373 lines
9.6 KiB
C
373 lines
9.6 KiB
C
/* ssyrk.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k,
|
|
real *alpha, real *a, integer *lda, real *beta, real *c__, integer *
|
|
ldc)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, j, l, info;
|
|
real temp;
|
|
extern logical lsame_(char *, char *);
|
|
integer nrowa;
|
|
logical upper;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SSYRK performs one of the symmetric rank k operations */
|
|
|
|
/* C := alpha*A*A' + beta*C, */
|
|
|
|
/* or */
|
|
|
|
/* C := alpha*A'*A + beta*C, */
|
|
|
|
/* where alpha and beta are scalars, C is an n by n symmetric matrix */
|
|
/* and A is an n by k matrix in the first case and a k by n matrix */
|
|
/* in the second case. */
|
|
|
|
/* Arguments */
|
|
/* ========== */
|
|
|
|
/* UPLO - CHARACTER*1. */
|
|
/* On entry, UPLO specifies whether the upper or lower */
|
|
/* triangular part of the array C is to be referenced as */
|
|
/* follows: */
|
|
|
|
/* UPLO = 'U' or 'u' Only the upper triangular part of C */
|
|
/* is to be referenced. */
|
|
|
|
/* UPLO = 'L' or 'l' Only the lower triangular part of C */
|
|
/* is to be referenced. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
/* TRANS - CHARACTER*1. */
|
|
/* On entry, TRANS specifies the operation to be performed as */
|
|
/* follows: */
|
|
|
|
/* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. */
|
|
|
|
/* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. */
|
|
|
|
/* TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
/* N - INTEGER. */
|
|
/* On entry, N specifies the order of the matrix C. N must be */
|
|
/* at least zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* K - INTEGER. */
|
|
/* On entry with TRANS = 'N' or 'n', K specifies the number */
|
|
/* of columns of the matrix A, and on entry with */
|
|
/* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number */
|
|
/* of rows of the matrix A. K must be at least zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* ALPHA - REAL . */
|
|
/* On entry, ALPHA specifies the scalar alpha. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* A - REAL array of DIMENSION ( LDA, ka ), where ka is */
|
|
/* k when TRANS = 'N' or 'n', and is n otherwise. */
|
|
/* Before entry with TRANS = 'N' or 'n', the leading n by k */
|
|
/* part of the array A must contain the matrix A, otherwise */
|
|
/* the leading k by n part of the array A must contain the */
|
|
/* matrix A. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* LDA - INTEGER. */
|
|
/* On entry, LDA specifies the first dimension of A as declared */
|
|
/* in the calling (sub) program. When TRANS = 'N' or 'n' */
|
|
/* then LDA must be at least max( 1, n ), otherwise LDA must */
|
|
/* be at least max( 1, k ). */
|
|
/* Unchanged on exit. */
|
|
|
|
/* BETA - REAL . */
|
|
/* On entry, BETA specifies the scalar beta. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* C - REAL array of DIMENSION ( LDC, n ). */
|
|
/* Before entry with UPLO = 'U' or 'u', the leading n by n */
|
|
/* upper triangular part of the array C must contain the upper */
|
|
/* triangular part of the symmetric matrix and the strictly */
|
|
/* lower triangular part of C is not referenced. On exit, the */
|
|
/* upper triangular part of the array C is overwritten by the */
|
|
/* upper triangular part of the updated matrix. */
|
|
/* Before entry with UPLO = 'L' or 'l', the leading n by n */
|
|
/* lower triangular part of the array C must contain the lower */
|
|
/* triangular part of the symmetric matrix and the strictly */
|
|
/* upper triangular part of C is not referenced. On exit, the */
|
|
/* lower triangular part of the array C is overwritten by the */
|
|
/* lower triangular part of the updated matrix. */
|
|
|
|
/* LDC - INTEGER. */
|
|
/* On entry, LDC specifies the first dimension of C as declared */
|
|
/* in the calling (sub) program. LDC must be at least */
|
|
/* max( 1, n ). */
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
/* Level 3 Blas routine. */
|
|
|
|
/* -- Written on 8-February-1989. */
|
|
/* Jack Dongarra, Argonne National Laboratory. */
|
|
/* Iain Duff, AERE Harwell. */
|
|
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
|
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
|
|
|
|
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
|
|
/* Function Body */
|
|
if (lsame_(trans, "N")) {
|
|
nrowa = *n;
|
|
} else {
|
|
nrowa = *k;
|
|
}
|
|
upper = lsame_(uplo, "U");
|
|
|
|
info = 0;
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
info = 1;
|
|
} else if (! lsame_(trans, "N") && ! lsame_(trans,
|
|
"T") && ! lsame_(trans, "C")) {
|
|
info = 2;
|
|
} else if (*n < 0) {
|
|
info = 3;
|
|
} else if (*k < 0) {
|
|
info = 4;
|
|
} else if (*lda < max(1,nrowa)) {
|
|
info = 7;
|
|
} else if (*ldc < max(1,*n)) {
|
|
info = 10;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_("SSYRK ", &info);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
|
|
return 0;
|
|
}
|
|
|
|
/* And when alpha.eq.zero. */
|
|
|
|
if (*alpha == 0.f) {
|
|
if (upper) {
|
|
if (*beta == 0.f) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.f;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else {
|
|
if (*beta == 0.f) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.f;
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start the operations. */
|
|
|
|
if (lsame_(trans, "N")) {
|
|
|
|
/* Form C := alpha*A*A' + beta*C. */
|
|
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.f) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.f;
|
|
/* L90: */
|
|
}
|
|
} else if (*beta != 1.f) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L100: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
if (a[j + l * a_dim1] != 0.f) {
|
|
temp = *alpha * a[j + l * a_dim1];
|
|
i__3 = j;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l *
|
|
a_dim1];
|
|
/* L110: */
|
|
}
|
|
}
|
|
/* L120: */
|
|
}
|
|
/* L130: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.f) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.f;
|
|
/* L140: */
|
|
}
|
|
} else if (*beta != 1.f) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L150: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
if (a[j + l * a_dim1] != 0.f) {
|
|
temp = *alpha * a[j + l * a_dim1];
|
|
i__3 = *n;
|
|
for (i__ = j; i__ <= i__3; ++i__) {
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l *
|
|
a_dim1];
|
|
/* L160: */
|
|
}
|
|
}
|
|
/* L170: */
|
|
}
|
|
/* L180: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form C := alpha*A'*A + beta*C. */
|
|
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp = 0.f;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
|
|
/* L190: */
|
|
}
|
|
if (*beta == 0.f) {
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
} else {
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
i__ + j * c_dim1];
|
|
}
|
|
/* L200: */
|
|
}
|
|
/* L210: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
temp = 0.f;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
|
|
/* L220: */
|
|
}
|
|
if (*beta == 0.f) {
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
} else {
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
i__ + j * c_dim1];
|
|
}
|
|
/* L230: */
|
|
}
|
|
/* L240: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SSYRK . */
|
|
|
|
} /* ssyrk_ */
|