
This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment, camera calibration with multiple exposures and exposure fusion.
|
||
|
||
Tonemap
|
||
---------------------------
|
||
.. ocv:class:: Tonemap : public Algorithm
|
||
|
||
Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range.
|
||
|
||
Tonemap::process
|
||
---------------------------
|
||
Tonemaps image
|
||
|
||
.. ocv:function:: void Tonemap::process(InputArray src, OutputArray dst)
|
||
|
||
:param src: source image - 32-bit 3-channel Mat
|
||
:param dst: destination image - 32-bit 3-channel Mat with values in [0, 1] range
|
||
|
||
createTonemap
|
||
---------------------------
|
||
Creates simple linear mapper with gamma correction
|
||
|
||
.. ocv:function:: Ptr<Tonemap> createTonemap(float gamma = 1.0f)
|
||
|
||
:param gamma: positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma equal to 2.2f is suitable for most displays.
|
||
|
||
Generally gamma > 1 brightens the image and gamma < 1 darkens it.
|
||
|
||
TonemapDrago
|
||
---------------------------
|
||
.. ocv:class:: TonemapDrago : public Tonemap
|
||
|
||
Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in logarithmic domain.
|
||
|
||
Since it's a global operator the same function is applied to all the pixels, it is controlled by the bias parameter.
|
||
|
||
Optional saturation enhancement is possible as described in [FL02]_.
|
||
|
||
For more information see [DM03]_.
|
||
|
||
createTonemapDrago
|
||
---------------------------
|
||
Creates TonemapDrago object
|
||
|
||
.. ocv:function:: Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float bias = 0.85f)
|
||
|
||
:param gamma: gamma value for gamma correction. See :ocv:func:`createTonemap`
|
||
|
||
:param saturation: positive saturation enhancement value. 1.0 preserves saturation, values greater than 1 increase saturation and values less than 1 decrease it.
|
||
|
||
:param bias: value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best results, default value is 0.85.
|
||
|
||
TonemapDurand
|
||
---------------------------
|
||
.. ocv:class:: TonemapDurand : public Tonemap
|
||
|
||
This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter and compresses contrast of the base layer thus preserving all the details.
|
||
|
||
This implementation uses regular bilateral filter from opencv.
|
||
|
||
Saturation enhancement is possible as in ocv:class:`TonemapDrago`.
|
||
|
||
For more information see [DD02]_.
|
||
|
||
createTonemapDurand
|
||
---------------------------
|
||
Creates TonemapDurand object
|
||
|
||
.. ocv:function:: Ptr<TonemapDurand> createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f)
|
||
|
||
:param gamma: gamma value for gamma correction. See :ocv:func:`createTonemap`
|
||
|
||
:param contrast: resulting contrast on logarithmic scale, i. e. log(max / min), where max and min are maximum and minimum luminance values of the resulting image.
|
||
|
||
:param saturation: saturation enhancement value. See :ocv:func:`createTonemapDrago`
|
||
|
||
:param sigma_space: bilateral filter sigma in color space
|
||
|
||
:param sigma_color: bilateral filter sigma in coordinate space
|
||
|
||
TonemapReinhardDevlin
|
||
---------------------------
|
||
.. ocv:class:: TonemapReinhardDevlin : public Tonemap
|
||
|
||
This is a global tonemapping operator that models human visual system.
|
||
|
||
Mapping function is controlled by adaptation parameter, that is computed using light adaptation and color adaptation.
|
||
|
||
For more information see [RD05]_.
|
||
|
||
createTonemapReinhardDevlin
|
||
---------------------------
|
||
Creates TonemapReinhardDevlin object
|
||
|
||
.. ocv:function:: Ptr<TonemapReinhardDevlin> createTonemapReinhardDevlin(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f)
|
||
|
||
:param gamma: gamma value for gamma correction. See :ocv:func:`createTonemap`
|
||
|
||
:param intensity: result intensity in [-8, 8] range. Greater intensity produces brighter results.
|
||
|
||
:param light_adapt: light adaptation in [0, 1] range. If 1 adaptation is based only on pixel value, if 0 it's global, otherwise it's a weighted mean of this two cases.
|
||
|
||
:param color_adapt: chromatic adaptation in [0, 1] range. If 1 channels are treated independently, if 0 adaptation level is the same for each channel.
|
||
|
||
TonemapMantiuk
|
||
---------------------------
|
||
.. ocv:class:: TonemapMantiuk : public Tonemap
|
||
|
||
This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid, transforms contrast values to HVS response and scales the response.
|
||
After this the image is reconstructed from new contrast values.
|
||
|
||
For more information see [MM06]_.
|
||
|
||
createTonemapMantiuk
|
||
---------------------------
|
||
Creates TonemapMantiuk object
|
||
|
||
.. ocv:function:: Ptr<TonemapMantiuk> createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f)
|
||
|
||
:param gamma: gamma value for gamma correction. See :ocv:func:`createTonemap`
|
||
|
||
:param scale: contrast scale factor. HVS response is multiplied by this parameter, thus compressing dynamic range. Values from 0.6 to 0.9 produce best results.
|
||
|
||
:param saturation: saturation enhancement value. See :ocv:func:`createTonemapDrago`
|
||
|
||
ExposureAlign
|
||
---------------------------
|
||
.. ocv:class:: ExposureAlign : public Algorithm
|
||
|
||
The base class for algorithms that align images of the same scene with different exposures
|
||
|
||
ExposureAlign::process
|
||
---------------------------
|
||
Aligns images
|
||
|
||
.. ocv:function:: void ExposureAlign::process(InputArrayOfArrays src, OutputArrayOfArrays dst, const std::vector<float>& times, InputArray response)
|
||
|
||
:param src: vector of input images
|
||
|
||
:param dst: vector of aligned images
|
||
|
||
:param times: vector of exposure time values for each image
|
||
|
||
:param response: 256x1 matrix with inverse camera response function for each pixel value, it should have the same number of channels as images.
|
||
|
||
AlignMTB
|
||
---------------------------
|
||
.. ocv:class:: AlignMTB : public ExposureAlign
|
||
|
||
This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations.
|
||
|
||
It is invariant to exposure, so exposure values and camera response are not necessary.
|
||
|
||
In this implementation new image regions are filled with zeros.
|
||
|
||
For more information see [GW03]_.
|
||
|
||
AlignMTB::process
|
||
---------------------------
|
||
Short version of process, that doesn't take extra arguments.
|
||
|
||
.. ocv:function:: void AlignMTB::process(InputArrayOfArrays src, OutputArrayOfArrays dst)
|
||
|
||
:param src: vector of input images
|
||
|
||
:param dst: vector of aligned images
|
||
|
||
AlignMTB::calculateShift
|
||
---------------------------
|
||
Calculates shift between two images, i. e. how to shift the second image to correspond it with the first.
|
||
|
||
.. ocv:function:: void AlignMTB::calculateShift(InputArray img0, InputArray img1, Point& shift)
|
||
|
||
:param img0: first image
|
||
|
||
:param img1: second image
|
||
|
||
:param shift: calculated shift
|
||
|
||
AlignMTB::shiftMat
|
||
---------------------------
|
||
Helper function, that shift Mat filling new regions with zeros.
|
||
|
||
.. ocv:function:: void AlignMTB::shiftMat(InputArray src, OutputArray dst, const Point shift)
|
||
|
||
:param src: input image
|
||
|
||
:param dst: result image
|
||
|
||
:param shift: shift value
|
||
|
||
AlignMTB::computeBitmaps
|
||
---------------------------
|
||
Computes median threshold and exclude bitmaps of given image.
|
||
|
||
.. ocv:function:: void computeBitmaps(Mat& img, Mat& tb, Mat& eb)
|
||
|
||
:param img: input image
|
||
|
||
:param tb: median threshold bitmap
|
||
|
||
:param eb: exclude bitmap
|
||
|
||
createAlignMTB
|
||
---------------------------
|
||
Creates AlignMTB object
|
||
|
||
.. ocv:function:: Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true)
|
||
|
||
:param max_bits: logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are usually good enough (31 and 63 pixels shift respectively).
|
||
|
||
:param exclude_range: range for exclusion bitmap that is constructed to suppress noise around the median value.
|
||
|
||
:param cut: if true cuts images, otherwise fills the new regions with zeros.
|
||
|
||
ExposureCalibrate
|
||
---------------------------
|
||
.. ocv:class:: ExposureCalibrate : public Algorithm
|
||
|
||
The base class for camera response calibration algorithms.
|
||
|
||
ExposureCalibrate::process
|
||
---------------------------
|
||
Recovers inverse camera response.
|
||
|
||
.. ocv:function:: void ExposureCalibrate::process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
|
||
|
||
:param src: vector of input images
|
||
|
||
:param dst: 256x1 matrix with inverse camera response function
|
||
|
||
:param times: vector of exposure time values for each image
|
||
|
||
CalibrateDebevec
|
||
---------------------------
|
||
.. ocv:class:: CalibrateDebevec : public ExposureCalibrate
|
||
|
||
Inverse camera response function is extracted for each brightness value by minimizing an objective function as linear system.
|
||
Objective function is constructed using pixel values on the same position in all images, extra term is added to make the result smoother.
|
||
|
||
For more information see [DM97]_.
|
||
|
||
createCalibrateDebevec
|
||
---------------------------
|
||
Creates CalibrateDebevec object
|
||
|
||
.. ocv:function:: createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false)
|
||
|
||
:param samples: number of pixel locations to use
|
||
|
||
:param lambda: smoothness term weight. Greater values produce smoother results, but can alter the response.
|
||
|
||
:param random: if true sample pixel locations are chosen at random, otherwise the form a rectangular grid.
|
||
|
||
CalibrateRobertson
|
||
---------------------------
|
||
.. ocv:class:: CalibrateRobertson : public ExposureCalibrate
|
||
|
||
Inverse camera response function is extracted for each brightness value by minimizing an objective function as linear system.
|
||
This algorithm uses all image pixels.
|
||
|
||
For more information see [RB99]_.
|
||
|
||
createCalibrateRobertson
|
||
---------------------------
|
||
Creates CalibrateRobertson object
|
||
|
||
.. ocv:function:: createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f)
|
||
|
||
:param max_iter: maximal number of Gauss-Seidel solver iterations.
|
||
|
||
:param threshold: target difference between results of two successive steps of the minimization.
|
||
|
||
ExposureMerge
|
||
---------------------------
|
||
.. ocv:class:: ExposureMerge : public Algorithm
|
||
|
||
The base class algorithms that can merge exposure sequence to a single image.
|
||
|
||
ExposureMerge::process
|
||
---------------------------
|
||
Merges images.
|
||
|
||
.. ocv:function:: void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times, InputArray response)
|
||
|
||
:param src: vector of input images
|
||
|
||
:param dst: result image
|
||
|
||
:param times: vector of exposure time values for each image
|
||
|
||
:param response: 256x1 matrix with inverse camera response function for each pixel value, it should have the same number of channels as images.
|
||
|
||
MergeDebevec
|
||
---------------------------
|
||
.. ocv:class:: MergeDebevec : public ExposureMerge
|
||
|
||
The resulting HDR image is calculated as weighted average of the exposures considering exposure values and camera response.
|
||
|
||
For more information see [DM97]_.
|
||
|
||
createMergeDebevec
|
||
---------------------------
|
||
Creates MergeDebevec object
|
||
|
||
.. ocv:function:: Ptr<MergeDebevec> createMergeDebevec()
|
||
|
||
MergeMertens
|
||
---------------------------
|
||
.. ocv:class:: MergeMertens : public ExposureMerge
|
||
|
||
Pixels are weighted using contrast, saturation and well-exposedness measures, than images are combined using laplacian pyramids.
|
||
|
||
The resulting image weight is constructed as weighted average of contrast, saturation and well-exposedness measures.
|
||
|
||
The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying by 255, but it's recommended to apply gamma correction and/or linear tonemapping.
|
||
|
||
For more information see [MK07]_.
|
||
|
||
MergeMertens::process
|
||
---------------------------
|
||
Short version of process, that doesn't take extra arguments.
|
||
|
||
.. ocv:function:: void MergeMertens::process(InputArrayOfArrays src, OutputArray dst)
|
||
|
||
:param src: vector of input images
|
||
|
||
:param dst: result image
|
||
|
||
createMergeMertens
|
||
---------------------------
|
||
Creates MergeMertens object
|
||
|
||
.. ocv:function:: Ptr<MergeMertens> createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f)
|
||
|
||
:param contrast_weight: contrast measure weight. See :ocv:class:`MergeMertens`.
|
||
|
||
:param saturation_weight: saturation measure weight
|
||
|
||
:param exposure_weight: well-exposedness measure weight
|
||
|
||
MergeRobertson
|
||
---------------------------
|
||
.. ocv:class:: MergeRobertson : public ExposureMerge
|
||
|
||
The resulting HDR image is calculated as weighted average of the exposures considering exposure values and camera response.
|
||
|
||
For more information see [RB99]_.
|
||
|
||
createMergeRobertson
|
||
---------------------------
|
||
Creates MergeRobertson object
|
||
|
||
.. ocv:function:: Ptr<MergeRobertson> createMergeRobertson()
|
||
|
||
References
|
||
==========
|
||
|
||
.. [DM03] F. Drago, K. Myszkowski, T. Annen, N. Chiba, "Adaptive Logarithmic Mapping For Displaying High Contrast Scenes", Computer Graphics Forum, 2003, 22, 419 - 426.
|
||
|
||
.. [FL02] R. Fattal, D. Lischinski, M. Werman, "Gradient Domain High Dynamic Range Compression", Proceedings OF ACM SIGGRAPH, 2002, 249 - 256.
|
||
|
||
.. [DD02] F. Durand and Julie Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images", ACM Transactions on Graphics, 2002, 21, 3, 257 - 266.
|
||
|
||
.. [RD05] E. Reinhard, K. Devlin, "Dynamic Range Reduction Inspired by Photoreceptor Physiology", IEEE Transactions on Visualization and Computer Graphics, 2005, 11, 13 - 24.
|
||
|
||
.. [MM06] R. Mantiuk, K. Myszkowski, H.-P. Seidel, "Perceptual Framework for Contrast Processing of High Dynamic Range Images", ACM Transactions on Applied Perception, 2006, 3, 3, 286 - 308.
|
||
|
||
.. [GW03] G. Ward, "Fast, Robust Image Registration for Compositing High Dynamic Range Photographs from Handheld Exposures", Journal of Graphics Tools, 2003, 8, 17 - 30.
|
||
|
||
.. [DM97] P. Debevec, J. Malik, "Recovering High Dynamic Range Radiance Maps from Photographs", Proceedings OF ACM SIGGRAPH, 1997, 369 - 378.
|
||
|
||
.. [MK07] T. Mertens, J. Kautz, F. Van Reeth, "Exposure Fusion", Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, 2007, 382 - 390.
|
||
|
||
.. [RB99] M. Robertson , S. Borman , R. Stevenson , "Dynamic range improvement through multiple exposures ", Proceedings of the Int. Conf. on Image Processing , 1999, 159 - 163.
|